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Abstract

Background: Insulin resistance (IR) is one of the major hallmark for pathogenesis and etiology of type 2 diabetes
mellitus (T2DM). IR is directly interlinked with various inflammatory responses which play crucial role in the
development of IR. Inflammatory responses play a crucial role in the pathogenesis and development of IR which is
one of the main causative factor for the etiology of T2DM.

Methods: A comprehensive online English literature was searched using various electronic search databases.
Different search terms for pathogenesis of IR, role of various inflammatory responses were used and an advanced
search was conducted by combining all the search fields in abstracts, keywords, and titles.

Results: We summarized the data from the searched articles and found that inflammatory responses activate the
production of various pro-inflammatory mediators notably cytokines, chemokines and adipocytokines through the
involvement of various transcriptional mediated molecular pathways, oxidative and metabolic stress. Overnutrition is
one of the major causative factor that contributes to induce the state of low-grade inflammation due to which
accumulation of elevated levels of glucose and/or lipids in blood stream occur that leads to the activation of
various transcriptional mediated molecular and metabolic pathways. This results in the induction of various pro-
inflammatory mediators that are decisively involved to provoke the pathogenesis of tissue-specific IR by interfering
with insulin signaling pathways. Once IR is developed, it increases oxidative stress in β-cells of pancreatic islets and
peripheral tissues which impairs insulin secretion, and insulin sensitivity in β-cells of pancreatic islets and peripheral
tissues, respectively. Moreover, we also summarized the data regarding various treatment strategies of inflammatory
responses-induced IR.

Conclusions: In this article, we have briefly described that how pro-inflammatory mediators, oxidative stress,
transcriptional mediated molecular and metabolic pathways are involved in the pathogenesis of tissues-specific IR.
Moreover, based on recent investigations, we have also described that to counterfeit these inflammatory responses
is one of the best treatment strategy to prevent the pathogenesis of IR through ameliorating the incidences of
inflammatory responses.
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Background
Insulin resistance (IR) has long been considered as a major
hallmark for the etiology and pathogenesis of type 2
diabetes mellitus (T2DM). Development of IR is mainly
associated with low-grade tissue-specific inflammatory
responses induced by various pro-inflammatory and/or
oxidative stress mediators notably pro-inflammatory cy-
tokines such as interleukin-1 beta (IL-1β), interleukin-6
(IL-6), tumor necrosis factor-alpha (TNF-α), numerious
chemokines and adipocytokines [1–3], epigenetic fac-
tors, glucolipotoxicity [4], various transcriptional and
metabolic pathways (Fig. 1) [5]. Chronic exposure of
pro-inflammatory mediators stimulates the activation
of cytokine signaling proteins which ultimately block
the activation of insulin signaling receptors in β-cells of
pancreatic islets [1, 6].
Chronic inflammatory state which is most often char-

acterized with age [7, 8] is indicated by high plasma
levels of numerous pro-inflammatory cytokines notably
IL-1β, IL-6, CRP, and IL-1β-dependent numerous other
cytokines and chemokines [9]. A growing body of evi-
dence has shown that various pro-inflammatory markers
such as IL-1β, IL-6, TNF-α, CRP and many chemokines
[10–12] are directly or indirectly linked to IR which in
turn is more or less commonly accompanied by abnor-
mally elevated levels of pro-inflammatory cytokines,
obesity, hypertension and/or glucolipotoxicity [4, 11, 13].
In this article, we have comprehensively summarized

the scientific literature and experimental evidences dipict-
ing how inflammatory responses are interlinked with the

pathogenesis of IR, including assiciated challeges and last
but not least the treatment strategies that may be the
opted to counteract development and progression of IR.

Methods
A comprehensive online English literature was searched
via electronic databases including “Med-line”, “PubMed”
and “Scopus”. Initially, searched terms like “insulin resist-
ance”, “insulin sensitivity”, “oxidative stress”, “pro-inflam-
matory mediators and insulin resistance”, “type 2 diabetes
mellitus”, “diabetes mellitus”, “cytokines and insulin resist-
ance”, “adipokines and insulin resistance”, “chemokines
and insulin resistance”, “endoplasmic reticulum stress and
insulin resistance”, “activation of transcriptional pathways
and insulin resistance” and “glucolipotoxicity and insulin
resistance” used for each term separately. Moreover, we
also searched the treatment strategies for insulin resist-
ance. Advanced search was also carried out by combining
all search fields in keywords, abstracts and/or titles. Using
these search terms, appropriate articles were selected and
for a comprehensive review, investigation of literature was
further supplemented by searching the referenced articles
created by original investigators. Finally, all the selected
articles were confirmed for duplications which excluded if
it was observed.

Results and discussion
Pro-inflammatory mediators and IR
Experimental animal models and human epidemiological
studies exhibit that IR and inflammation are directly

Fig. 1 Schematic representation of development of IR. Adopted from Rehman and Akash [5]
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interlinked with each other during the development of
T2DM [14, 15]. Pro-inflammatory mediators play crucial
role in the development of IR and T2DM through acti-
vating various inflammatory responses. Donath and
Shoelson [12] have briefly described that how inflamma-
tion is developed in T2DM (Fig. 2). In the following sub-
sections, we have briefly described the role of various
pro-inflammatory mediators in the development of IR.

