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Obesity, infl ammation, and the gut microbiota
Amanda J Cox, Nicholas P West, Allan W Cripps

As the prevalence of obesity and associated disease continues to rise and concerns for the spiralling economic and 
social costs also escalate, innovative management strategies beyond primary prevention and traditional lifestyle 
interventions are urgently needed. The biological basis of disease is one avenue for further exploration in this context. 
Several key infl ammatory markers have been consistently associated with both obesity and risk of adverse outcomes 
in obesity-associated diseases, which suggests that a persistent, low-grade, infl ammatory response is a potentially 
modifi able risk factor. In this Review, we provide evidence supporting perturbation of the intestinal microbiota and 
changes in intestinal permeability as potential triggers of infl ammation in obesity. Further characterisation of the 
mechanisms underpinning the triggers of such infl ammatory responses in overweight and obese individuals could 
off er unique opportunities for intervention strategies to help ameliorate the risk of obesity-associated disease.

Introduction
Obesity is now a global health issue, with overnutrition 
and excess bodyweight having a similar prevalence to 
undernutrition.1 Present WHO statistics report that up to 
35% of adults aged more than 20 years are currently 
considered overweight (BMI >25 kg/m²), and 11% are 
obese (BMI >30 kg/m²), meaning that almost 2·5 billion 
people are aff ected. Excess bodyweight has been identifi ed 
as the fi fth leading risk factor for death globally.2 However, 
of the top four leading risk factors for death, high blood 
pressure, high blood glucose, and physical inactivity 
could contribute to, or result from, excess bodyweight, 
which emphasises the immense problem of obesity in 
relation to morbidity and mortality.

The aetiology of obesity is complex and includes both 
biological and environmental factors, which contribute 
to consumption of a high-calorie diet and reduced 
physical activity. Indeed, in many high-income countries 
where sedentary lifestyles are becoming predominant, 
more than 60% of adults are regarded as overweight or 
obese.3–5 The increasing prevalence of obesity-associated 
diseases, including metabolic syndrome (encompassing 
hypertension, dyslipidaemia, and insulin resistance), 
type 2 diabetes, cardiovascular disease, end-stage renal 
disease, and non-alcoholic fatty liver disease, is therefore 
not surprising.

The social and economic implications of this global 
obesity epidemic are extensive. At an individual level, 
health-care expenditure for obese individuals is 
1·5–1·8 times greater than that for non-obese individuals.6 
In addition to direct economic costs, indirect costs related 
to absenteeism, lost productivity, and premature mortality 
further reinforce the potentially catastrophic economic 
consequences of the burgeoning obesity issue.

Infl ammation as a key component of obesity-
associated disease
Infl ammation has been implicated in eff orts to better 
understand the biological underpinnings of risk of 
obesity and associated disease. Indeed, many key 
infl ammatory markers have been consistently associated 
with both obesity and risk of adverse outcomes in obesity-
associated disease. A meta-analysis of 51 independent 

cross-sectional studies provides evidence supporting a 
positive association between body composition and 
C-reactive protein—a marker of systemic infl ammation.7 
Similar associations have also been reported for 
erythrocyte sedimentation rate,8 plasminogen-activator 
inhibitor 1,9 and key infl ammatory cytokines,10,11 which 
further support the likely interplay between obesity and 
infl ammation. Increases in a range of infl ammatory 
markers have also been reproducibly associated with an 
increased risk of a range of obesity-associated diseases 
including cardiovascular disease12,13 and type 2 diabetes.14,15

Despite these associations, the causal pathways 
underpinning the relations between obesity, infl ammation, 
and risk of disease have not yet been fully identifi ed. 
Further characterisation of the triggers of a persistent, 
low-grade, infl ammatory response in overweight and 
obese individuals might off er unique opportunities for 
novel intervention strategies to help to ameliorate the risk 
of obesity-associated disease. In this Review we consider 
the interaction between the intestinal microbiota, mucosa, 
and associated lymphoid tissue as a biological network of 
interest in the context of obesity-associated disease.

