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Abstract: Chronic activation of the inflammatory response, defined as inflammaging, is the key
physio-pathological substrate for anabolic resistance, sarcopenia and frailty in older individuals.
Nutrients can theoretically modulate this phenomenon. The underlying molecular mechanisms
reducing the synthesis of pro-inflammatory mediators have been elucidated, particularly for vitamin
D, n-3 polyunsaturated fatty acids (PUFA) and whey proteins. In this paper, we review the current
evidence emerging from observational and intervention studies, performed in older individuals,
either community-dwelling or hospitalized with acute disease, and evaluating the effects of intake of
vitamin D, n-3 PUFA and whey proteins on inflammatory markers, such as C-Reactive Protein (CRP),
interleukin-1 (IL-1), interleukin-6 (IL-6) and tumor necrosis factor α (TNF-α). After the analysis, we
conclude that there is sufficient evidence for an anti-inflammatory effect in aging only for n-3 PUFA
intake, while the few existing intervention studies do not support a similar activity for vitamin D
and whey supplements. There is need in the future of large, high-quality studies testing the effects
of combined dietary interventions including the above mentioned nutrients on inflammation and
health-related outcomes.
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1. Introduction: Inflammaging and Its Relationship with Nutrition

In both genders, aging is associated with a significant rise in serum levels of inflammatory
markers, independently of comorbidities and cardiovascular risk factors [1]. This state of chronic
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low-grade inflammation has been defined as inflammaging and, within certain limits, can be beneficial
for healthy aging, stimulating normal tissue remodeling [2]. However, in many cases, the combination
of active inflammatory state with reduced antioxidant defenses is detrimental for health. Inflammaging
is strictly related with immunosenescence, a reduced or altered immune response to antigenic stimuli,
which has been demonstrated in both animal and human models [3]. An age-dependent decline in
T and B cells, particularly at the level of CD8+ and CD95´ virgin cells, and a concurrent increase of
Natural Killer (NK) cells are the distinctive features of this process [4].

Interleukin-1β (IL-1β), Tumor Necrosis Factor-α (TNF-α) and Interleukin-6 (IL-6) have been
identified as the key players in inflammaging [2,5]. In physiological acute phase response, IL-6
modulates the synthesis of reactants, including C-reactive protein (CRP), and promotes immune cell
activation [6]. Aging is associated with an altered trans-signaling of the IL-6 system, with a decline
in soluble IL-6 receptors (sIL-6r) and IL-6 inhibitor sgp130 [5,6]. Thus, the increased signaling due to
diminished inhibition induces an inappropriate activation of cellular IL-6 receptors, promoting the
inflammatory cascade independently of the presence of antigenic stimuli or tissue damage.

These physio-pathological changes have outstanding clinical implications. In a large cohort of
elderly community-dwelling subjects, elevated serum concentrations of IL-6 and IL-1RA have been
linked to a decline in physical performance during six-year follow-up period [7], and, in another study,
with different degrees of physical disability [8]. A recent translational study has demonstrated that
telomere attrition may be the genetic substrate linking chronic low-grade inflammation with altered cell
function, and thus with reduced muscle performance [9]. In a large cross-sectional population-based
study carried out in female community-dwellers aged more than 65 years, IL-6 levels were also
independently associated with higher prevalence of frailty [10]. Moreover, inflammaging may be
prodromic to the onset of cognitive disability [11] and multimorbidity [12]. All the chronic diseases
with a high prevalence in the older population, including cancer, may in fact be linked with altered
immune and inflammatory response [13]. Finally, inflammation also impacts survival, contributing
with cognitive symptoms, depression and poor physical performance to define a high-risk profile for
mortality [14,15].

The role of nutrition in these processes is of great importance. Chronic low-grade inflammation is
the major determinant of the “anorexia of aging”, while acute inflammation may contribute to raising
energy requirements, thus driving the onset of “disease-related malnutrition” [16]. The resulting
anabolic imbalance between nutrient intake and requirement has been associated with the onset of
frailty, muscle mass loss, reduction in muscle strength, and functional dependence leading to overt
disability. Diminished food intake and increased energy needs create a vicious circle with unfavorable
prognostic trajectory [17].

This catabolic state is greatest during critical illness conditions characterized by poor response
to nutritional intervention [18]. In older individuals admitted to hospital for acute illness or chronic
disease reactivation, inflammation degree has a greater influence on prognosis than nutritional
status [19]. More importantly, the low-grade catabolic state present outside the acute phase is strongly
related to inflammaging. This phenomenon, defined as “anabolic resistance”, implies suboptimal
skeletal muscle protein synthesis in response to physiologic stimuli and is one of the main determinants
of sarcopenia [20].