IL-β and IR
IL-β is a master pro-inflammatory mediator that plays
its crucial role to regulate the expression of various
other pro-inflammatory cytokines, adipokines and che-
mokines. It induces inflammation via binding with
interleukin-1 receptor type I (IL-1RI) (Fig. 3) and re-
duces the expression of insulin receptor substrate-1
(IRS-1) at ERK-dependent transcriptional level and ERK-
independent post-transcriptional level [16]. Production of
IL-1β is mainly regulated by diet-induced metabolic stress
(Fig. 4). Experimental studies have been conducted on
various experimental animal models to investigate the
presence of various inflammatory responses in β-cells of
pancreatic islets and peripheral tissues which indicate that
IL-β is a master pro-inflammatory mediator that plays its
pivotal role to activate numerious other pro-inflammatory
cytokines and chemokines [4, 17] through the involve-
ment of various transcriptional mediated pathways. Once,

inflammation is produced, it provokes its deleterious
effects on β-cells of pancreatic islets due to which im-
paired insulin secretion occurs in β-cells of pancreatic
islets. Likewise, IL-β also plays its decisive role to induce
inflammation in peripheral tisuues duw to which the abil-
ity of peripheral tissues to utilize insulin in response to
glucose is decreased which ultimately leads towards the
development of IR in peripheral tissues.

IL-6 and IR
Aging is associated with increased plasma levels of IL-6
[18] which in turn can be positively correlated with IR
[19–22]. The mechanism by which IL-6 induces IR is
complicated and versatile [19]. It not only prevents the
metabolism of non-oxidative glucose [23, 24], but also
suppresses the lipoprotein lipase that consecutively in-
creases the plasma levels of triglycerides [23]. Moreover,
IL-6 also activates the suppressor of cytokine signaling
(SOCS) proteins [6, 25] which may block the cytokine-
mediated transcriptional factor activation of insulin
receptor [26]. Signal transducer and activator of tran-
scription 5B (STAT5B) is a protein that belongs to the
STAT family of transcription factors. STAT5B is aptly
named for its unique ability to act as signal transducer
and as transcription factor of insulin receptor [26]. In
response to cytokines, STAT5B is phosphorylated by re-
ceptor associated kinases [27]. STAT5B activates insulin

Fig. 2 Overnutrition is responsible to elevate the levels of glucose and FFAs in blood which are responsible to induce metabolic stress in β-cells
of pancreatic islets and insulin sensitive tissues notably adipocytes (especially in case of obesity). The metabolic stress induced in these tissues
activates the release of various pro-inflammatory cytokines notably IL-1β and IL-1β-dependent various other cytokines and chemokines. As a
result, immune cells are recruited which contribute the tissue-specific inflammation. Adapted from Donath and Shoelson [12]
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Fig. 3 Production of IL-1β-induced inflammation in β-cells of pancreatic islets. Prolonged exposure of FFAs and glucose induce the activation of
IL-1β from β-cells of pancreatic islets through the involvement of various transcriptional mediated molecular pathways notably TXNIP, MYD88,
NF-κB, TLRs, caspases and inflammasomes. Once IL-1β is activated, it recruits various other pro-inflammatory mediators after binding with its
receptor IL-1RI and through the involvement of MYD88 and NF-κB. Adopted from Donath and Shoelson [12]

Fig. 4 Overnutrition is responsible for elevated levels of glucose and FFAs in blood which entered into the β-cells of pancreatic islets. Initially, these
augmented levels of glucose and FFAs induce the expression and release of IL-1β from the β-cells of pancreatic islets (Stimulation). Prolonged and/or
chronic exposure of glucose and FFAs (also known as metabolic stress) may lead to the activation of IL-1β by activating NF-κB and auto-stimulatory
process (Amplification). Once, IL-1β is activated and produced, it leads to the recruitment of various other pro-inflammatory cytokines, chemokines, and
macrophages (Precipitation) which further induces apoptosis, amyloidosis and fibrosis in β-cells of pancreatic islets, and hence impaired insulin
secretion occurs whereas, in peripheral tissues, IR is developed due to systemic inflammation. Adopted from Donath et al. [17]
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transcription factor through potentiating the tyrosine
kinase by binding with phosphotyrosine 960 of the insulin
receptor. The activation of insulin transcription factor is
blocked by SOCS proteins which suppresses the activity of
tyrosine kinase by significantly competing with STAT5B
[19, 27]. SOCS proteins have negative effects on insulin
action while IL-6 can activate these SOCS proteins. There-
fore IL-6 is considered as an important biomarker for the
development of IR [19, 28].
Production of IL-6 is regulated by (IL-1β via activation

of interleukin-1 receptor type I (IL-1RI) [29, 30]. Block-
ing the activity of IL-1RI with suitable anti-inflammatory
agent like interleukin-1 receptor antagonist (IL-1Ra)
antagonizes the agonistic effects of IL-1β that ultimately
leads to the suppression of IL-6 production [4, 31].
Anti-IL-6 receptor antibody and soluble receptor of IL-
6 (sIL-6R) have proven to be effective by decreasing the
development of IR [32, 33], but this treatment strategy
may not be very much effective as production of IL-6 is
dependent on the activation of IL-1β and its role in the
development of IR cannot be negelected.

TNF-α and IR
Adipocytes secrete several pro-inflammatory mediators
and among them, TNF-α has been proposed to develop
a link between IR, obesity and T2DM [34, 35]. Experi-
mental studies conducted on obese animals indicate that
the expression of TNF-α is increased in obese animals
which modulates the insulin action [36]. TNF-α binds
with its receptor and triggers a broad spectrum signaling
cascade that results in the activation of various transcrip-
tional pathways such as Nuclear factor kappa-B cells (NF-
κB) and Jun NH2-terminal kinase (JNK) [37, 38]. Once,
NF-κB and JNK are activated, they phosphorylate serine
307 in IRS-1 which result in the impairment of IR-
mediated tyrosine phosphorylation of IRS-1 [37]. Recently,
it has been found that serum level of TNF-α is positively
correlated with the pathophysiology of IR [35, 39] which
exhibit that TNF-α is also a main causative factor that
contributes the development of IR.

