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Obesity, a new pandemic, is associated with an increased
risk of death, morbidity, and accelerated aging. The multi-
ple therapeutic modalities used to promote weight loss are
outlined with caution, especially for patients who are very
young or old. Except for very rare single gene defects, the
inheritance of obesity is complex and still poorly under-
stood, despite active investigations. Recent advances that
have shed light on the pathophysiology of obesity are the
recognition that 1) excess fat is deposited in liver, muscle,
and pancreatic islets; 2) fat tissue secretes a large number of
active signaling molecules including leptin, adiponectin,
and resistin, as well as free fatty acids; and 3) activated
macrophages colonize the adipose tissue. Other candidates
for key roles in the causes and consequences of obesity
include 1) metabolic programming, where food acts as a
developmental regulator; 2) the constellation of defects
known as the “metabolic syndrome;” 3) cortisol overpro-
duction in the adipose tissue; and especially, 4) insulin
resistance. The possible etiologies of insulin resistance in-
clude cytokine excess, elevated free fatty acids, and hyper-
insulinemia itself, as with transgenic overproduction of in-
sulin in mice.
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Introduction
Obesity has captured headlines and spurred research as its

incidence and prevalence have exploded. Professionals

worldwide in academia, government, and industry are de-
voting increasing resources and energy to combating obe-
sity and its consequences worldwide. Despite much new
data, obesity is still very mysterious, even to the experts.

Serious Consequences of Obesity
Mortality

For both men and women, there is a progressive increase
in risk of death (1) as adiposity increases above normal
(Figure 1). With BMI as the measure of adiposity, the graph
of the increase in mortality appears to curve upward. The
increase in mortality seems to be, in large part, caused by
the increase of fat mass. Typically, a 20% or so increase in
body weight above normal results in a 100% increase of
total body fat. This has significant implications for obesity
treatment, as will be discussed later.

The cause of the increase in mortality with low body
weight in humans (Figure 1) is not well understood and has
not been reported in experimental animals. The plateau
observed in the “normal” weight range (Figure 1) suggests
that there are actually two competing processes that meet to
form the plateau. Also, this highlights some of the imper-
fections of BMI. For example, in elderly people, as fat mass
increases and muscle mass decreases, the BMI underesti-
mates adiposity. Also in the elderly, height decreases, arti-
ficially raising the BMI. There is also another interesting
age effect (2). As the age of the population rises, the whole
curve shifts up and to the right (2). Additionally, the excess
risk imposed by obesity varies with age (Figure 2) (3).
Young men (age, 25 to 34 years) with morbid obesity
(BMI � 40 kg/m2) have a 10-fold excess mortality com-
pared with their normal weight counterparts. Whereas the
absolute risk for death increases with age, the excess rela-
tive risk diminishes with age, but the excess does persist
even beyond age 65 years.

Accelerated Aging and Illness
Obesity markedly accelerates aging processes, especially

when coupled with diabetes. Except for osteoporosis (where
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it is protective), obesity speeds the onset, increases the
prevalence, and intensifies the severity of all of the major
diseases of old age (4–7).

Among the cardiovascular disorders that have been asso-
ciated with obesity, which are well documented, are hyper-
tension (8,9), myocardial infarction (10), and stroke (11,12).
Hypertension, for example, occurs at almost twice the rate
in obese individuals compared with normal weight men and
women (13).

Type 2 diabetes is also a well-established consequence of
obesity (14,15). Recent data have suggested that the fre-
quency of type 1 diabetes is also increased by the presence
of obesity (16,17). A special concern has been that the
coexistence of obesity with chronic hyperglycemia, due to
impaired glucose tolerance or frank diabetes (18,19), mag-
nifies the risks related to the common forms of cardiovas-
cular disease.

Cardiovascular risk factors and cerebrovascular disease
both significantly predispose to dementia; these findings
complement recent reports that hyperglycemia and obesity
may also magnify the risk of dementia (19,20). When 392
Swedish nondemented elderly adults were studied for 18
years (from 70 to 88 years of age), investigators found that
an elevation in BMI of one unit was associated with a 36%
increase in Alzheimer’s disease in women. However, this
association was not seen in the men (20).

Obesity also increases the risk of cancer. This is espe-
cially true of cancers of the breast and endometrium. Tra-
ditionally, this increase in risk has been ascribed to the
influence of estrogen produced in excess by the fat tissue
(21,22). Recent research has indicated that many other
common (non–estrogen-dependent) cancers, such as those
of colon and kidney, are also more prevalent among over-
weight individuals (23).