In healthy active elderly men, inflammaging, measured through mild CRP elevations, causes
a decrease in aerobic fitness and insulin resistance in skeletal muscle [21], and stimulates protein
synthesis after food intake less effectively than in younger men [22]. Hyperphosphorilation of mTOR
and its downstream effector S6K1, with consequent downregulation of mTORC1 signaling pathway,
may be the molecular substrates involved [23]. In subjects with chronic diseases, and thus with a higher
level of “basal” inflammation, these mechanisms are enhanced and may lead to the development of
cachexia [24]. Reduced physical activity also contributes to “anabolic resistance”, inducing a vicious
circle very difficult to stop [25].
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Nutritional intervention can possibly help to hinder “anabolic resistance”. There are two pathways
contributing to restore a normal protein synthesis: raising protein/amino acid intake in order to
overcome the increased anabolic threshold, and/or increasing the intake of nutrients that have
anti-inflammatory properties. The first approach has been followed in several observational studies
and clinical trials investigating the role of nutritional interventions in sarcopenia. Surprisingly, most of
the existing evidence claims that protein or amino acid supplementation is not able to parallel improve
muscle mass, muscle strength and physical performance [26].

The second approach is discussed in the present review, focused on the main nutrients capable to
reduce inflammatory status as actors of the endocrine-nutrition network. The crossroad effector linking
nutrition with inflammation is insulin growth factor-1 (IGF-1), whose levels are positively modulated
by diet and anabolic hormonal systems and negatively influenced by inflammation and oxidative
stress [27]. IGF-1 levels tend to decline with aging, in conjunction with the increase in subclinical
inflammatory status [28]. Interestingly, in a large female population-based study, Cappola et al., have
demonstrated that low levels of IGF-1 and high levels of IL-6 synergistically contribute to mortality
and mobility limitations [29].

Molecular studies have shown that many nutrients might be able to modulate systemic
inflammation. These include long-chain saturated fatty acids, oleic acid, n-3 polyunsaturated fatty
acids, vitamin D, magnesium, calcium, whey proteins, caseins and amino acids like cysteine, histidine,
glycine and leucine [30]. However, at the present moment sufficient clinical data in older individuals
are present only for vitamin D, n-3 polyunsaturated fatty acids and whey proteins [31].

2. Vitamin D and Inflammation in Elderly Subjects

2.1. Epidemiology and Observational Studies

In older individuals, 25-hydroxyvitamin D (25-OH-D) levels decline with age [32]. A recent
systematic review has demonstrated that the prevalence of vitamin D insufficiency or deficiency is
extremely high across all age groups and geographical areas, with pandemic proportion. In this
scenario, the prevalence in older individuals is even higher, approaching 90% [33]. The causes of
suboptimal vitamin D status in the elderly have not been completely demonstrated and mostly remain
speculative. They may include insufficient exposure to sunlight, poor nutritional intake, chronic
diseases, alterations in body composition with relative increase in fat mass, physical and cognitive
disability, polypharmacy [34].

Poor vitamin D dietary intake has a very low probability of being the sole contributing factor to
inadequate vitamin D status in the elderly. However, in a recent cross-sectional study carried out on
794 Australian community-dwelling men aged ě75, only 1% of participants met the recommended
Nutrient Reference Value (NRV) for vitamin D intake in their age-group [35]. Similarly, daily intake
of vitamin D was inadequate, compared to Recommended Dietary Allowance (RDA), in more than
85% of a cohort of 190 Spanish users of a home care nurse program aged ě65 [36]. Finally, a cohort of
sarcopenic older adults proved to have a lower vitamin D intake than controls [37].

In adult healthy subjects, the relationship between 25-OH-D levels and inflammatory markers is
controversial. In a cohort of 1381 adults (mean age 59) from the Framingham Offspring Study, Shea
et al. failed to demonstrate any association between 25-OH-D and CRP or IL-6 [38]. These findings
were confirmed by Clendenen et al., in a smaller cohort of female adults (mean age 55) [39]. However,
other larger population-based studies carried out in the U.S. and in Germany identified a U-shaped
relationship between 25-OH-D and CRP [40,41]. For example, data from National Health and Nutrition
Examination Survey (NHANES), including 15167 adults (mean age 46), showed an inverse relationship
between 25-OH-D and CRP only for 25-OH-D levels below 21 ng/mL, and a positive relationship
above this threshold [40].

The few population-based studies specifically performed in elderly cohorts (Table 1) revealed a
different direction in the association between vitamin D and inflammation. In a large study performed
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in American community-dwellers aged ě60, 25-OH-D levels below 24 ng/mL were associated with
a significantly increased risk of anemia (OR 1.46, 95% CI 1.06–2.02), while subjects with anemia of
chronic inflammation had a significantly higher prevalence of vitamin D deficiency than non-anemic
subjects (56% vs. 33%, p = 0.008) [42]. Data from the InCHIANTI Study, a large population-based study
carried out in Italy to identify the determinants of an healthy active aging, revealed that 25-OH-D is
inversely associated with IL-6 and positively associated with sIL-6r, independently of a list of potential
confounders including physical exercise, caloric intake, smoke, bone mineral density and Activities of
Daily Living (ADL) [43]. Interestingly, in this study neither other cytokines nor CRP were associated
with 25-OH-D at the multivariate statistical model, thus supporting the hypothesis of the centrality of
the IL-6 system in inflammaging [5]. The inverse association of CRP with 25-OH-D levels was instead
demonstrated as statistically significant in another similar cross-sectional study carried out on 957 Irish
community-dwellers aged ě60. In this study, also the IL-6/IL-10 ratio was inversely and significantly
associated with 25-OH-D [44].