Adipokines and IR
Previously, it has been thought that adipose tissues are
the main site for energy storage and/or supply, but now,
it has been recognized that adipose tissues are actively
involved in communitation with other tissues due to
which it is considered as an active endocrine organ [40].
Therefore, it has been deliberated that adipose tissues
are the major endocrine organ which have the ability to
produce variety of adipose-derived mediators that are
activitely involved to regulate the energy metabolism
and insulin sensitivity [41]. The most important adipose-
derived mediators are FFAs and adipokines. Adipokines
include large number of pro-inflammatory mediators

which include leptin, TNF-α, IL-6, tissue inhibitor of
metalloproteinases (TIMP-1) adiponectin, retinol-binding
protein (RBP-4) and monocyte chemotactic protein (MCP-
1) [42, 43]. It has been evidenced from several experimen-
tal studies that there is a strong correlation between the
mass of adipose tissues and development of IR (Fig. 5) in
peripheral tissues of diabetic patients [44, 45]. Adipose
tissue’s mass in obesity and lipodystrophy becomes abnor-
mal which results in the development of IR in peripheral
tissues. Adipokines indicate the chronic low-grade inflam-
mation in adipose tissues [46] and have been considered as
emerging biomarkers for insulin sensitivity and/or resist-
ance. IL-6, TNF-α, MCP-1, TIMP-1, RBP-4, and leptin are
considered as pro-inflammatory cytokines which are re-
sponsible not only for the induction for local inflammation
in adipocytes, but may also induce systemic inflammation
after entering into the blood stream [4, 47, 48]. Adiponec-
tin is the only adipokine that acts as anti-inflammatory
cytokine and has the ability to ameliorate the deleterious
effects of IL-6, TNF-α, MCP-1, TIMP-1, RBP-4, and leptin
which are known to be produced in adipose tissues [11]. It
has also been found that the level of adiponectin is down-
regulated in obesity and is positively associated with insulin
sensitivity [49, 50]. The imbalance between leptin and
adiponectin may result in the development of systemic IR.

Chemokines and IR
Chemokines are an important class of pro-inflammatory
mediators. Their production is dependent on the activa-
tion IL-1β and various transcriptional pathways [4]. Up
till now, various chemokines have been discovered,
among which the most important are MCP-1, MCP-2,
MCP-3, MCP-4, CCL2, MIP-1α and MIP-1β [51].
Several studies have reported that MCP-1 and CCL2 de-
ficient mice prevented high fat diet-induced IR [52, 53].
Moreover, overexpression of MCP-1 in adipose tissues
was also observed to be responsible for the increase in
adipose tissue macrophages and induction IR [52, 54].
Obesity is the state of chronic low-grade inflammation
which is linked to the development of local and/or
systemic IR. It has been found that chemokines play
crucial role for the development of IR and T2DM (Fig. 6)
[55]. Among various receptors for chemokines, CCR2
and CCR5 are the most important receptors that play
decisive role in the pathogenesis of IR [56] in adipose
tissues (Fig. 7). It has been found that adipocytes secrete
CCR2 in an inactive form. After activation, CCR2 in-
duces the expression of various inflammatory genes and
impaires the uptake of insulin-dependent glucose up-
take. Moreover, adipocytes can also secrete CCL2 and
CCL3 which act as a potent signal for the recruitment of
macrophages. The upregulation of CCL2 and CCL3
from adipocytes may contribute to the development of
IR in adipose and peripheral tissues [57]. The above

Rehman and Akash Journal of Biomedical Science  (2016) 23:87 Page 5 of 18



mentioned studies highlight the crucial role of various
chemokines in the development of IR along with other
pro-inflammatory mediators.

CRP and IR
CRP has been considred as one of the most important
human acute phase protein that correlates with develop-
ment of IR [58, 59]. CRP is a systemic inflammatory
biomarker and has been considered as one of the major
causative factor for the development of T2DM [60]. It
has been evidenced that elevated levels of CRP not only
reflect the induction of local inflammation, but also
predict the pathogenesis of tissue-specific IR [61].
Several studies have found that strong relationship exists
between levels of CRP and development of IR [61–63]
which indicates that besides other pro-inflamamtory me-
diators, CRP also actively plays its pivotal role for the
pathogenesis of IR by inducing local and/or systemic
inflammation.

Oxidative stress and IR
Overnutrition increases the cellular overload of glucose
and FFAs which in turn increases the oxidative stress
(Fig. 8). Peripheral and adipose tissues protect themselves
from the damaging effects of oxidative stress producing
resistance to the action of insulin by preventing the

penetration of glucose and FFAs into the cells. Oxidative
stress is because of imbalance between the production of
reactive oxygen species (ROS) and anti-oxidative defense
mechanism against the production of ROS. β-cells of pan-
creatic islets, adipocytes and peripheral tissues are more
vulnerable to the damaging effects of oxidative stress
(Fig. 9). Several mechanisms are involved to influence the
balance between ROS and anti-oxidant defense mecha-
nisms including activation of stress-signaling pathways
such as JNK pathway [64] and transcriptional mediated
pathways such as NF-κB [65]. JNK and NF-κB pathways
decrease the insulin-mediated glucose uptake by tissues
and insuling signaling [66–68], that ultimately induces IR
(Fig. 8). Moreover, the activations of JNK and NF-κB path-
ways is also associated with the upregulation of various
pro-inflammatory mediators such as TNF-α, IL-6, and
CRP. It has also been reported that oxidative stress-
indcued activation of NF-κB pathway may also be associ-
ated with endothelial dysfunction that can lead to the
induction of IR [69, 70], but anti-oxidant therapy may act
as a potential strategy to prevent the induction of IR-
associated with endothelial dysfunction [71]. The growing
body of evidence indicate that oxidative stress is a com-
mon pathogenic factor that leads to the development of
tissues-specific IR. The results of experimental studies
indicate that what happens in peripheral tissues also occur