Obesity and the intestinal microbiota
The term intestinal microbiota describes the various 
commensal microbial species (thought to be >500) in the 
gastrointestinal tract.16 The dominant bacterial phyla in 
the human intestine are Bacteriodetes (eg, Bacteriodes 
spp), Firmicutes (eg, Clostridium and Bacillus spp), and 
Actinobacteria (eg, Bifi dobacterium spp),17 and the total 
number of microbes in the intestinal mucosa is estimated 
to exceed 100 trillion and thought to outnumber human 
cells by a factor of 10.16 The resident microbiota are 
increasingly recognised as having crucial roles in host 
functioning, and subsequently in health and disease. 
Some of the major functions of the commensal microbiota 
at the intestinal mucosa include: (1) provision of resistance 
to infection by pathogenic microorganisms through direct 
competition for nutrients and attachment sites, and 
production of antimicrobial substances; (2) promotion of 
epithelial cell proliferation and diff erentiation to maintain 
an intact mucosal surface; (3) promotion of the 
development of the gut-associated lymphoid tissue via 
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initiation of dendritic cell maturation and diff erentiation 
of B and T lymphocytes; and (4) energy harvest from non-
digestible dietary starches.16,18 The potential for the 
intestinal microbiota to contribute to energy harvest is of 
particular interest in the context of obesity.

Initial evidence from animals supports the contribution 
of the intestinal microbiota to energy harvest and 
associations with body composition. Lower body mass 
and body fat has been reported in germ-free mice than in 
their wild-type counterparts,19 even after their exposure to 
a high-fat and sugar-rich model of a diet typically noted in 
high-income countries.20 These results suggest that in the 
absence of a colonised gastrointestinal tract, the capability 
for energy harvest is diminished. Transplantation of wild-
type microbiota to germ-free mice normalises bodyweight 
between the groups of animals.19 Conversely, trans-
plantation of microbiota from obese mice results in 
increased fat mass in germ-free animals,21 which suggests 
a unique microbial composition in obese animals that 
favours accumulation of excess bodyweight. Changes in 
the abundance of diff erent microbial phyla have been 
reported in mouse models in response to the introduction 
of high-fat diets,22,23 suggesting that not only does the 
intestinal microbiota have the potential to aff ect body 
composition, but that dietary patterns can also change the 
microbial composition, further augmenting a propensity 
towards excess bodyweight.

Subsequent human studies have directly compared the 
composition of the intestinal microbiota between obese 
and lean individuals. Ley and colleagues24 compared the 
composition of the faecal microbiota between 12 obese and 
two lean individuals and reported a signifi cantly lower 
relative abundance of Bacteriodetes, but a higher relative 
abundance of Firmicutes in the obese individuals. 
Investigators of a subsequent study of 54 adult female 
monozygotic and dizygotic twin pairs concordant for body 
composition also reported signifi cantly reduced intestinal 
bacterial diversity, a lower relative abundance of 
Bacteriodetes, and higher relative abundance of 
Actinobacteria in obese compared with lean individuals, 
but no signifi cant diff erence in Firmicutes.25 Other studies 
have produced confl icting results for intestinal microbiota, 
including a higher relative abundance of Bacteriodetes in a 
cohort of 68 overweight individuals compared with 30 lean 
controls;26 no signifi cant diff erence in the three dominant 
phyla between nine obese and 12 lean individuals;27 and no 
diff erence in the relative abundance of Bacteriodetes 
between 29 obese and 14 lean participants.28 The small 
sample sizes and inconsistent fi ndings between these 
studies suggest a need for further evidence of the 
association between the intestinal microbiota and body 
composition through additional clinical studies.

Despite the logistical challenges, both dietary inter-
vention and transplantation studies have also been 
undertaken in human beings. Increased caloric content 
(2400 kcal per day vs 3400 kcal per day with similar 
macronutrient profi les: 24% protein, 16% fat, and 60% 

carbohydrates) for only 3 days resulted in an increased 
abundance of Firmicutes and reduced abundance of 
Bacteriodetes with the higher calorie diet,27 which supports 
the theory that diet shapes the composition of the 
intestinal microbiota. An additional feeding study 
involving ten healthy individuals suggests that changes in 
the composition of the intestinal microbiota could occur 
within 24 h of initiation of a high-fat diet.29