These associations may have important clinical implications. In a small cohort of elderly
patients with heart failure, both low serum levels of 25-OH-D and high levels of CRP and IL-6
were independently associated with reduced functional performance, measured through 6-min walk
test, and higher frailty score [45]. Moreover, females with severe vitamin D deficiency (ď15 ng/mL)
at baseline had higher levels of IL-6 throughout the whole course of recovery after hip fracture than
females with 25-OH-D >15 ng/mL [46]. This may imply a worse tissue repair with poorer functional
outcomes. The association of a suboptimal vitamin D status with inflammation in older individuals can
also determine vascular endothelial dysfunction. This hypothesis has been partly confirmed in studies
that have measured endothelial function through serum asymmetric dimethylarginine levels [47],
brachial artery flow-mediated dilation [48] and endothelium-dependent and endothelium-independent
vasodilation [49]. A poor vitamin D status was also associated with a greater muscle mass loss, detected
by dual X-ray absorptiometry (DEXA), in a cohort of Chinese subjects prospectively followed-up for
six years, but this association was independent of inflammatory markers [50].

2.2. Intervention Studies

The role of vitamin D in modulating inflammation has been studied also in a large number of
intervention studies. However, most of them were focused on adult subjects with specific diseases,
including asthma, COPD, diabetes, obesity, chronic kidney disease (CKD) under dialytic treatment,
and sepsis [51]. These studies gave conflicting results, although they may have been biased by
poor generalizability due to extremely specific clinical contexts, low sample sizes, different doses
of administered vitamin D, and different outcomes (determination of serum levels of CRP vs. other
cytokines) [51]. For example, in two randomized controlled trials (RCTs), carried out in adult diabetic
patients, supplementation with vitamin D and calcium was associated with a significant decrease in
serum levels of CRP, IL-6, IL-1β and TNF-α [52,53]. Similar results were obtained in one RCT carried
out in young overweight women with polycystic ovary syndrome [54]. In subjects with non-allergic
asthma, vitamin D supplementation improved local eosinophilic airway inflammation [55], while
had no clinical effects on disease activity in COPD [56]. Similarly, an observational prospective study
conducted in subjects with CKD under dialysis confirmed the role of cholecalciferol supplementation
in lowering serum CRP [57]. However, in a RCT performed in a cohort with similar characteristics,
the treatment did not result in modulation of alloimmunity and inflammation [58]. Finally, treatment
with different doses of cholecalciferol in a large cohort of healthy adult African Americans was
not associated with variations of inflammatory markers, although an inverse relationship between
25-OH-D and CRP was detected at baseline [59].

As shown in Table 1, the level of evidence in older individuals is, if possible, even more scarce and
contradictory, due to the absence of large randomized controlled trials. The only existing fair-quality
study was carried out in a cohort of 613 Australian community-dwellers aged between 60 and 85,
who were randomized to receive 1500 µg vs. 750 µg cholecalciferol vs. placebo monthly for one year.
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At the end of the follow-up period, serum levels of CRP, IL-6, IL-10, leptin and adiponectin were not
statistically different among the three groups, although the 75th percentile IL-6 level was significantly
higher in the 1500 µg monthly cholecalciferol group compared with the placebo group (11 pg/mL vs.
8.2 pg/mL) [60]. This finding is in contrast with the hypothesized anti-inflammatory properties of
vitamin D and instead consistent with the results coming from observational population-based studies.
All these data suggest that the relationship between vitamin D and inflammatory markers is U-shaped,
and allow to hypothesize that high serum levels of 25-OH-D may be detrimental for health [40,41].

In another RCT, conducted in a cohort of 218 bedridden long-term hospitalized subjects, with a
mean age of 84.5 ˘ 7.5, the supplementation with different doses of cholecalciferol did not influence
acute phase reactants, including CRP and fibrinogen, despite normalization of serum 25-OH-D
levels [61]. However, the presence of mobility limitations, frailty, multimorbidity and polypharmacy
may have acted as strong confounders in this setting.

Similar results were obtained in a cohort of 105 elderly subjects (mean age 78) with congestive
heart failure and hypovitaminosis D, where oral ergocalciferol supplementation was associated with
significant variations neither in serum TNF-α levels nor in functional outcomes after 10 weeks [62].
Interestingly, in another study carried out on adult patients with the same disease, vitamin D
supplementation significantly prevented TNF-α rise during the disease course [63].

Up to date, the only intervention study demonstrating an anti-inflammatory effect of vitamin D
supplementation in older age is a small randomized controlled trial carried out in 40 Brazilian female
community-dwellers. In this study, the administration of a single dose of 200,000 IU of cholecalciferol
resulted in a significant decrease of high-sensitivity CRP levels after four weeks. Interestingly, the
decrease was more pronounced in those subjects with the BsmI polymorphism of Vitamin D Receptor
(VDR) [64].