Fig. 5 Schematic representation of adipocytokines-induced IR. Glucolipotoxicity and induction of inflammation in adipocytes are responsible to make
the adipocytes abnormal. Once adipocytes are injured, glucose utilization is decreased in adipocytes and levels of FFAs are abnormally increased due
to which metabolic stress in adipocytes is increased which ultimately leads to the abnormal secretion of various pro-inflammatory mediators and
adipocytokines. Abnormal secretion of these pro-inflammatory mediators and adipocytokines activate various inflammatory pathways which impairs
the phosphorylation of various insulin signaling pathways in adipocytes and/or peripheral tissues due to which systemic IR is developed
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Fig. 6 Chemokines-induced IR. M2 macrophages in lean state, maintain the insulin sensitivity in adipose tissues whereas, due to overnutrition, adipose
tissues initiates the secretion of MCP-1 which leads to the recruitment of circulating monocytes in adipocytes. CCR2 macrophages are accumulated in
obese adipocytes and presumably maintain the inflammation by recruiting M1 macrophages in obese adipocytes. While on the other side, CCR5-
adipose tissue macrophages (ATM) also infiltrate from the obese adipocytes and promote the inflammatory responses by involving ATM recruitment
and producing various pro-inflammatory mediators notably TNF-α, IL-6, and IL-1β in conjunction with other infiltrated immune cells and adipokines.
After production, these pro-inflammatory mediators induce IR in adipocytes and peripheral tissues through activation of several transcriptional
pathways such as JNK and NF-κB. Adapted from Xu et al. 2015

Fig. 7 C-C motif chemokine receptor 5 (CCR5) promotes obesity-induced inflammation and IR. Recently, it has been found that the expression of
CCR5 and its ligand MCP-1 is significantly increased in white adipose tissues (WAT) and its accumulation is increased in adipose tissue macrophages
(ATM) in WAT of obese mice and provides a novel link between inflammation and IR in adipocytes by stimulating the production of various
pro-inflammatory cytokines and chemokines. Adopted from Ota [51]
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in the β-cells of pancreatic islets and endothelial cells to
compensate the systemic oxidative stress.

Endoplasmic reticulum stress and IR
Endoplasmic reticulum stress (ERS) is another mechan-
ism that palys crucial role for the development of IR in
adipocytes and peripheral tissues. ERS just like oxidative

stress, is produced by the activation of JNK and inhibi-
tory phosphorylation of IRS-1 in adipose tissues and
liver [72] and induces the pathogenesis of IR in endothe-
lial cells. It has been found that ER is a major site for
the production of various proteins such as insulin bio-
synthesis and act as a place for the lipid and sterol syn-
thesis [73]. Any kind of abnormality that occurs in ER

Fig. 8 Mechanism of oxidative stress-induced IR: Chronic exposure of hyperglycemia and hyperlipidemia due to over nutrition leads to the production
of oxidative stress via activation of reactive oxygen species. Once, oxidative stress is produced within the body, it leads to the activation of various
transcriptional mediated pathways such as p38, JNK, IKKβ and/or NF-κB. IKKβ also induces the activation of NF-κB. p38, JNK and IKKβ, further activates
the serine phosphorylation of insulin receptor substrate-1 (IRS-1). While on the other side, NF-κB also activates the expression of iNOS which also
induces the S-nitrosylation of IRS-1. Both S-nitrosylation and serine phosphorylation of IRS-1 suppress the tyrosine phosphorylation of insulin signaling
pathways which ultimately results into the induction of IR in liver, adipocytes and skeletal muscles

Fig. 9 Impact of oxidative stress on vital organs of the body. β-cells of pancreatic islets, adipocytes and peripheral tissues are more susceptible to the
damaging effects of oxidative stress. Oxidative stress independently exhibit its hazardous effects on these organs due to which impaired insulin
secretion occurs in β-cells of pancreatic islets and IR develops in adipocytes and peripheral tissues. Impaired insulin secretion and IR lead to the
development of post prandial hyperglycemia and overt T2DM both of which also acts as feedback mechanism for the development of oxidative stress
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may lead to the development of ERS which also contrib-
ute to induce tissue-specific IR. It has been revealved
from experimental studies that some anti-diabetic agents
alos modulate the ERS during the treatment of T2DM
[74] which offer a new therapeutic target for the treat-
ment of ERS-inducced IR and T2DM.

Activation of transcriptional pathways and IR
NF-κB is a sequence-specific transcriptional mediated
factor that primarily regulates various inflammatory re-
sponses [75] and IκB kinase β (IKK-β) is a central coord-
inator for these inflammatory responses through the
activation of NF-κB [76]. IKK-β activates NF-κB through
phosphorylation of IKK-β [77, 78] and thereafter, NF-κB
mediates the stimulation of numerous pro-inflammatory
mediators such as IL-1β, IL-6, and TNF-α [76, 78]. Once
these pro-inflammatory cytokines are activated, they
ultimately lead to cause IR [2, 14, 79, 80]. Therefore,
NF-κB and IKK-β are considered to be involved in the
pathogenesis of IR [81, 82]. IKK-β induces inflammatory
responses in hepatocytes which massively increase the
production of pro-inflammatory cytokines [83]. These
pro-inflammatory cytokines then enter into the blood
stream to cause IR in other tissues [81].
Various studies have investigated that nonsteroidal

anti-inflammatory drugs (NSAIDs) such as cyclooxygen-
ase inhibitors (aspirin and salicylates) can significantly
inhibit the activation of NF-κB and IKK-β [84] in rodent
models and humans [84, 85]. These studies suggest that
NSAIDs may exhibit their anti-inflammatory effects on
myeloid cells rather than in muscle or fat. Expression of
IKK-β in myeloid cells significantly suppresses the acti-
vation of pro-inflammatory cytokines that promote IR
[81]. In the following sub-sections, role of various tran-
scriptional pathways in the pathogenesis of IR has been
briefly described.