Changes in the intestinal microbiota in response to 
weight-reducing diets have also been documented.28,30,31 No 
changes were noted in the abundance of Bacteriodetes, 
but some specifi c Firmicutes species were reduced after a 
4 week, low-carbohydrate, weight-reducing diet in 18 obese 
men.28 In another study, the relative abundance of 
Bacteriodetes was decreased in 17 obese men after a 
4 week, high-protein, low-carbohydrate, diet.30 Lastly, the 
eff ect of food on the composition of the microbiota has 
been shown in a crossover study of 11 individuals 
consuming either a plant-based or animal-based diet for 
5 days, after which the composition of their gut 
microbiome substantially changed to refl ect either 
carbohydrate or protein.31 Whether the variation in these 
fi ndings can be accounted for by the diff erent dietary 
compositions alone is unclear, and whether alterations in 
the intestinal microbiota that promote energy harvest are 
a cause or result of diets typical of high-income countries 
and associated increases in body mass is yet to be 
established. However, in view of the functions of the 
intestinal microbiota beyond energy harvest, additional 
mechanisms involving the microbiota including 
promotion of mucus and antimicrobial peptide secretion,32 
and signalling by metabolic byproducts31,33 could also 
contribute to risk of obesity and associated disease.

Intestinal permeability
The permeability of the intestinal mucosa should be fi nely 
regulated to facilitate any necessary absorptive functions 
without compromising barrier exclusion. The interaction 
between various integral membrane proteins and 
cytoskeletal components provides the structural framework 
to maintain integrity of the intestinal mucosa via 
intercellular tight junctions—an essential regulator of 
intestinal permeability. Additional factors, including 
mucus secretions from goblet cells, release of antimicrobial 
peptides from Paneth cells, and immunoglobulin 
secretions from resident immune cells, also contribute to 
eff ective barrier exclusion34 (fi gure 1). However, the 
potential for the intestinal microbiota to contribute to the 
continued remodelling of the mucosal surface16 raises 
questions regarding how changes in the intestinal 
microbiota might also contribute to regulation of intestinal 
permeability. This possibility is of particular interest in 
view of the reported associations between intestinal 
permeability and BMI.35

Animal and in-vitro models have again been useful in 
gaining preliminary insight into the associations between 
the intestinal microbiota and intestinal permeability. 
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In-vitro experiments have shown that exposure of cultured 
intestinal epithelial cells to both commensal and probiotic 
microbial species results in up-regulation and increased 
phosphorylation of key tight-junction proteins.36,37 In 
animal models, exposure to probiotic microbial species 
results in better preservation of tight-junction structures 
(viewed histologically) in response to acute infection.38 
Similarly, colonisation experiments in both germ-free 
mice and animal models of disease result in up-regulation 
of key tight-junction proteins39 and normalisation of 
intestinal-barrier function.36,39 Collectively, this evidence 
supports the likely contribution of the intestinal 
microbiota to the regulation of intestinal permeability.

So far, few human studies have directly investigated the 
associations between the intestinal microbiota and 
regulation of intestinal permeability. The eff ects of 
manipulation of the intestinal microbiota, predominately 
with probiotic supplements, in both general-population 
cohorts and in the context of specifi c disease states, have 
been the subject of many reviews.40–42 However, outcome 
measures are frequently symptom-based and objective 
assessment of intestinal permeability is often overlooked. 
A placebo-controlled crossover trial with seven healthy 
individuals showed increased expression of tight-junction 
proteins in collected duodenal biopsy samples after 6 h of 
nasogastric administration of a probiotic-containing 
solution.43 Our own investigation44 in 22 healthy active 
adults consuming a symbiotic supplement consisting of a 
four-strain probiotic, a prebiotic and bovine whey-derived 
lactoferrin, and immunoglobulins for 21 days showed no 
change in intestinal permeability assessed with a dual 
sugar-absorption test. By contrast, a much longer 14 week, 
double-blind, placebo-controlled study with 23 endurance-
trained men taking a supplement consisting of six probiotic 
strains, showed a signifi cant reduction in faecal excretion 
of the key tight-junction protein zonulin in response to 
treatment,45 which suggests preserved integrity of the 
intestinal mucosa. Similarly, a 9 week intervention with a 
prebiotic supplement in a Han Chinese cohort reported 
concomitant changes in the intestinal microbiota and a 
reduction in intestinal permeability assessed with a dual-
sugar-absorption test.46 Although these fi ndings broadly 
support the potential for targeted modulation of intestinal 
permeability, further characterisation of the relations 
between the composition of the intestinal microbiota and 
measures of intestinal permeability are still needed.