2.3. Vitamin D and Inflammation in Aging: Mechanisms and Conclusive Remarks

The pleiotropic actions of vitamin D on human health in older age have been appreciated
both in clinical and basic science studies [65]. The molecular anti-inflammatory properties of this
hormone are well documented [66]. VDR is constitutively expressed by cells playing a key role
in inflammation and immunity, including macrophages, that also have the capacity of converting
25-OH-D into its active metabolite by expressing 1α-hydroxylase. The activation of the VDR in
macrophages up-regulates the inhibition of NF-κB (I-κB) and down-regulates the expression of TLR2
and TLR4, resulting in decreased production of TNF-α and induced hyporesponsiveness to antigenic
stimulation [67,68]. Vitamin D reduces cytokine secretion through its effects on the NF-κB pathway
also in lymphocytes [69] and adipocytes [70], favoring immunomodulation and resolution of chronic
inflammation [71]. In murine models, it can also stimulate the production of lymphoid cell lineages
with regulatory or anti-inflammatory properties, such as Treg cells [72]. Finally, vitamin D stimulates the
production of IGF-1, the key player in the cross road linking nutrition and inflammatory pathways [73].
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Table 1. Summary of observational (cross-sectional) and intervention (randomized controlled trials) studies exploring the association of vitamin D and inflammatory
markers in older individuals.

First Author,
Journal, Year

[ref]
Country Study

Design
Sample

Size
Setting/Health

Status Male (%) Mean Age
(Year)

Mean BMI
(Kg/m2) Intervention Duration

(Weeks) Primary Outcomes Secondary
Outcomes Results

Observational studies

Perlstein TS,
Blood, 2011 [42]

United
States CS 9675 Community-dwelling 43.5 71 - - -

Association of
vitamin D status

with anemia
subtypes

-

Vit.D deficiency has a higher
prevalence in subjects with

chronic diseases and
inflammation; OR for

anemia in vit.D deficiency
1.46 (95%CI 1.06–2.02)

De Vita F, Age,
2014 [43] Italy CS 867 Community-dwelling 43.5 75 27 - -

Association of
serum 25-OH-D

levels with hsCRP,
IL-1, IL1Ra, Il-10,
IL-18, IL-6, sIL6r,
sgp130, TNF-α

-

25-OH-D levels are
independently and inversely

associated with IL-6 and
positively with IL6r

Laird E, J Clin
Endocrinol

Metab, 2014, [44]

Northern
Ireland CS 957 Community-dwelling 50.2 71 29 - -

Association of
serum 25-OH-D

with IL-6, TNF-α,
IL-10 and CRP

-

Inverse relationship between
25-OH-D and CRP, IL-6 and
IL-6/IL-10, CRP/IL-10 and

TNF-α/IL-10 ratios

Intervention studies

Waterhouse M, Br
J Nutr, 2015 [60] Australia RCT 613 Community-dwelling 54 71 27

750 µg vs.
1500 µg vit.D3

vs. placebo
monthly

52
CRP, IL-6, IL-10,

leptin, adiponectin
levels in serum

- No effect of vit.D3 on
inflammatory markers

Bjorkman MP, J
Nutr Health

Aging, 2009 [61]
Finland RCT 218 Long-term

inpatients 18 85 -

1200 IU vs.
400 IU vit. D3

vs. placebo
daily

26

25-OH-D, PTH,
hsCRP, fibrinogen,
markers of bone

turnover

-

No effect of vit.D3
supplementation on CRP

and markers of bone
turnover; increase in

25-OH-D and decrease
in PTH

Witham MD, Circ
Heart Fail, 2010

[62]

United
Kingdom RCT 105

Outpatients
with systolic
heart failure

and vit.D
deficiency

65 79 27

100,000 IU
vit.D2 vs.

placebo twice
(baseline and

after 10
weeks)

20

6-min walking
distance, QoL,
daily activity,

functional
limitations profile

TNF-α
and BNP

Vit.D2 treatment did not
improve TNF-α
concentrations.

de Medeiros
Cavalcante IG,
Exp Gerontol,

2015 [64]

Brazil RCT 40
Outpatients
with vit.D

insufficiency
0 68 28

200,000 IU
vit.D3 vs.

placebo once
at baseline

4
25-OH-D, PTH,

calcium, us-CRP,
AGP-A, TAC, MDA

-

Vit.D3 megadose
administration was

associated with a decrease in
us-CRP, AGP-A and PTH

and an increase in 25-OH-D
and TAC.

CS: Cross-Sectional; RCT: Randomized Controlled Trial; BMI: Body Mass Index; IU: International Units; 25-OH-D: 25-hydroxyvitamin D; CRP: C-reactive protein; hs-CRP:
high-sensitivity C-reactive protein; us-CRP: ultra-sensitive C-reactive protein; PTH: parathormone; AGP-A: alpha 1-acid glycoprotein; TAC: total antioxidant capacity;
MDA: malondialdehyde.
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Despite this large amount of molecular evidence suggesting a key role for vitamin D in modulation
of inflammation, at the present moment clinical studies do not support this notion. While in adult
subjects observational studies provide conflicting results and intervention studies are focused only
on disease-specific settings, the level of clinical evidence linking vitamin D with inflammaging in the
elderly is even more cryptic. Large, well-designed observational and intervention studies are needed
in the future to clarify how the aging process influences the action of vitamin D on inflammation.
These studies should consider potential confounders typical of older individuals, such as mobility
limitations, cognitive impairment, alterations in body composition, multimorbidity, and, most of
all, the possible presence of acute inflammation. The presence of an acute phase response, due to
infection, surgery or injury, may in fact be associated with a transient decrease in serum 25-OH-D
levels. In a recent systematic review, Silva and Furlanetto concluded that 25-OH-D may behave as an
acute phase reactant, highlighting that the relationship between the vitamin D hormonal system and
inflammation may be bidirectional [74]. Future research on the association between hypovitaminosis
D and inflammaging should therefore strongly consider this hypothesis.