Activation of Toll like receptors and IR
IR leads to the increased production of insulin from β-
cells of pancreatic islets and as result, compensatory
hyperinsulinemia within the body occurs. Toll like recep-
tors (TLRs) are the important modulators of IR and its co-
morbidities. Chronic inflammation plays a crucial role in
variety of insulin resistant states [86, 87] in which various
signaling pathways are activated that directly interfere
with the normal functioning of the key components of
insulin signaling pathways [88]. Among various pathways,
activation of TLRs imparts crucial role for the generation
of inflammation. There are two main types of TLRs i.e.
TLR2 and TLR4. TLR4 is an extracellular cell surface
receptor that is expressed in β-cells of pancreatic islets,
brain, liver skeletal muscle and adipose tissues (Fig. 10)
[89]. In nomal conditions, TLR4 regulates insulin sensitiv-
ity in these tissues, but the activation of TLR4 directly

dampen the insulin action through the activation of vari-
ous pro-inflammatory mediators and ROS, indirectly gen-
erates the activation of various pro-inflammatory
mediators by inducing various signaling cascades and
transcriptional factors notably MyD88, TIRAP, TRIF, IKKs
and JNKs that causes the activation of innate immune re-
sponses which ultimately leads to the development of IR
(Fig. 11) [89]. TLR4 plays this role primarly in coordin-
ation with the phosphorylation of IRS serine.
Lipopolysaccharide (LPS) and its endotoxic moiety have

been reported to be the potential activators of TLR4
(Fig. 11). LPS is composed of oligosaccharides and acyl-
ated saturated fatty acids (SFAs). Besides LPS, SFAs have
also been reported to be the activator of TLR4. The
expression and signaling of TLR4 are regulated mainly by
the adiponectins. Several studies have reported that adipo-
nectin can inhibit LPS-induced activation of TLR4
through the involvement of AMPK, IL-10, and heme
oxygenase-1 [90–92]. Other regulators of TLR4 are per-
oxisome proliferators-activated receptor gamma (PPARγ)
and sex hormones [93, 94]. Taking together, TLR4 is a
molecular link for pro-inflamatory mediators, different
body organs, and several transcriptional pathways and
cascades that modulate the innate immune system by
regulating the insulin sensitivity. In the proceeding sub-
sections, role of TLR4 expression in various vital organs of
the body for the pathogenesis of IR has been described.

TLR4 expression in adipose tissues
Despite of having the ability to act as storage depot for
excess calories, adipose tissues secrete large number of
hormones, pro-inflammatory cytokines and chemokines
that directly influence the metabolism (Fig. 10). Adipose
tissues consist of adipocytes, preadipocytes, macro-
phages, lymphocytes and endothelial cells. Only adipo-
cytes and macrophages are known to release various
pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α)
and chemokines (such as MCP-1) that potentiate inflam-
mation in several tissues after being released into the
systemic circulation [95]. Besides this, adipocytes are
also a rich source of two important hormones namely
leptin [96, 97] and adiponectin [98]. Adiponectin, having
anti-inflammatory properties, promotes insulin sensitiv-
ity whereas, leptin having inflammatory properties, im-
pairs insulin sensitivity in adipocytes [87]. Several factors
such as oxidative stress, increased FFAs flux and hypoxia
that are associated with inflammation can induce IR in
adipose tissues [87]. TLRs present in adipose tissues are
directly activated by the nutrients [99, 100] which play a
key role for the initiation of inflammatory responses
which ultimately promotes IR in these tissues [100–104].
In experimental studies, it has been found that LPS-
resistant strains of mice with loss-of function (C3H/HeJ
mice) and deletion (C57BL/10ScN mice) mutations in
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Fig. 10 Expression TLR4 in integrated tissues and organ systems of the body that regulate the insulin sensitivity. Toll-like receptor 4 (TLR4) present in
adipocytes, initiates the inflammatory responses that release various pro-inflammatory mediators. Once, produced, these mediators are entred into the
blood stream and thereby promote IR. Liver-resident macrophages known as Kupffer cells are made up of 10% of the cells in liver and 80%–90% of all
tissue macrophages within the body. TLR4, expressed on Kupffer cells and other liver cell components, regulates the various inflammatory
responses in liver. TLR4, expressed in skeletal muscles, has been shown to regulate the substrate metabolism in muscle, favoring glucose
oxidation in the absence of insulin. Hypothalamus and mesolimbic area are important sites that modulate the energy expenditure,
pancreatic β-cell function and IR in peripheral tissue. Expression of TLR4 in hypothalamus potentiates various inflammatory responses
that contribute to the pathogenesis of IR. Adopted from Kim and Sears 2010

Fig. 11 Schematic representation of TLR4 signaling cascades. Signal transduction of TLR4 through the activation of MyD88/TIRAP and TRAM/TRIF
pathways, leads to potentiate the innate immune responses and inhibit signal transduction of insulin, primarily through serine phosphorylation of
IRS. Adopted from Kim and Sears 2010
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TLR4 gene [105] resulted in imporved insulin sensitivity
with increased rate of glucose utilization in skelectal
muscle and adipose tissues [100, 101]. Nutritional fatty
acids can activate the expression of TLR4 in adipocytes
that play crucial role for the activation of various pro-
inflammatory mediators and transcriptional mediated
pathways which ultimately lead to the development of
IR in adipocytes.