Short-chain fatty acids
Short-chain fatty acids have been suggested as one 
mediator via which intestinal microbiota might promote 
the integrity of the intestinal mucosa, although the 
mechanisms driving these eff ects are not yet fully 
identifi ed. Short-chain fatty acids (mainly acetate, 
propionate, and butyrate) are the product of bacterial 
fermentation of non-digestible dietary starch (a 
recognised prebiotic), predominately in the colon.47 
Butyrate particularly is recognised as the main energy 

source for colonic epithelial cells, and is thought to 
stimulate blood fl ow and the secretion of gut hormones, 
enhance fl uid and electrolyte uptake, and increase 
mucin release,47,48 all of which contribute to a local tropic 
eff ect and maintained integrity of the intestinal mucosa. 
In vitro, short-chain fatty acid treatment of cultured, 
intestinal, epithelial-cell monolayers resulted in 
increased transepithelial electrical resistance.49,50 
Transepithelial electrical resistance is accepted as a 
surrogate indicator for permeability across tight 
junctions and, broadly speaking, increased resistance is 
equivalent to a reduction in permeability. Furthermore, 
in human colon-cancer cell lines butyrate has been 
shown to inhibit proliferation,51 and butyrate and 
propionate insuffi  ciency has been linked to a reduction 
in apoptosis and tumorigenesis.52 Collectively, this 
evidence suggests that short-chain fatty acids could 
contribute to regulation of cell cycles. The regulation of 
cell proliferation and apoptosis by short-chain fatty acids 
has implications for growth and shedding of intestinal 
epithelial cells, because the intestinal epithelium 
undergoes continuous self-renewal—a crucial process 
for the regulation of intestinal permeability.

Early insights into the eff ects of short-chain fatty acids 
on intestinal permeability have been gained from 
animals. In a rodent model, perfusion of a closed segment 
of the caecum with short-chain fatty acids reduced the 
appearance of a radiolabelled marker in the mesenteric 
circulation by more than 50%, suggesting a reduction in 
the permeability of the intestinal mucosa in response to 
short-chain fatty acids exposure.53 In a mouse model, 
defi ciency in colonic butyrate has been associated with 
decreased local metabolism and increased autophagy.54 
Furthermore, a porcine-feeding study reporting a 
doubling of butyrate concentration in the proximal colon 
in response to raw potato starch also showed reduced cell 
proliferation and apoptosis, and increased mucin 
sulfuration,55 which lends support to short-chain fatty 
acid involvement in the maintenance of both the structure 
and function of the intestinal mucosa.

Figure 1: Key components of the intestinal barrier
Tight-junction proteins, anti-microbial peptide secreting Paneth cells, mucin secreting goblet cells, and secretory 
immunoglobulin A (sIgA) contribute to eff ective barrier exclusion.
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Translation to human clinical studies has been limited 
by various ethical and logistical challenges, and results are 
diffi  cult to replicate; diff erences in disease duration and 
severity, existing treatment regimens, and the composition 
of the short-chain fatty acid mixtures are all potential 
confounding factors. However, in ulcerative colitis, a 
disease characterised by altered intestinal permeability, 
decreased symptom scores and improved histological 
assessment of the intestinal mucosa have been reported 
after short-chain fatty acid administration to the colorectal 
tissues via enema or colonic irrigation.56 Increased 
concentrations of faecal short-chain fatty acids have also 
been reported after prebiotic supplementation in healthy 
adults57 and our own study58 of healthy active adults 
(fi gure 2). However, markers of intestinal permeability 
were not measured concurrently, which prevented further 
analysis of the associations between short-chain fatty acids 
and intestinal permeability in otherwise healthy groups.