Many other organ systems are affected. The hepatic ste-
atosis (“fatty liver”) associated with obesity can lead to
hepatic dysfunction and cirrhosis. This disorder is now
diagnosed more often, because health care practitioners
have become more aware of it, and diagnostic techniques
have improved (24,25). Pulmonary disorders are more com-
mon and more severe in obese individuals, particularly sleep
apnea and asthma (26–28), both of which have seen an
upsurge in diagnosis in recent years. Other well-recognized
associations with obesity include osteoarthritis (29–31),
gallstones (32), complications during and after surgery (33–
36), problems with fertility, pregnancy, and delivery (37),
and an increase in depression and suicide (38–40). Social
acceptance, quality of life, and career trajectories are all
compromised (40,41), largely because of society’s discrim-
ination against the obese.

Genetics of Obesity
Classic studies have concluded that obesity has a strong

but poorly defined genetic basis. The adiposity of adopted
children tracks the adiposity of their biological parents
rather than their adoptive parents (42). The concordance in
body weight is much greater among monozygotic than
dizygotic twins; the latter have been indistinguishable from
non-twin siblings (43).

Monogenic defects that cause severe obesity, first recog-
nized in rodents several decades ago, have now been dis-
covered in humans (44,45), but are quite rare. The list of
single-gene defects that are responsible for human obesity is

Figure 1: Risk of mortality in both men and women increases with
increases in the degree of obesity. Note that the curve is J-shaped,
with an upturn at the low end of BMI. At older age ranges, the J
moves up and to the right. Reproduced from Bray et al. West J
Med 1988;149:429–41 with permission of the BMJ Publishing
Group (1).

Figure 2: Excess mortality among men with morbid obesity as a
function of chronological age. Adapted from Drenick et al. (3).
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growing, but only two will be presented here, those that
cause leptin deficiency and melanocortin 4 receptor mal-
function (44–48). Each has been associated with overeating
caused by loss of an important turn-off signal. Leptin defi-
ciency, which causes early onset of extreme obesity, should
not go undiagnosed because it is highly treatable, although
the treatment, daily injections of leptin, is quite expensive
(44,45). Melanocortin 4 receptor mutations, the most com-
mon of the monogenic obesities, have recently been shown
to be highly associated with binge-eating (46-48). With the
explosion of information about the molecules that contrib-
ute to regulation of energy intake and energy expenditure
(49), we can anticipate the recognition of new mutant genes
associated with obesity and new syndromes. We anticipate
that the new knowledge of the regulation of energy intake,
metabolism, and weight maintenance from research on obe-
sity will lead to insights not only into weight-loss disorders
in young adults but also into those associated with chronic
illnesses and old age.

For most patients, obesity is a complex disorder resulting
from the interaction of multiple susceptibility genes with
environmental factors over time. Progress has been made
with the “candidate gene” approach, which combines
shrewd guessing, good luck, and hard work. Early examples
from our studies at the NIH and Johns Hopkins are mutant
genes with a modest effect on obesity: those in the �3-
adrenergic receptor and in the peroxisome proliferator-ac-
tivated receptor �2 (50–52). Positional cloning, an elegant
and powerful method for elucidating single gene defects,
has failed thus far to elucidate genes for common disorders
with complex genetics, such as obesity and type 2 diabetes.

Epidemiology
The epidemic of obesity has become pandemic, defined

as an epidemic occurring over a wide geographic area and
affecting an exceptionally high proportion of the popula-
tion. The obesity epidemic was first noted in the U.S. and
has now spread to other industrialized nations; it is now
being seen even in developing countries. First noted in
adults, it has now spread to adolescents and children. Most
worrisome has been the sudden emergence and rapid in-
crease of a new medical condition, type 2 diabetes in
children (53). Household pets (54) in America and wild
bears that forage outside fast food establishments in the
American West have also become obese (55). For the first
time in the history of our planet, the number of people who
are overfed has overtaken the number of the underfed (56).

We present U.S. population studies over the last 40 years
to document the progressive increase in adiposity. Particu-
larly disturbing is the very large jump in the percentage of
men and women in the severely obese and morbidly obese
group (Figure 3) (49,57). Studies in the U.S. by Mokdad et
al. (30,58) have further shown the rapid spread and wors-
ening of the pandemic that has spread globally (Figure 4).