3. n-3 Polyunsaturated Fatty Acids and Inflammation in the Elderly

3.1. Epidemiology and Observational Studies

The effects of n-3 polyunsaturated fatty acids (PUFA) on inflammation in human subjects have
been extensively studied from both a clinical and a molecular point of view [75]. However, the role of
the aging process as confounder in this relationship has not been consistently elucidated [76].

Few studies have assessed the average dietary intake of n-3 PUFA in community-living older
individuals. Murphy and colleagues have recently demonstrated that, in a large cohort of American
healthy adults and seniors, the dietary consumption of n-3 PUFA increases with age and is maximum
among subjects aged ě60, even if the levels of intake remain below the recommended doses for
cardiovascular health in more than 70% of participants [77]. Very similar results were obtained in the
1990s in a large sample of the Norwegian population [78] and, more recently, in smaller French [79]
and Australian cohorts [80].

In healthy adult subjects, the level of intake of n-3 PUFA was inversely correlated with circulating
levels of CRP and IL-6 in two cross-sectional population-based studies [81,82]. Interestingly, levels of
CRP and IL-6 inversely correlated with the consumption of non-fried fish, but positively correlated
with the consumption of fried fish [82], thus indicating that the methods of food cooking and processing
may have a relevant influence on how fatty acids modulate the inflammatory status. Pischon and
colleagues found that the inverse relationship between n-3 PUFA and inflammatory markers depends
on the intake of n-6 PUFA, with the maximum anti-inflammatory effect detected when the intake of
both types of nutrients is high [83]. This is somewhat surprising since n-6 PUFA are theoretically able
to stimulate the arachidonic acid synthesis, leading to pro-inflammatory prostaglandin release [84].
Finally, a high baseline consumption of n-3 PUFA was associated with a reduced risk of death from
inflammatory diseases in a 15-year large prospective cohort study [85].

Only a few observational studies have investigated the association between n-3 PUFA and
inflammatory markers focusing specifically on an elderly population [86–88]. They are summarized
in Table 2. In a cohort from the InCHIANTI study [86], serum levels of total n-3 fatty acids were
inversely associated with pro-inflammatory markers (IL-6, IL-1ra, TNF-α) and positively associated
with anti-inflammatory markers (IL-10, TGFβ), independently of a list of confounders including
cardiovascular comorbidity, drug use, energy and macronutrient intake, serum lipids and smoking.
The n-6 to n-3 PUFA ratio was also independently and inversely associated with the modulatory
cytokine IL-10, thus supporting the hypothesis that n-6 PUFA have a pro-inflammatory effect.
Consistently with these findings, in a smaller cohort of Spanish seniors with COPD, TNF-α and
IL-6 proved to be positively associated the level of n-6 PUFA dietary intake, but negatively associated
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with the n-3 intake [87]. Finally, Kiecolt-Glaser et al., reported that low serum levels of n-3 PUFA were
associated with TNF-α, IL-6 and depressive symptoms in 43 older community-dwellers [88].

3.2. Intervention Studies

The anti-inflammatory role of short- and medium-term n-3 PUFA supplementation in adults has
been demonstrated only in three small studies. They were carried out on healthy volunteers [89]
and critically ill patients with sepsis [90] and pancreatitis [91] admitted to intensive care units (ICU).
Conversely, other four RCTs did not support the role of n-3 PUFA on inflammatory markers [92–95].
One of those consisted in a high-quality trial performed on 337 patients with paroxysmal or persistent
atrial fibrillation randomized to receive fish oil or placebo for six months [95].

The level of evidence for an anti-inflammatory effect of n-3 PUFA supplementation in older
individuals is perhaps more solid, as shown in Table 2. In two RCTs carried out on older individuals
undergoing hip surgery [96] or admitted to ICU with critical illness [97], the intravenous administration
of fish oil-based lipid emulsions for eight days was effective to increase the circulating levels of the
anti-inflammatory cytokine IL-10. A decrease in serum levels of IL-8, TNF-α and IL-6 levels was
also observed [96,97]. Interestingly, Berger et al., in a RCT enrolling both adult and geriatric patients
undergoing cardiopulmonary bypass surgery, showed that n-3 PUFA decreased the perioperative
inflammation [98].