Beyond documenting the associations between short-
chain fatty acids and mucosal integrity, some investigations 
have begun to focus on the signalling pathways through 
which short-chain fatty acids might exert their positive 
eff ects. Short-chain fatty acids have been identifi ed as 
ligands for a series of G-protein-coupled receptors (GPRs) 
expressed on the intestinal epithelium and by adipose 
tissue and immune cells.59 Short-chain fatty acids 
diff erentially activate various GPRs; propionate shows the 
highest affi  nity for GPR41 and GRP43, acetate for GPR43, 
and butyrate for GPR41 and GPR109A.60 Signalling 
pathways activated downstream include those implicated 
in the regulation of immunity and infl ammation.61 For 
example, cultured, intestinal, epithelial cells from GRP41 
and GPR43 knockout mice show attenuated production of 
infl ammatory cytokine and chemokine production in 

response to acetate and propionate,62 and GPR43 knockout 
mice have reduced histological evidence of infl ammation 
in the intestinal mucosa, reduced neutrophil infi ltration, 
and attenuated symptom presentation in a model of 
induced colitis compared with wild-type animals,63 
suggesting that short-chain fatty acids might exert pro-
infl ammatory eff ects. By contrast, acetate supplementation 
in germ-free mice unable to produce endogenous short-
chain fatty acids improved indices of disease and reduced 
concentrations of infl ammatory mediators in induced 
colitis; this eff ect was not reported in GPR43 knockout 
animals,64 suggesting that short-chain fatty acids could 
mediate anti-infl ammatory actions via GPRs. 

Despite these contradictory fi ndings, additional evidence 
supports an anti-infl ammatory role of short-chain fatty 
acids in the regulation of homoeostasis at the intestinal 
mucosa. Animal experiments suggest that short-chain 
fatty acids promote diff erentiation and expansion of the 
local colonic pool of Foxp3 expressing regulatory T cells.65,66 
These cells have a central role in limiting infl ammation 
and promoting tolerance67 that might otherwise contribute 
to disruption of the integrity of the intestinal mucosa. 
Additionally, Konieczna and colleagues68 have reported 
increased frequency of peripheral blood mononuclear 
cells with a regulatory T cell phenotype in response to 
8 weeks of probiotic supplementation in healthy adults, 
which further implicates the intestinal microbiota as a 
potential regulator of immune and infl ammatory 
homoeostasis beyond the gastrointestinal tract.

Metabolic endotoxaemia
Irrespective of the underlying mechanisms, changes in 
intestinal permeability have the potential to trigger 
metabolic endotoxaemia, which might have implications 
in the context of risk of obesity-associated disease. 
Metabolic endotoxaemia describes modest concentrations 
of circulating bacterial lipopolysaccharides in response to 
non-infectious stimuli.23 Lipopolysaccharide is a cell-wall 
component of Gram-negative bacterial species and in 
this way the intestinal microbiota represents a substantial 
reservoir for entry into the circulation. The presence of 
lipopoly saccharide in the circulation has been proposed 
to result from its passive diff usion across an intestinal 
mucosa where tight junction integrity has been 
compromised and intestinal permeability increased.69 
Active transport pathways have also been implicated in 
metabolic endotoxaemia. Lipopolysaccharides are 
incorporated in chylomicron fractions,70,71 suggesting that 
active absorption across the intestinal mucosa as part of 
normal digestion and absorption could also account for 
the presence of lipopolysaccharide in the circulation. 
Despite the associations between obesity and metabolic 
endotoxaemia, the direction of causality has yet to be 
established.

In view of the potential for active transport of 
lipopolysaccharide into the circulation it should not be 
surprising that diet might be one factor aff ecting its 