Pathophysiology
Fat Deposits

Concepts about fat storage have evolved over time. Older
research dealt with excess weight as simply that—a person
was “carrying around too much weight,” which was as-
sumed to be fat in fat cells. However, fat can be deposited
elsewhere in the body, outside of the adipocytes; this is
termed metastatic fat (59). The deposition of metastatic fat
generally occurs when fat tissue is already heavily laden
with fat. The metastatic fat deposits may compromise or
damage the deposit site. Hepatic steatosis is one example
(24,25), familiar to many in the food foie gras (literally fatty
liver), prepared from the liver of an overfed goose or duck.
Fat can also be deposited in muscle (60); cutting into a
high-quality lean-appearing steak often results in the release
of a torrent of molten fat. The �-cells of the pancreas may
also accumulate fat deposits that interfere with insulin se-
cretion (59).

With regard to fat-containing fat cells, the idea slowly
developed that not all fat tissue and fat cells are identical.
One shift has been from a focus on total excess weight to fat
distribution, as manifest in body shape (pear vs. apple;
gynoid vs. android; waist vs. hip ratios). Peripheral fat
deposits are now distinguished from central deposits,
subcutaneous from visceral, and “good” fat from “bad”
fat (61).

Fat as a Secretory Tissue
The major advance that unites many of these diverse

theories is the recognition that adipose tissue secretes

Figure 3: Comparison of four national health surveys. Notice the
increase, especially in the most recent survey, in the prevalence of
increased BMI in all categories of obesity, but especially with
severe and morbid obesity. Adapted from Flegal et al. (57) and
Dananberg et al. (49).
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a trove of signaling molecules (62). The menu of signaling
molecules released (Figure 5) is the signature that deter-
mines the character of that fat depot. Fat deposits whose

secretions at that moment in time support normal metabo-
lism, e.g., acute secretion of insulin, insulin sensitivity, and
enhanced glucose use, are referred to as “good” fat. Fat

Figure 4: Increase in prevalence of obesity in the United States. Data from Mokdad et al. (30,58) and CDC Behavioral Risk Factor Surveillance
System. Image modified from images available from the CDC at http://www.cdc.gov/nccdphp/dnpa/obesity/trend/maps/index.html.

Figure 5: The secretory products of adipose tissue. Adipose tissue secretes leptin, adiponectin, and resistin, peptides that are not known to
be produced elsewhere. In addition, adipose tissue is responsible for the secretion of a large number of other signaling molecules. Adipose
tissue contains adipocytes and activated macrophages, which are both secretory cells (68,69). Reproduced with the permission of Dr. Steven Smith.
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depots whose secretions promote the opposite are referred
to as “bad” fat (61).

The concept of fat as a secretory tissue dates mostly from
the discovery of leptin �10 years ago (63). In Figure 5, the
many secretions of fat tissue are catalogued. Three of the
most important peptide products (49,64–66) are leptin
(which regulates satiety and appetite among other pro-
cesses), adiponectin (which heightens sensitivity of target
cells to insulin), and resistin (which heightens resistance to
insulin). All three are produced only in fat tissue, whereas
many of the other adipose-derived signaling molecules are
also produced in other tissues. Adiponectin has been con-
sidered to be beneficial because it improves sensitivity to
insulin and promotes the disposal of glucose (64). The
designation “good” fat may depend largely on how much
adiponectin the fat tissue is secreting. It is still not known
which secretory products define “bad” fat, but tumor necro-
sis factor-� (TNF-�),1 resistin, and free fatty acids are
strong candidates (67).

Macrophages in Adipose Tissue
Recently, two groups have shown that adipose tissue

typically hosts macrophages that reside in clusters between
the adipocytes (68,69). They have proposed that adipocyte
secretions attract the macrophages as well as stimulate their
maturation and activation. The density of macrophages in
adipose tissue of obese humans and rodents is higher than in
the fat tissue of their normal weight counterparts. It is not
yet fully determined which molecules of the menu of secre-
tions are from which cell type, but leptin and adiponectin in
mice and humans are from adipocytes; resistin in mice
comes from adipocytes, whereas in humans, it is a product
of macrophages. One implication of this work is that the
activated macrophage in fat tissue is a potential contributor
to the behavior of “bad” fat and generates pro-inflammatory
stimuli characteristic of obesity. Interestingly, evidence has
accumulated pointing to pro-inflammatory cytokines as im-
portant contributors to insulin resistance and as mediators of
pathology in obesity, diabetes, atherosclerosis, and aging
(60,68,69). Multiple recent studies by us and others have
shown that insulin at biologically relevant concentrations
can dampen the release of cytokines (Figure 6) (70,71).
Recent studies have shown that, in the ob/ob (leptin-defi-
cient) mouse, known to be very insulin resistant metaboli-
cally, the secretory processes of their macrophages are
“resistant” to the suppressive effects of insulin (72). Thus, it
seems that insulin and pro-inflammatory cytokines intersect
to regulate insulin sensitivity at iconic target cells as well as
at cytokine-secreting cells of the innate immune systems
(72) (in addition to effects of cytokines directly on insulin
secretion).