In a large cohort of healthy Norwegian older individuals living in the community, 2.4 g/day n-3
PUFA supplementation for three years was associated with a significant reduction in serum levels of
the pro-inflammatory cytokine IL-18, although other inflammatory markers, including CRP, did not
change [99]. Similarly, in a smaller cohort of elderly females, 1 g/day n-3 PUFA supplementation alone
resulted in a significant decrease in TNF-α, while IL-6 and Prostaglandin E2 (PGE2) decreased only in
those subjects where the nutritional intervention was associated with a physical exercise program [100].
Moreover, the supplementation with alpha-linolenic acid, an essential n-3 PUFA, combined with a
resistance training program, resulted in a reduction of circulating levels of IL-6 after 12 weeks. No
changes in other inflammatory cytokines, was observed in a small RCT performed in healthy older
subjects [101]. In a cohort of patients with congestive heart failure, n-3 PUFA supplementation for
three months was associated with a significant decrease in serum IL-6 and TNF-α levels, but not in
CRP levels, which actually decreased only in smokers [102]. Conversely, no association between n-3
PUFA treatment and inflammation was detected in one RCT conducted in the older age- group of a
small cohort of patients with moderate Alzheimer’s disease [103]. However, in this study, the only
considered inflammatory marker was PGE2.
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Table 2. Summary of observational (cross-sectional) and intervention (randomized controlled trials) studies exploring the association of n-3 polyunsaturated fatty
acids (PUFA) and inflammatory markers in older individuals.

First Author,
Journal, Year [ref] Country Study

Design
Sample

Size
Setting/Health

Status Male (%) Mean Age
(Year)

Mean BMI
(Kg/m2) Intervention Duration

(Weeks) Primary Outcomes Secondary
Outcomes Results

Observational studies

Ferrucci L, J Clin
Endocrinol Metab,

2006 [86]
Italy CS 1123 Community-dwelling 44.8 68 27 - -

Association
between serum

concentrations of
fatty acids and IL-6,
IL-1ra, IL-10, IL-6r,
TNF-α, TGFβ, CRP

-

Total n-3 fatty acids are
independently associated
with lower levels of IL-6,
IL-1ra, TNF-α, CRP and
higher levels of IL-1ra

de Batlle J, J Nutr
Biochem, 2012 [87] Spain CS 250 Outpatients with

stable COPD 93.6 68 - - -

Association
between dietary
n-3 PUFA intake

and CRP, IL-6, IL-8,
TNF-α

-

Higher intake of α-linolenic
acid is associated with lower

TNF-α concentrations;
higher intake of arachidonic

acid is associated with
higher IL-6 and CRP

concentrations

Kiecolt-Glaser JK,
Psychosom Med,

2007 [88]

United
States CS 43 Community-dwellers 41.8 67 - - -

Association
between serum

concentrations of
fatty acids,
depressive

symptoms and
TNF-α, IL-6 and

sIL-6r

-

Increased serum n-6/n-3
PUFA ratio is associated

with higher TNF-α and IL-6
concentrations

Intervention studies

Gopinath R, Indian
J Surg, 2013 [96] India RCT 40

Inpatients
undergoing hip

surgery
60 70 -

Intravenous
omega-3 fish oil

supplement
continuous

infusion for 3 days
vs. placebo

1 Serum CRP, IL-6,
IL-8, IL-10 -

Decrease in IL-6 and IL-10
concentrations, increase in

IL-8 concentrations,
prevention of CRP increase

in intervention group

Barros KV, J
Parenter Enteral
Nutr, 2014 [97]

Brazil RCT 40 Critically ill
patients in ICU 60 71 -

Intravenous fish-oil
lipid emulsion 0.2

g/kg of body
weight over 6 h for
3 days vs. placebo

0.5 (72 h)
Serum IL-1β, IL-2,

IL-6, IL-8, IL-10,
IL-17, IL-22, TNF-α

-

Lower serum TNF-α and
IL-8 concentrations, higher

IL-10 concentrations in
intervention group

Berger MM, Am J
Clin Nutr, 2013 [98] Switzerland RCT 28

Patients
undergoing

elective cardiac
surgery

89.2 66 28

Fish oil vs. saline
infusion 0.2 g/kg

12 h and 2 h before
and immediately

after surgery

0.2 (1 day) Serum CRP, IL-6,
IL-8, IL-10

Other
physiologic

and
laboratory
parameters

Fish oil prevented
post-operative increase in

IL-6 concentrations

Troseid M, Metab
Clin Exp, 2009 [99] Norway 2 ˆ 2 RCT 563 Community-dwelling 100 70 27

n-3 PUFA
supplement and/or
structured dietary

counseling

156 (3
years)

Serum CRP, TNF-α,
IL-6, IL-18,

adiponectin

BMI and
waist circ.

All pro-inflammatory
cytokines decreased in

intervention groups; IL-18
decreased only in subjects

under PUFA
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Table 2. Cont.

First Author,
Journal, Year [ref] Country Study

Design
Sample

Size
Setting/Health

Status Male (%) Mean Age
(Year)

Mean BMI
(Kg/m2) Intervention Duration

(Weeks) Primary Outcomes Secondary
Outcomes Results

Intervention studies

Tartibian B, Nutr
Metab, 2011 [100] Iran 2 ˆ 2 RCT 79

Post-menopausal
community-dwelling

women
0 62 27

Exercise +
Supplement (1

g/day n-3 PUFA)
vs. exercise alone
vs. supplement
alone vs. control

24
BMD, markers of
osteolysis, TNF-α,

IL-6, PGE2

-

TNF-α decreases in all
groups taking PUFA, while

IL-6 and PGE2 decrease only
for combined intervention

Cornish SM, Appl
Physiol Nutr

Metab, 2009 [101]
Canada RCT 51 Healthy active

community-dwellers - 65 -

α-linolenic acid 14
g/day vs. placebo

while completing a
resistance training

program

12 Serum TNF-α and
IL-6

Muscle
strength

Decrease in IL-6 levels in
intervention group

Zhao YT, J Int Med
Res, 2009 [102] China RCT 76 Outpatients with

heart failure 73 73 24
n-3 PUFA

supplement 2
g/day vs. placebo

14

Serum CRP, TNF-α,
IL-6, intracellular

adhesion
molecule-1

Serum BNP
Decrease in TNF-α and IL-6,

but not CRP, levels in
intervention group

Freund-Levi Y, J
Alzheimer Dis,

2014 [103]
Sweden RCT 40

Outpatients with
moderate

Alzheimer’s
disease

- 70 25

PUFA supplement
with 1.7 g DHA
and 0.6 g EPA vs.