TLR4 expression in skeletal muscle
Skeletal muscles have marked significance to regulate
the normal glucose homeostasis and development of IR
as these are the primary site for insulin-induced glucose
uptake and utilization in peripheral tissues. 75% of the
insulin-induced glucse utilization occurs in skeletal mus-
cles under normal physicological conditions [106] which
is markedly reduced in hyperinsulinemic and obese
patients.
Skeletal muscles contain myocytes and macrophages

in which TLR4 receptors are expressed (Fig. 10). Signal
transduction of TLR receptors is an underlying mechan-
ism for the development of IR and chronic inflammation
in skeletal muscles [107]. TLR4 expression in skeletal
muscle is associated with severity of IR and skeletal
muscle metabolism. The mechanis in the development
of IR in skeletal muscles may include the direct effects
of intramyocellular FFAs metabolites in skeletal muscles,
macrophages and paracrine effects of adipocytes. Re-
cently, it has been experimentally confirmed that disrup-
tion of TLR4 expression prevents SFA-induced IR in
TLR mutant mice and improves IRS-1 tyrosine phos-
phorylation and insulin-stimulated glucose uptake.
Moreover, disruption of TLR4 expression has also shown
to decrease the JNK1 phosphorylation and IRS-1 serine
phosphorylation [100, 104].

TLR4 expression in liver
Liver is the major and vital organ of the body which is
composed of heterogenous types of cells notably hepato-
cytes, immune cells, kupffer cells and endothelial cells.
Kupffer cells are known as liver-resident macrophages
which compose of 10% cells in the liver and 90% of all
tissue macrophages in body. Due to their localization at
sinusoids, kupffer cells are in close contact with circulat-
ing cytokines, lipids, hormones and postprandial LPS,
and hence, kupffer cells are important mediators of
inflammation within the liver. TLR4 expressed on kupf-
fer cells in the liver (Fig. 10), are responsible to modulate
the activity of pro-inflammatory mediators which are
induced by IR, fructose- and high-fat diet-induced hep-
atic steatosis [100, 102, 108, 109]. It has been found that
activated levels of pro-inflammatory AP-1 and NF-κB in
liver are directly correlated with IR and oxidative stress
[110]. TLR4 signaling pathway is strongly associated

with IR as, it has been found that acute treatment of LPS
inhibits the production of hepatic glucose via activation of
TLR4 signaling pathway and induces IR in liver [111].

TLR4 expression in β-cells of pancreatic islets
Several TLRs such as TLR2, TLR3 and TLR4, are also
expressed in β-cells of pancreatic islets [112]. Signal
transduction of TLRs in β-cells of pancreatic islets is
mainly associated with inflammation in β-cells of pan-
creatic islets [113–116]. Distruction and malfunctioning
of β-cells of pancreatic islets may lead to insufficient
secretion of insulin in both types of DM. TLR4 expres-
sion in β-cells of pancreatic islets, is induced by the toxic
levels of glucose and FFAs in the blood, cytokine sig-
naling, and/or ER stress within β-cells of pancreatic
islets [117]. Expression of TLR4 in pancreatic islets
may lead to impaired insulin secretion and promote β-
cell apoptosis [118].

TLR4 expression in brain
Brain itself palys a central role to regulate glucose
homeostasis and metabolism. In brain, hypothalamus
and mesolimbic sites have been considered as important
areas that are actively involved in the regulation of insu-
lin sensitivity in peripheral tissues and β-cells secretory
functions of pancreatic islets [119]. TLR4 expression is
widely distributed in the body (Fig. 10), but signal trans-
duction of TLR4 in CNS affects the intake of food and
contribute to the development of obesity [100] and acti-
vates various pro-inflammatory signalling pathways such
as activation of JNK1, MyD88 and NF-κB pathways in
hypothalamus that ultimately contribute to the develop-
ment of tissue-specific IR [120–122].

TLR4 expression in endothelial cells
Vascular endothelial dysfunction is a major complication
for induction of IR and pathogenesis of T2DM. At mo-
lecular level, excess amount of nutrient is interlinked
with IR through the activation of transcriptional medi-
ated pathways such as IKKβ and NF-κB [83, 123].
Augmented levels of FFAs are associated with generation
of inflammation and induction of IR in endothelial cells
[124, 125]. IKKβ and NF-κB are transcriptional media-
tors of inflammation and TLR4 is implicated as a medi-
ator of IKKβ and NF-κB [100, 126]. TLR4 receptors are
also expressed in endothelial cells and expression of
TLR4 via LPS-stimulated IKKβ and NF-κB activation
contributes the dysfunctioning of endothelial cells [126].
Activation of TLR4 via FFAs can trigger the cellular
inflammatory responses in endothelial cells [127, 128]
whereas, whole body deletion of TLR4 expression has
shown to prevent high-fat diet-induced vascular inflam-
mation and IR in mice [129, 130]. Similarly, activation of
TLR4-dependent IKK and NF-κB indicated impaired
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insulin signaling and NO production in endothelial cells
[131]. The growing evidence implicates that TLR4 is the
major causative factor to induce IR in endothelial cells
via activation of various transcriptional mediated path-
ways and inflammation in endothelial cells.