Free Fatty Acids as Signals
Another feature of obesity is the overabundance of free

fatty acids, released from adipocytes. Plasma free fatty acids
presented to the pancreatic �-cell—through intracellular
metabolism (like glucose) and through newly described cell
surface (G-linked) receptors (73)—enhance insulin release,
which in turn, at the adipocyte, dampens lipolysis, enhances
reesterification of fatty acids, and reduces plasma-free fatty1 Nonstandard abbreviations: TNF-�, tumor necrosis factor-�.

Figure 6: Insulin-mediated dampening of cytokine release. (A)
Lipopolysaccharide-stimulated cytokine (TNF) release is a model
of early stages of sepsis. (B) HMGB1-stimulated TNF release is a
model of later stages of sepsis. In these experiments (70), mouse
macrophage-like RAW cells were incubated with (A) lipopolysac-
charide (10 ng/mL) or (B) HMGB1 (0.1 �g/mL) in the presence or
absence of the indicated concentration of insulin for 6 hours. The
TNF level in the supernatant was measured by ELISA (70). Data
represent mean � SE of three independent experiments performed
in duplicate (*p � 0.05, **p � 0.02).
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acids to more normal levels. Between meals, fatty acids are
a major regulator of the level of basal insulin secretion (74),
which in turn is a significant determinant of whole body
“insulin sensitivity.” Elevated levels of free fatty acids also
have direct effects on metabolism in muscle and liver, again
to dampen the effect of insulin (60,75,76). Thus, the hyper-
trophied fat mass produces an oversupply of fatty acids in
blood that contributes in multiple ways to the metabolic
disturbances in obesity.

Is Weight Loss Beneficial?
Because obesity is typically associated with heightened

morbidity and mortality, we presume that weight loss will
always ameliorate both, but studies have been inconsistent
on this point (77–81). A recent study may shed light on this
issue. Investigators from the Centers for Disease Control
and Prevention interviewed �6000 overweight and obese
individuals over 35 years of age and followed up on their
vital status 9 years later (81). They found that weight loss
was associated with a significant decrease in mortality rate
when it was intentional, whereas unintentional weight loss
was associated with a higher mortality rate, possibly be-
cause of comorbid conditions and unhealthy behavior pat-
terns. In comparison with those who expressed no intention
to lose weight, those who attempted weight loss had lower
mortality, whether or not they actually lost weight. Similar
conclusions have emerged from their study of 1000 over-
weight patients with diabetes (82). Possibly, the declared
intention to lose weight is associated with other health-
promoting activities, such as exercise and blood pressure
control.

Management of Obesity
There is now a strong body of evidence on which the

management and treatment of obesity in adults under 65
years of age can be based. Nonpharmacologic therapy (diet
and exercise) should be emphasized, both for weight loss
and for the retardation of the onset of diabetes (83,84). Diet
and regular exercise are the linchpins of every program.

Drugs
Medications to treat hypertension, hyperlipidemia, and

hyperhomocysteinemia are often very appropriate in the
treatment of obese adults, as are medications for diabetes,
depression, and other complications of obesity. Often diet
and exercise prove to be inadequate. Polypharmacy, the use
by the patient of a very large number of medications, may
be unavoidable, because each of these conditions may re-
quire more than one drug. On the other hand, medications to
promote weight loss per se are loaded with caveats and are
recommended only in highly selected patients on an indi-
vidualized basis (85).