Figure 2: Dietary supplementation with butyrylated high-amylose versus 
low-amylose maize starch
An intervention in 41 healthy, physically active adults showed a signifi cant 
increase in faecal butyrate (a short-chain fatty acid) concentrations (μmol/g) 
after 28 days of supplementation with a butyrylated high-amylose maize starch 
(HAMSB), a resistant starch, compared with supplementation with a low-
amylose maize starch (LAMS). Simultaneous changes in the composition of the 
intestinal mucosa were also noted (error bars represent SE). *p<0·05. Data from 
West and colleagues.58
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translocation across the intestinal mucosa. Consistent 
with several studies of dietary manipulation in animal 
models,22,23,72,73 the association between dietary 
composition and metabolic endotoxaemia is also evident 
in human studies. A signifi cant positive correlation has 
been reported between dietary fat content and plasma 
concentrations of lipopolysaccharide in a study of 
201 healthy, middle-aged men aged 45–64 years72 and a 
small feeding study (n=8) showed increased plasma 
lipopolysaccharide (about 70%) after a month-long diet 
typical of high-income countries (40% fat).74 Data also 
suggest that metabolic endotoxaemia could be both an 
acute and a chronic occurrence. Comparison of two 
groups of ten healthy, lean, individuals consuming a 
high-fat (about 42% fat) or an isocaloric, low-fat, high-
fi bre meal (about 27% fat) showed a signifi cant increase 
in plasma lipopolysaccharide (about 50%) 3 h after the 
high-fat meal only,75 and, in a follow-up study, increased 
circulating lipopolysaccharide concentrations persisted 
up to 5 hours postprandially.76 Additional studies 
including a randomised crossover trial with 20 healthy 
men77 and another study with 12 healthy men70 both 
reported signifi cant increases in plasma lipopoly-
saccharide concentrations within 1 h after a high-fat 
meal. These data support the potential for transient 
fl uctuations in plasma lipopolysaccharide in response to 
high-fat feeding; however, the small sample sizes and 
inconsistencies in the time-course of lipopolysaccharide 
kinetics suggest that further characterisation of these 
responses is still needed, especially responses to the 
macronutrient composition of a diet typically noted in 
high-income countries.

Obesity-associated disease
The potential implications of metabolic endotoxaemia in 
the context of risk of obesity-associated disease are implied 
in many review articles;69,78,79 however, epidemiological 
studies with clear data supporting these associations are 
scarce. Weidermann and colleagues80 fi rst suggested that 
circulating lipopolysaccharide was a risk factor for 
cardiovascular disease on the basis of an analysis of 
chronic infection rates in the Bruneck Study cohort of 
middle-aged older adults (approximately 450 participants 
aged 50–79 years) over the 5 years of follow-up; 
lipopolysaccharide concentrations were signifi cantly 
higher in individuals who developed carotid atherosclerosis 
than in those who did not. A subsequent analysis in the 
FINRISK study81 examining risk factors of chronic diseases 
extended these fi ndings; in a subset of approximately 
480 adults from the FINRISK92 cohort followed up over 
a 10-year period, there was a 1·8 times increased risk of 
cardiovascular disease events (fatal and non-fatal) for 
individuals with endotoxin concentrations in the upper 
quartile. Collectively, these data support an association 
between circulating endotoxin and risk of cardiovascular 
disease, but do not provide evidence for a causal association 
or insights into a possible underlying mechanism.

Data also implicate circulating endotoxin in the risk of 
type 2 diabetes. Higher plasma endotoxin concentrations 
have been reported in a sample of 25 middle-aged 
individuals with type 2 diabetes, compared with a 
matched-control group.82 Higher circulating endotoxin 
concentrations have also been reported in a cohort of 
346 individuals with type 2 diabetes receiving treatment 
across several modalities, which suggests that glycaemic 
control itself is not associated with the regulation of 
metabolic endotoxaemia.83 A larger analysis of the 
FINRISK97 cohort84 (approximately 6600 participants) 
showed that circulating endotoxin concentrations at 
baseline were substantially higher in the participants with 
type 2 diabetes than in healthy individuals, and predicted 
development of type 2 diabetes during the 10-year follow-
up; for individuals with endotoxin concentrations in the 
upper quartile, the risk of type 2 diabetes during follow-
up increased by 1·5 times. In view of these associations, 
understanding the physiological responses to circulating 
endotoxin could provide further insight into the 
pathogenesis of obesity-associated disease.