AMPK and IR
AMP-activated protein kinase (AMPK) is an enzyme
that is most commonly known as master regulator of
energy metabolism [132] and its activation is based on
the energy level of the body. Upon activation, AMPK
resotres the energy levels of the body by stimulating
various processes in different body organs (Fig. 12) that
are responsible to generate the energy [133–136]. AMPK
plays a crucial role between adipose and peripheral
tissues, and interferes various metabolic and secretory
functions [137] that are responsible for normoglycemia
and glucose homeostasis (Fig. 12). In adipocytes, adipo-
kines exhibit their metabolic effects by activating AMPK
which result in the increased β-oxidation in peripheral
tissues. There is strong correlation between development
of IR and generation of inflammation induced by oxida-
tive and/or ER stress, and glucolipotoxicity. It has been
evidenced that activation of AMPK is suppressed by the
generation of inflammation [138–140] and/or glucolipo-
toxicity which leads to the development of IR [141].
Activation of AMPK in peripheral tissues enables
skeletal muscles to cope with elevated levels of FFAs.
Keeping in view the active role of AMPK in energy
metabolim, it has been found that AMPK activation
improves insulin sensitivity and glucose homeostasis. IR
is a major hallmark for the pathogenesis of T2DM how-
ever, AMPK activation can prevent the pathogenesis of
IR and development of T2DM.

Activation of protein kinases and IR
Protein kinase C (PKC) and inhibitor kB kinase (IKK)
are the two main important kinases that play crucial role
in pro-inflammatory mediators-induced inflammatory
processes in adipocytes and peripheral tissues underlying
the development of systemic IR [142–144]. IKK induces
IR in peripheral tissues by suppressing the insulin signal-
ing and activating NF-κB [125, 145]. Inhibition of IKK
activation prevents the secretion of adipokines from
adipocytes and improves insulin sensitivity in adipocytes
and peripheral tissues [81, 146, 147].

NF-κB and IR
NF-κB is a transcriptional mediated pathway that plays its
crucial role in the transcription of signals for te produc-
tion and release of various pro-inflammatory mediators.
Most importantly, NF-κB plays active role to regulate IL-
1β (Fig. 12). Metabolic and/or oxidative stress induces
various kinases such as IKKβ and JNK [81, 83, 123] which
play a key role to activate NF-κB and impairs insulin sig-
naling pathways that ultimately leads to the development
of IR (Fig. 8). Once activated, NF-κB targets serval genes
to potentiate the release of various pro-inflammatory
mediators in adipose tissues and liver [81, 83, 123]. These
pro-inflammatory mediators that are produced in re-
sponse to NF-κB activation induce tissue-specific IR.

Glucolipotoxicity and IR
Glucolipotoxicity is a general term which is collect-
ively used for the combination of glucotoxicity and
lipotoxicity. These two terms are collectively responsible
to activate the release of various pro-inflammatory media-
tors which lead to the development of tissue-specific IR
and impaired insulin secretion from β-cells of pancreatic

Fig. 12 Schematic representation of effect of AMPK activation on various body organs
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islets (Fig. 13). Adipocytes are the main sites for the stor-
age of fats and energy supplied to the body, is also regu-
lated by the adipocytes. When accumulation of lipids
exceeds the energy expenditure, then most of the excess
amount is stored in the form of FFAs in adipose and other
insulin-sensitive tissues. When fat storage and energy sup-
ply is impaired in adipose tissues, elevation of FFAs levels
in plasma occurs which is converted into the triglycerides
and stores in non-adipose tissues [148]. The ectopic stor-
age of FFAs metabolites (mostly triglycerides) results in
lipotoxic effects in peripheral tissues (Fig. 5). In addition
to this, elevated levels of FFAs in plasma may also inter-
fere with insulin signaling pathways notably IRS-1 serine
phosphorylation in peripheral tissues via activation of
PKC and inhibition of IKK and JNK [145]. Hence, it has
been evidenced that glucolipotoxicity is one of the major
contributor for the development of tissue-specific IR.

Treatment strategies
Development of IR is one of the major hallmark for
pathogenesis of T2DM. To control the propagation of
IR is one of the most important targeted treatment. For
the development of IR, several factors are involved
(Fig. 1) and suppression of these causative factors can
help decrease the incidences of IR development. Several
treatment strategies have been used to overcome the
development of IR. The most important ones have been
described here in the following sub-sections.

Interleukin-1 receptor antagonist
Interleukin-1 receptor antagonist (IL-1Ra) is naturally
occurring anti-inflammatory cytokine of interleukin-1

family. It competitively binds with IL-1RI and prevent the
binding of IL-1β and antagonizes its effects. It has been
evidenced from several experimental studies that imbal-
ance between IL-1Ra and IL-1β generates inflammation in
various parts of the body where IL-1RI is present [4, 12].
Moreover, it has also been found that expression of IL-1Ra
is strongly correlated with the development of IR, impaired
insulin secretion and T2DM [4, 149]. Treatment of human
recombinant IL-1Ra improves normoglycemia, insulin
sensitivity in adipose and peripheral tissues, and insulin
secretion from β-cells of pancreatic islets impairs [31, 150,
151]. This is one of the most important treatment strategy
that anti-inflammatory agent might indeed prevent the
development of IR and improves glycemia. One of the
main shortcoming of IL-1Ra is its short biological half-life
and to overcome this problem, high doses with frequent
dosing intervals are required to achieve desired therapeutic
effects. To overcome this problem, several treatment strat-
egies have been applied to prolong the biological half-life
and therapeutic effects of IL-1Ra [29].

Salicylates
Salicylates are an important class of anti-inflammatory
agents. They are used in variety of inflammatory diseases
and syndromes. Inflammation plays a crucial role for the
development of IR and T2DM, therefore, by using salicy-
lates as an alternate treatment strategy, it has been found
that salicylates can imporve insulin sensitivity via inhibition
of NF-κB and IKKβ [82] and glucose tolerance [152, 153].