Metformin deserves special mention. Metformin stands
alone among current antidiabetic medications in that it
promotes weight loss (rather than the weight gain charac-
teristic of the others) (86–88). Some investigators have
proposed that metformin be the preferred initial medication
for diabetes and that it should be continued long term, even
in combination with other oral agents and insulin, to mini-
mize weight gain (87). In patients with impaired glucose
tolerance, metformin also can retard the progress of the
metabolic deterioration (84). Misbin (89), in a thoughtful
review, has concluded that metformin is reasonably safe,
provided it is used in accordance with printed guidelines
and is avoided in patients who are very ill or suffering
failures of major organ function. Metformin has also been
recommended for weight loss in normoglycemic overweight
postmenopausal women (90). Because of potential gastro-
intestinal side effects, experts have suggested starting ini-
tially with a minimum dose at dinner and working up to full
doses by first adding more small doses with other meals
(87).

Surgery
Bariatric surgery, both bypass and banding procedures,

have increased in popularity (91). The results can be very
favorable when there are meticulous preoperation selection
and preparation, experienced surgeons, and attentive post-
operation follow-up in both the short and long term. The
surgical procedure typically shrinks the functioning volume
of the stomach and creates some malabsorption. In addition,
bariatric procedures may reduce circulating levels of ghre-
lin, a hunger-generating hormone produced in the stomach
(91). More multicenter trials are very much needed.

Weight Loss in the Old and Young
For children and for the elderly, especially, there is a need

for much more research on how to treat obesity. Whereas
aggressive diets, such as the Atkins diet (92) and South
Beach diet (93), are being used successfully and so far are
probably safe in younger adult patients, we need to proceed
cautiously in children and in the elderly. The traditional
mantra for geriatricians with regard to treatment for the
elderly, “start low, go slow,” has an updated version, “start
low, go slow, BUT GO.” This is probably also the best
advice regarding weight loss in the elderly obese patient
(and probably for children as well). The flashing lights
signaling caution are even more necessary for weight-loss
medications (94–97) and for bariatric surgery in patients
�21 or �65 years of age (98,99). In planning a weight-loss
program for an obese elderly patient, recall that aging brings
a diminution in the proportion of muscle tissue and an
increase in body fat—the typical older patient has more
adiposity for a given BMI. This may be partially offset
because the height decreases seen with aging can produce
an artificial increase in BMI, independent of any change in
adiposity (2).
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Achievable Goals
Some benefits of reduced intake of calories (and in-

creased exercise) begin very quickly, even before any dis-
cernible loss of weight. Substantial benefits accrue with a
modest exercise program and a 5% to 10% weight loss (84).
Other interventions that improve blood pressure, plasma
lipids, blood level of homocysteine, depressed mood, and
sleep apnea can each ameliorate the risks associated with
obesity. Often the improvements act synergistically to
achieve a greater reduction of risk. Physicians and other
health care providers who are successful with these patients
stress the importance of sustaining positive interactions—
with attitudes that are respectful, warm, and optimistic. In
setting modest goals, recall that a body weight that is 20%
above normal (e.g., BMI � 30 instead of 25 kg/m2) has a
2-fold increase in body fat, mostly “bad” fat. With weight
loss, the loss is mostly fat, and also mostly “bad” fat, so that
moderate weight reduction can have substantial beneficial
effects (100).

Calorie Balance
In planning individual programs, it is important to recall

again that calories in equals calories out and that small
differences in daily intake quickly add up. For example,
with a 2000-calorie diet, a 1% excess of calorie intake
equals 20 calories per day, or 600 calories per month. As a
first approximation, this amounts to almost 1 lb of extra
weight in 5 months. This balance is very subtle, and other
factors may also need to be taken into account. Many
medications also affect this balance, particularly antidia-
betic and psychotropic medications and glucocorticoids
(88,89,101). Endocrinopathies also need to be considered.
Traditionally, the focus has been almost entirely on calorie
intake, but new discoveries have also turned to the role of
calorie expenditure, including lifestyle (TV watching, par-
ticipation in sports), physiological components (basal met-
abolic rate, thermic effect of food, spontaneous activity,
purposeful activity), and molecular components (�3-adre-
negic pathway, uncoupling proteins). The uncoupling pro-
teins, with their ability to uncouple oxidation from phos-
phorylation and thereby dissipate energy, hold exceptional
promise as targets for therapeutic intervention (49,102,103).

Food Restriction and Longevity
Food restriction increases lifespan in rodents and mon-

keys, as well as in flies and worms (104–110). Recent
studies in the worm Caenorhabditis elegans have shown
that a full diet is associated with a short lifespan, whereas a
restricted diet yields an extended lifespan. Interestingly, a
full diet in an organism whose insulin receptor pathway has
been disrupted is associated with longevity. This suggests
that it is the signaling pathways associated with eating, in
particular insulin pathways, rather than the excess food
itself, that are associated with decreased longevity (111).