Infl ammation
In addition to originating from the commensal 
intestinal microbiota, lipopolysaccharides represent key 
components of Gram-negative pathogenic strains and are 
recognised by pattern-recognition receptors that play a 
crucial part in the activation of immune and infl ammatory 
pathways. Responses to circulating lipopolysaccharides 
are well characterised in models of infection and sepsis, 
but activation of similar signalling pathways would also 
be expected in metabolic endotoxaemia and could provide 
insight into how the interplay between the commensal 
microbiota and the immune system might contribute to 
risk of obesity-related disease.

Briefl y, once in the circulation lipopolysaccharides 
bind to lipopolysaccharide-binding protein (LBP), a 
constitutively expressed plasma protein that facilitates the 
interaction between lipopolysaccharides and various 
receptors and binding sites.85 LBP can also facilitate the 
transfer of lipopolysaccharide to lipoproteins—HDL has 
the greatest capacity for binding lipopolysaccharide.86 
Tethering of lipopolysaccharide to lipoproteins can reduce 
the biological activity of lipopolysaccharide and allows for 
hepatic clearance.85 In fact, increased circulating 
concentrations of LBP have been reported to parallel 
increases in lipopolysaccharide in acute infection or 
sepsis,87,88 providing a mechanism for lipopolysaccharide 
clearance. Increased circulating LBP concentrations have 
been reported in obese individuals89,90 and are probable 
triggers for further downstream signalling from lipo-
polysacharide, contributing to a persistent low-grade 
infl ammatory response.

Lipopolysaccharide–LBP binding allows for activation 
of several classic immune pathways, including nuclear 
factor-κB (NF-κB) activation and subsequent infl am-
matory responses. The associated widespread signalling 
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networks clearly implicate cluster of diff erentiation 
14 (CD14) and toll-like receptor 4 (TLR4) cell-surface 
molecules.79,91,92 Animal models of TLR4 mutants or 
knock-outs,93,94 and a clinical trial involving infusion of an 
anti-CD14 antibody,95,96 all showed attenuated 
infl ammatory responses to lipopolysaccharide exposure 
and contribute to the body of evidence supporting the role 
of CD14 and TLR4 signalling in mediating the 
infl ammatory response to lipopolysaccharide exposure.

TLR4 expression on immune cells, including 
monocytes, macrophages, and neutrophils, and non-
immune cells, including adipocytes and endothelial 
cells,78,92 allows for both systemic and local infl ammatory 
responses to lipopolysaccharides, which might be 
particularly relevant in the context of obesity-associated 
disease. Indeed, lipopolysaccharide-signalling pathways 
have been investigated as risk factors for both insulin 
resistance and cardiovascular disease. Impaired insulin-
stimulated glucose uptake in cultured adipocytes after 

lipopolysaccharide exposure and activation of TLR4-
signalling pathways has been reported,97 implicating 
lipopolysaccharide signalling as a potential contributor 
to insulin resistance. Subsequently, Cani and colleagues23 
showed that chronic experimental endotoxaemia was 
associated with an increase in bodyweight, adipocyte 
size, glycaemia, and insulin resistance, but that this 
series of responses was attenuated in CD14-defi cient 
mice. These fi ndings are consistent with those reported 
by Tsukumo and colleagues98 in a similar experiment 
with TLR4-defi cient mice, for which it was also 
concluded that lipopolysaccharide signalling through 
the TLR4 or CD14 pathways contributes to risk of 
metabolic dysregulation. Lastly, a study with a TLR4-
defi cient, atherosclerosis-prone mouse model has 
reported reduced plaque-lipid content, reduced 
macrophage infi ltration, and reduced total atherosclerotic 
lesion area in TLR4-defi cient animals,99 implicating the 
TLR4-signalling pathway in contributing to athero-
genesis, which is particularly relevant in the context of 
obesity-associated disease.