placebo daily

26

Urinary markers of
antioxidant activity,

urinary
prostaglandins

-

No effect on urinary
prostaglandins and

antioxidant markers in
intervention group

CS: Cross-Sectional; RCT: Randomized Controlled Trial; BMI: Body Mass Index; CRP: C-reactive protein; DHA: docosahexaenoic acid; EPA: eicosapentaenoic acid.
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3.3. n-3 PUFA and Inflammation in Aging: Mechanisms and Conclusive Remarks

Other intervention studies performed in elderly subjects focused on translational outcomes and
helped to elucidate the mechanisms by which n-3 PUFA supplementation may reduce inflammaging.
These studies have been recently reviewed by Molfino and colleagues [76]. Briefly, n-3 PUFA
oral administration has been associated with decreased release of IL-1β and IL-6 from blood
mononuclear leukocytes [104], lower response of T lymphocyte proliferation [105,106], reduced
activity of lymphocyte particulate phosphodiesterase and glutathione peroxidase [107], NK cells [108],
neutrophil respiratory burst and prostaglandin release [109]. Furthermore, n-3 PUFA supplementation
induced a more favorable serum n-6/n-3 ratio inducing a leukocyte telomere lengthening that is
inversely correlated with IL-6 levels [110]. Reduced cytokine and PGE2 release have also been
demonstrated after incubating leukocytes with n-3 PUFA in vitro [75,111].

At a molecular level, the mechanisms by which n-3 PUFA modulate inflammatory cytokine
production in macrophages may include inhibition of the NF-κB signaling pathway through decreased
phosphorylation of the inhibitor I-κB, stimulation of GPR120 (a membrane inhibitor of NF-κB) and
stimulation of Peroxisome-Proliferator Activated Receptor gamma (PPAR-γ) receptors that directly
control gene activation [75].

In leukocytes, n-3 PUFA decreased pro-inflammatory gene activation by altering membrane
order, reducing eicosanoid and diacylglycerol synthesis, inhibiting specific isoforms of protein kinase
C and mitogen-activated protein kinases, increasing the phosphorylation of phospholipase C-γ,
a key signaling enzyme [75]. Many other complex mechanisms in cellular signaling have been
postulated in studies investigating the neuroprotective effects of n-3 PUFA in Alzheimer’s disease [112],
including inhibition of neuro-inflammation [113], although some studies in model animals have given
negative results [114]. The link among n-3 PUFA, neuro-inflammation and dementia is also supported
by observational data from the InCHIANTI study, where low serum n-3 PUFA levels have been
cross-sectionally associated with both CRP elevation [86] and poor cognitive function [115]. Moreover,
the everyday consumption of extra-virgin olive oil, rich in n-3 PUFA, seems to be associated to
long-term improvement of cognitive outcomes in middle-aged and elderly community-dwellers,
through a modulation of neuro-inflammation [116].

In summary, most of the translational and clinical studies support an anti-inflammatory effect
of n-3 PUFA in older age, although high-quality observational and intervention studies are lacking.
The differences in anti-inflammatory effects between acute illness and chronic disease should also be
better investigated. It must also be acknowledged that one high-quality RCT aimed at assessing
the protective effects of n-3 PUFA administration in acute lung injury was stopped because of
harmful effects, including excess mortality and days under mechanical ventilation in the intervention
group [117]. Thus, the potential risks of n-3 PUFA supplementation especially in acute settings should
be better investigated.