Metabolic Programming
Metabolic programming represents another new impor-

tant shift in our perception of food. Until recently, food has
been conceptualized only as fuel and as a provider of raw
materials for the creation of other compounds. However,
very recently, evidence has emerged that food also provides
inter- and intracellular signals. Intact long-chain fatty acids,
for example, have been shown (73) to directly influence,
through cell-surface receptors, the pancreatic �-cell by am-
plifying glucose-induced insulin secretion. Research into
“metabolic programming” has further amplified the actions
of food as more than fuel and raw material (112). In rodents,
both prenatal and postnatal manipulation of diet leads to
physiological and anatomic changes that have a life-long
effect on metabolism. Fetal undernutrition can lead to an
insulin deficiency syndrome, whereas fetal overnutrition
can lead, through gestational diabetes, to an insulin excess
syndrome. Postnatal overnutrition, consisting of high-car-
bohydrate feeding for 24 days in place of lactation (“pup in
a cup” model), leads to persistent hyperinsulinemia and
heightened sensitivity to glucose. This metabolic program-
ming may even have effects on subsequent generations,
because offspring of the conditioned females continued to
show metabolic abnormalities, even when fed a normal diet
their whole life (112).

What are the biochemical mechanisms for the apparent
Lamarckian inheritance of acquired characteristics? One
possibility is glucose, which can act as a low-grade mutagen
(113,114). Glucose is a suspect in the etiology of certain
birth defects during the first trimester in the offspring of
diabetic mothers (114). DNA methylation is another possi-
ble mechanism. A study in rats by Waterland and Jirtle
(115) showed that dietary supplementation with folic acid,
vitamin B12, choline, and betaine, with its very rich content
of donor methyl groups, resulted in the flipping of a trans-
poson in the agouti gene. As a result, coat color in their
offspring was changed. Transposable elements, such as
were affected in the study of Waterland and Jirtle, constitute
35% of the human genome and are present in 4% of human
genes (115). Collectively, these studies show that food has
more in vivo effects than solely as a source of calories and
molecular building blocks.

Two new studies in mice have provided hints of addi-
tional mechanisms for “metabolic programming.” Both
studies have reported significant changes in the neural or-
ganization of hypothalamic nuclei in leptin-deficient (ob/
ob) mice (116,117). One of the research groups found that
acute replacement with leptin produced immediate changes
in the organization of synapses in one brain region, even
before food intake was affected (117). The other research
group found that the disorganized neural pattern in the
hypothalamus that they had observed was unaltered by
leptin replacement, suggesting a permanent defect (116).
The role of leptin, a hormone, is consistent with the growing
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recognition that signaling molecules, in addition to acute
signaling, often mediate major events in development (118).

Insulin Resistance
Metabolic Syndrome

In 1988, Gerald Reaven (119,120) proposed that the
cluster of insulin resistance (and hyperinsulinemia), im-
paired glucose tolerance, abnormalities of plasma lipids
(commonly a raised level of free fatty acids), and hyperten-
sion were actually part of a single syndrome, which he
dubbed “syndrome x” and which is now commonly called
the metabolic syndrome. Two further developments are
especially noteworthy. One relates to recent research in
several laboratories (121,122), where components of the
metabolic syndrome were linked to the local production of
excess cortisol. Normally, cortisol, the active hormone pro-
duced by the adrenal gland, is converted to inactive corti-
sone by 11�-hydroxysteroid dehydrogenase type 2 pro-
duced in the kidneys. However, another form of 11�-
hydroxysteroid dehydrogenase, type 1, produced in the
adipocytes, transforms inactive cortisone to active cortisol.
These researchers have proposed that the overproduction of
cortisol in adipose tissue drives the metabolic syndrome, at
least in some individuals.