Anti-TNF approaches
In the above sections, it has been briefly described that
TNF-α is one of the most important pro-inflammatory

Fig. 13 Mechanism of hyperglycemia- and dyslipidemia-induced inflammation for the development of IR and T2DM. Hyperglycemia and
dyslipidemia collectively provoke the activation of pro-inflammatory mediators through the involvement of several metabolic pathways.
Once, these pro-inflammatory mediators are released, they induce tissue-specific inflammation due to which IR in peripheral tissues and
impaired insulin secretion in pancreatic islets occur that ultimately lead to overt T2DM. Adapted from Akash et al. [30]
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mediator that is responsible to induce IR in adipocytes
and peripheral tissues. Inhibition of TNF-α production
might be one of the choice to prevent the development
of IR and pathogenesis of T2DM [4]. Recently, inflixi-
mab has been demonstrated to improve insulin signaling
and inflammation especially in the liver in rodent model
of diet-induced IR [154]. Similarly, using anti-TNF-α
antibodies also improve the insulin sensitivity in periph-
eral tissues [155]. Lo et al. demonstrated that etanercept
therapy can also improve total concentration of adiponec-
tin which is anti-inflammatory adipokine and improved
insulin sensitivity [155]. Keeping in view the decisive role
of TNF-α in pathogenesis of IR, several anti-TNF-α treat-
ment strategies have been utilized to prevent the patho-
geneis of IR and development of T2DM. TNF-null(−/−)
mice significantly improved the glucose tolerance and in-
sulin sensitivity [156]. Similarly, anti-TNF-α treatment has
also shown to prevent the IR in Sprague–Dawley rats
[157] while neutralization of TNF-α also prevented IR in
hepatocytes [158]. Few controversial studies have also
demonstrated that using TNF-α blockade has no effect on
IR [159] which indicates that TNF-α blockade is not a
treatment of choice as its production is dependent on the
generation of IL-1β and activation of various transcrip-
tional mediated pathways.

Anti-chemokine approaches
It has been thought that chemokines activately partici-
pate in the development of IR by potentiating the in-
flammation in adipocytes. Moreover, genetic inactivation
of these chemokine signaling [52, 53, 160] or inhibition
of their axis [161, 162] by pharmacological approaches
have been shown to improve the insulin sensitivity in
adipocytes and peripheral tissues. In recent studies, it
has been found that use of anti-chemokine antibodies
and/or antagonists has shown to improve the insulin
sensitivity [163, 164]. The results of these studies illus-
trate that inhibition and/or neutralization of chemokines
may be considered as an alternate therapeutic tool for
the treatment of IR and T2DM.

Pharmaceutical chaperones
ER stress, as mentioned in the above sections, is a key link
between IR and T2DM [165]. Blockade of ER stress is one
of the treatment option to prevent the development of IR
and pathogenesis of T2DM. In the recent years, various
pharmaceutical chaperones, notably endogenous bile acids
and the derivatives of these bile acids such as ursodeoxy-
cholic acid (UDCA), 4-phenyl butyric acid (PBA) have
been investigated that have proven to have the ability to
modulate the normal functioning of ER and its folding
capacity [28]. Ozcan et al. [166] used pharmaceutical
chaperone (UDCA) to investigate its therapeutic effects
on obese and diabetic mice. The results of this study

indicated that UDCA significantly improved insulin sensi-
tivity and normoglycemia.

Thiazolidinediones
Low-grade local and/or systemic inflammation, as discussed
above, plays its crucial role in the development of IR and
pathogenesis of T2DM. Induction of low-grade inflamma-
tion activates several metabolic and/or transcriptional
mediated pathways that are responsible to provoke the
pathogenesis of IR. Thiazolidinediones also known as
glitazones, are one of the most important insulin sensitisers.
They are the agonists of peroxisome proliferator-activated
receptors-gamma (PPARγ). It has been found that thaizoli-
dinediones have the ability to improve insulin action and
decrease IR [167, 168].

Expert opinion
Inflammatory responses play a crucial role in the patho-
genesis and development of IR which is one of the main
causative factor for the etiology of T2DM. Inflammatory
responses are induced through the activation of various
pro-inflammatory and oxidative stress mediators via
involment of various transcriptional mediated pathways.
To stop the inflammatory responses in IR development
is one of the key treatment strategy. In this areticle, we
have comprehensively highlighted the up-to-date scien-
tific knowlesge of role of inflammatory responses in IR
development and its treatment strategies.

Conclusions
IR plays a crucial role for the pathogenesis and devel-
opment of T2DM and its associated complicaitons. It
has been evidenced that development of IR is strongly
associated with various factors and the findings dis-
cussed here, strongly suggest that IR is closely inter-
linked with dysregulation of various metabolic and/or
transcriptional mediated pathways, activation of vari-
ous pro-inflammatory, oxidative and/or ER stress me-
diators in both experimental animal models and diabetic
humans. Activations of various pro-inflammatory, oxida-
tive and/or ER stress mediators and adipokines, and
abnormal metabolism of glucose and lipids can lead to the
development of tissue-specific IR. This intriguing notion
that pro-inflammatory mediators, metabolic and tran-
scriptional mediated pathways are decisively involved to
provoke the pathogenesis of IR, has also been supported
by many clinical observations where IR has been
strongly correlated with systemic and/or local low-
grade chronic inflammation. Based on the findings
mentioned in above sections, anti-inflammatory treat-
ment strategies are one of the best choice to prevent
the the pathogenesis of IR, but the studies conducted
to investigate the role of anti-inflammatory strategies
for the prevention of IR are still in their beginning
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stages and need to be focused further in future studies
for more better and improved clinical outcomes.
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