Consideration of the various physiological responses 
to lipopolysaccharide would be incomplete without 
acknowledging that increased intestinal permeability 
has been described in sepsis. Results from animals 
suggest that high plasma lipopolysaccharide 
concentrations could trigger further disruption of the 
integrity of the intestinal mucosa,100,101 and human 
studies support the potential for changes in intestinal 
permeability in response to lipopolysaccharide exposure. 
Jorgensen and colleagues102 reported increased plasma 
presence of a radiolabelled marker given via colonic 
enema to a group of nine patients with sepsis compared 
with healthy controls, suggesting an increase in 
intestinal permeability in response to lipopolysaccharide. 
Investigators of a subsequent study of ten healthy young 
adults reported increased intestinal permeability, 
assessed by urinary recovery of orally administered 
polyethylene glycols, in response to lipopolysaccharide 
infusion.103 Increased plasma concentrations of the tight-
junction protein zonulin have been reported in a cohort 
of 25 patients with sepsis compared with a healthy 
control group, suggesting the potential for shedding of 
tight-junction proteins in sepsis, disruption of the 
structural integrity of the intestinal mucosa, and 
increased intestinal permeability.104

Whether additional changes in intestinal permeability 
happen as a result of metabolic endotoxaemia is unclear. 
Indeed, the threshold for lipopolysaccharide to elicit 
further disruptions in intestinal permeability might vary 
between individuals and be aff ected by rates of 
lipopolysaccharide clearance, which is itself aff ected by 
the ability to upregulate LBP. However, if metabolic 
endotoxaemia itself is a suffi  cient trigger to induce 
further increases in intestinal permeability, increased 
lipopolysaccharide translocation across the intestinal 
mucosa would also be expected. This sequence of events 

Figure 3: Proposed model of how repeated exposure to a high-fat diet could 
lead to a low-grade infl ammatory response 
Repeated exposure to a high-fat diet that is typical in people with obesity could 
trigger pulsatile fl uctuations in circulating LPS concentrations, repeated 
activation of immune signalling pathways, and a chronic low-grade 
infl ammatory response. LPS=lipopolysaccharide.
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Figure 4: Potential links between diet, obesity, and obesity-associated disease 
The interplay between the intestinal microbiota, intestinal permeability, and the immune system depicted as one 
mechanism linking diet, obesity, and obesity-associated disease. TLR=toll-like receptor. SCFA=short-chain fatty acid. 
LPS=lipopolysaccharide.
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could occur in a pulsatile manner—eg, in response to 
repeated exposure to a high-fat diet that is typical in 
obesity, and has the potential to establish a self-propagating 
circuit driving a chronic, low-grade infl ammatory 
response (fi gure 3). Modulation of this response via 
manipulation of the intestinal microbiota to maintain 
intestinal permeability is an attractive possibility and 
worth further consideration, particularly because data 
from animal studies with both prebiotics105 and 
probiotics106 show evidence of improved intestinal 
permeability, and metabolic and infl ammatory status.

Linking intestinal microbiota with 
infl ammation and obesity-associated disease
In view of the increasing prevalence of obesity and 
associated disease, particularly in high-income nations, 
and the growing concerns about the economic and social 
costs of obesity, management strategies beyond primary 
prevention and traditional lifestyle interventions are 
increasingly warranted. This Review has focused on the 
intestinal mucosa as one component of a complex 
biological system for which the potential for innovative 
intervention approaches could exist.

The published literature contains many review articles 
speculating on the potential associations between obesity, 
the gut microbiota, and disease. However, in this Review 
we recognised a notable, and frequently unacknowledged, 
shortcoming that several key assertions in this specialty 
are based on a limited number of often small-scale, 
studies. Furthermore, some results are confl icting and 
have not been replicated more widely in clinical studies, 
thereby limiting translation to clinical practice via 
improved risk prediction, or targeted treatment and 
management strategies. A range of ethical and logistical 
issues are associated with such studies that might have 
restricted progress in this fi eld. However, further 
translational research should be promoted to substantiate 
in-vitro and animal experiments.

Many reports collectively implicate the interplay between 
the intestinal microbiota, intestinal permeability, and the 
immune system as one mechanism linking diet, obesity, 
and associated disease. We suggest that alterations in the 

intestinal microbiota aff ect intestinal permeability and 
that the resultant activation of immune-signalling 
pathways contributes to a chronic, low-grade infl ammatory 
response that is associated with an increased risk of 
obesity-associated disease (fi gure 4). Modulation of 
intestinal permeability through interventions that modify 
the composition of the intestinal microbiota, or activation 
of the immune system and associated infl ammatory 
responses, could be a key strategy to address obesity and 
obesity-related disease.
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