The second new development is the shift from four (or
more) components of the metabolic syndrome to a single
focus on insulin resistance (119,120). In a longitudinal

Table 1. Body weights of control and transgenic
mice

Male weight (g) Female weight (g)

Control 43.5 � 1.0 39.2 � 0.8
hINS 8 42.7 � 0.9 38.5 � 1.1
hINS 32 42.4 � 1.0 39.4 � 0.9

Mice that harbor 0 (control), 8 (hINS 8), or 32 (hINS 32) copies of
the human insulin gene secrete normal amounts, a 2-fold excess, or
a 4-fold excess, respectively (127). The mice with the extra copies
of the human insulin were glucose intolerant, insulin resistant, and
hyperlipidemic, but remained thin. Numbers are mean � SE of
body weight for 24 male and 24 female mice in each group.
Comparisons within each sex showed no statistically significant
differences among the three groups (127).

Figure 7: Plasma glucose (A) and insulin (B) in (thin) mice with
transgenic hyperinsulinemia. The hINS 8 and hINS 32 mice have stably
incorporated 8 and 32 copies, respectively, of the human gene for insulin.
(A) Each plasma glucose point in fasting and fed states represent the
mean � SE for 13 to 25 individual determinations. Fasting glucose values
were not significantly different between control and either transgenic line.
However, in each of the three lines, the fed glucose level was significantly
above fasting (p � 0.001). Both transgenic lines had fed glucose levels
significantly above control (*p � 0.004 vs. fed control). (B) Plasma
insulin was measured by radioimmunoassay. Each value represents the
mean � SE of 14 to 25 individual measurements. In each of the three
mouse lines, there was no significant difference between fasting and fed
values. Significant differences among the three groups are as indicated.
*p � 0.001 vs. control. ‡p � 0.001 hINS 32 vs. hINS 8. Adapted from
Marban and Roth: Transgenic hyperinsulinemia: a mouse model of

insulin resistance and glucose intolerance without obesity, in Shaf-
rir E (ed): Lessons from Animal Diabetes VI, p. 201–24, copyright
Birkhauser, 1996, (127) with permission.

The Obesity Pandemic, Roth et al.

OBESITY RESEARCH Vol. 12 Supplement November 2004 95S



study of 208 people over 4 to 11 years, Facchini et al. (123)
have shown that insulin resistance is a dominant and inde-
pendent predictor of major age-related diseases including

cardiovascular diseases and cancer. Reavan et al., in effect,
have moved from the concept of metabolic syndrome,
where insulin resistance is one of four or more elements of
the syndrome, to where insulin resistance is the single
dominant factor predicting pathology (119,120).

Origins of Insulin Resistance
An acute rise in insulin is stimulatory, but persistence of

an elevated level of ambient insulin desensitizes the target
cells through a variety of mechanisms, including effects at
the insulin receptor (124) and at several sites beyond the
receptor (125,126). A sustained elevated level of insulin,
immaterial of its origin, typically leads to generalized insu-
lin resistance.

Transgenic Hyperinsulinemia
Studies in transgenic mice have shown this well (127).

Each founder mouse permanently possessed 0, 8, or 32 extra
copies of the human insulin gene, which resulted in plasma
insulin levels that were normal or two or four times higher
than normal, respectively (Figure 7). Surprisingly, the mice
that overexpressed insulin were not obese (Table 1): body
weight remained normal, and they developed no antibodies

Figure 8: Glucose tolerance tests in transgenic hyperinsulinemic
(thin) mice. After an overnight fast, animals were injected intra-
peritoneally with glucose (2 mg/g body weight). Blood samples
were taken at time-points up to 120 minutes after injection for mea-
surements of plasma glucose (A) and plasma insulin (B). Points each
represent the mean � SE of nine or more individual measurements
(127). Adapted from Marban and Roth: Transgenic hyperinsulinemia:
a mouse model of insulin resistance and glucose intolerance without
obesity, in Shafrir E (ed): Lessons from Animal Diabetes VI, p.
201–24, copyright Birkhauser, 1996, (127) with permission.

Figure 9: Insulin resistance in transgenic hyperinsulinemic (thin)
mice. Mice were injected intraperitoneally with insulin (0.5 mU/g
body weight). Blood for glucose determinations was drawn before
and at 30 and 60 minutes after insulin injection. Each point
represents the mean � SE of 6 to 10 individual glucose determi-
nations. *p � 0.02 vs. control (127). Adapted from Marban and
Roth: Transgenic hyperinsulinemia: a mouse model of insulin
resistance and glucose intolerance without obesity, in Shafrir E
(ed): Lessons from Animal Diabetes VI, p. 201–24, copyright
Birkhauser, 1996, (127) with permission.
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to insulin (data not shown). However, they exhibited ele-
vated postprandial glucose levels (Figures 7 and 8), despite
the extra insulin in the circulation. The hyperinsulinemia
caused insulin resistance (Figures 7 to 9) and reduced insu-
lin-receptor binding (Figure 10), as well as increased trig-
lycerides (Figure 11). Thus, primary hypersecretion of in-
sulin by itself in thin mice produced generalized insulin
resistance and a metabolic state that resembles the early
stages of diabetes (127). In essence, hypersecretion of in-
sulin can be both a cause of and a result of insulin resis-
tance.

Role of Fatty Acids
As discussed earlier, elevations of free fatty acid levels in

obesity can lead to elevated insulin levels. The increased

insulin leads to a reduction but not normalization of free
fatty acid levels. A persistent drive by the free fatty acids
toward hypersecretion of insulin develops, leading to gen-
eralized resistance to insulin (128–130). In addition to its
effects on insulin secretion, elevated free fatty acid levels
can produce insulin resistance in muscle and liver (75,76).

Irrespective of the original cause, steady-state hyperinsu-
linemia and insulin resistance coexist. The examples pre-
sented—transgenic hypersecretion of insulin, for one, and
typical obesity, as another, as well as cortisol excess and
growth hormone excess—have very similar patterns of in-
sulin and glucose metabolism, despite the diverse etiologies.

Cytokines
Cytokines add to the complexity (5,70–72,131–134). For

example, TNF-� can cause insulin resistance at the level of
the target cells for insulin. Furthermore, insulin can dampen
TNF-� secretion (Figure 6), and insulin resistance promotes
cytokine hypersecretion (70–72). The insulin resistance of
macrophages in ob/ob mice is associated with hypersecre-
tion of cytokines, and the increased density of macrophages
in fat depots strengthens the idea that cytokines play a major
role.

Conclusions and Summary
The obesity pandemic is gaining momentum and will

profoundly affect mortality, morbidity, and quality of life
worldwide. While the role of genetics is widely appreciated,

Figure 10: Diminished number of insulin receptors in liver from
transgenic hyperinsulinemic (thin) mice. [125I]-insulin binding to
liver membrane preparations was measured in the presence of
unlabeled insulin at 0 to 1.33 � 104 ng/mL. Nonspecific binding,
defined as the labeled insulin bound in the presence of 1.33 � 104

ng/mL cold insulin, was 5% of maximal binding in all cases and
was subtracted from total binding to obtain specific binding for
each sample. All data were normalized as [125I] bound per 60 mg
of membrane protein. Each value is the mean � SE of eight
membrane preparations per group. As a measure of the receptor
affinity for insulin, we used the B50, which represents the concen-
tration of unlabeled insulin at which 50% maximal binding oc-
curred; there were no significant differences in the B50 values
among the three mouse lines. Differences in the maximal binding
values were significant at p � 0.001 vs. percent maximal binding
for control (127). Adapted from Marban and Roth: Transgenic
hyperinsulinemia: a mouse model of insulin resistance and glucose
intolerance without obesity, in Shafrir E (ed): Lessons from Ani-
mal Diabetes VI, P. 201–24, copyright Birkhauser, 1996, (127)
with permission.

Figure 11: Plasma triglycerides as a function of plasma insulin in
(thin) mice with transgenic hyperinsulinemia. Each point repre-
sents a single determination from an individual animal (127).
Adapted from Marban and Roth: Transgenic hyperinsulinemia: a
mouse model of insulin resistance and glucose intolerance without
obesity, in Shafrir E (ed): Lessons from Animal Diabetes VI, p.
201–24, copyright Birkhauser, 1996, (127) with permission.
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there are emerging data that nutrient exposure in utero and
in the early postnatal period (“metabolic programming”)
can have important life-long effects. Free fatty acids and
hormone-like secretions from adipocytes and their associ-
ated activated macrophages are major regulators of meta-
bolic processes. We have shown that resistance to insulin, a
common characteristic in obesity and a harbinger of disease,
can have many causes, including primary hypersecretion of
insulin, hypersecretion of free fatty acids, and high levels of
circulating cytokines. Both the free fatty acid hypersecre-
tion and cytokine hypersecretion can be dampened by insu-
lin. One key to the successful treatment of the obese patient
is moderate calorie restriction and moderate exercise to
yield a sustained 5% to 10% weight loss, along with pre-
vention and treatment of the coexisting morbidities. Key to
success are knowledgeable, committed, and sympathetic
health care providers.
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