4. Whey Proteins and Inflammation in the Elderly

4.1. Biological Role of Whey Proteins between Adulthood and Aging

In elderly subjects, an optimal dietary intake of proteins is of paramount importance for the
maintenance of an adequate anabolism in muscle and for prevention of sarcopenia [118]. Thus,
the intake recommended for adults (0.8 g/kg/day) is inadequate for preserving muscle mass and
functionality in the old age [119]. Inflammaging gives a strong contribution to these phenomena,
promoting hypercatabolism and reducing muscle perfusion [120]. At the present moment, the
guidelines recommend a protein intake of 1.0 g/kg/day–1.2 g/kg/day in elderly subjects [120,121].
This intake may be even raised to 1.2 g/kg/day–1.5 g/kg/day for those who have an acute disease
or undergo physical rehabilitation treatment [120,121]. Despite this, habitual protein intake in older
community-dwellers is lower, approaching 0.6 g/kg/day–0.7 g/kg/day, due to early satiety after
meals, high prevalence of physical and cognitive disability, and social and financial trouble [120].
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Whey proteins account for about 20% of the total protein content of bovine milk, and represent,
together with casein, the high-quality fraction of milk proteins. They can be extracted from the liquid
byproduct from cheese manufacturing processes [122]. Their high digestibility, quick absorption
and elevated content in essential amino acids make whey the ideal nutritional supplement for the
aging individual. In fact, whey supplements enhance the physiologic anabolic stimulus to protein
synthesis [123] and overcome anabolic resistance more effectively than casein [124] and essential
amino acid supplements [125] in older subjects after meals. Beneficial effects of whey supplementation
have also been observed after short- and long-term follow-ups in terms of postprandial muscle
synthesis [126] and muscle strength [127]. These effects seem to be dose-dependent [128] and are more
pronounced when whey supplements have a greater content in the essential amino acid leucine [129].
However, it must be acknowledged that some studies have also given negative results about the
favorable biological properties of whey supplements in the elderly. According to these studies, they
do not stimulate protein anabolism more effectively than casein or whole milk proteins [130,131], are
not associated with better physical performance [132] and are less effective than isocaloric ingestion of
amino acid supplements in simulating post-prandial protein synthesis [133].

The putative beneficial effects of whey proteins are due to their favorable composition that allows
a quick digestion and absorption, and thus higher concentrations of amino acids in blood immediately
after meal [134]. Moreover, they can also effectively stimulate the release of IGF-1 [135], a negative
modulator of the inflammatory response [27]. Finally, in vitro studies have demonstrated that whey
protein extracts can stimulate the NF-κB and MAPK signaling pathways in human neutrophils [136].

Consistently with these mechanisms, several studies have assessed the effect of whey
supplementation on inflammatory markers in adult subjects [137]. Most of these studies concluded
that it is not associated with a decrease in serum CRP levels in various settings, including individuals
with obesity [138–140], hypertension [141] and metabolic syndrome [142]. Contrarily, only three small
studies conducted in healthy subjects or in patients undergoing minor surgery were consistent with the
hypothesized beneficial effects on CRP levels [143–145]. Whey proteins were also effective in reducing
the exercise-induced release of CRP and IL-6 in young healthy subjects [146].

The results of these studies were recently combined into a meta-analysis by Zhou et al., who
summarized that the current state of evidence does not support the hypothesis of an active modulation
of inflammation by whey supplements in adult subjects [137]. However, they also concluded that
whey supplements have a small, but statistically significant effect in lowering serum CRP in those
subjects with baseline values ě3 mg/L [137]. Thus, from a theoretic point of view, these conclusions
may imply that in elderly subjects, where CRP serum levels are persistently above this threshold, whey
proteins can exert a beneficial effect on inflammation.

4.2. Intervention Studies Focused on the Older Age

There are only four RCTs that have evaluated the role of whey supplementation on inflammatory
markers in the elderly [147–150]. Their essential features are outlined in Table 3. One of them was
carried out in healthy active subjects [147], two in subjects with stable COPD [148,149] and one in
hospitalized patients with acute ischemic stroke and dysphagia [150]. Overall, two of them supported
the hypothesis of an anti-inflammatory effect of whey supplements [149,150], while the others gave
negative results [147,148].
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Table 3. Summary of intervention (randomized controlled trials) studies exploring the association of whey protein supplements and inflammatory markers in
older individuals.

First Author,
Journal, Year [ref] Country Study

Design
Sample

Size
Setting/Health

Status Male (%) Mean Age
(Year)

Mean BMI
(Kg/m2) Intervention Duration

(Weeks) Primary Outcomes Secondary
Outcomes Results

Intervention studies

Duff WR, Int J
Sport Nutr Exerc
Metab, 2014 [147]

Canada RCT 40 Community-dwelling 37.5 59 -

Bovine colostrum
60 g/day vs.

whey protein 38
g/day

8

Muscle strength,
antropometric

measures, cognitive
function

Serum IGF-I and
CRP, urinary

N-telopeptides

No changes in CRP
and IGF-1 in both

groups

Laviolette L, J Med
Food, 2010 [148] Canada RCT 22 Outpatients with

stable COPD 63.6 65 28

Active
pressurized whey

supplement vs.
placebo

16
Muscular strength
measures, COPD

symptoms

Serum CRP and
IL-6

No effect of
intervention on
inflammatory

markers

Sugawara K, Resp
Med, 2012 [149] Japan RCT 36 Outpatients with

stable COPD 93.5 77 -

Whey
protein-supplemented

oral nutritional
supplement 200
Kcal/200 mL per
day vs. placebo.
Exercise in both

groups

12

Respiratory
functional

parameters and
serum levels of

hs-CRP, IL-6, IL-8
and TNF-α

-

Decrease of serum
hs-CRP, IL-8 and

TNF-α
concentrations in

intervention group

de Aguilar
Nascimiento JE,
Nutrition, 2011

[150]

Brazil RCT 31
Inpatients with
acute ischemic

stroke
38.7 74 -

Whey-based vs.
casein-based

enteral nutrition
formulas (protein

dose 1.2
g/kg/day)

5 days

Serum levels of
glutathione

peroxidase, CRP
and IL-6

-

Decrease in serum
IL-6 and

prevention of CRP
peak in

intervention group

CS: Cross-Sectional; RCT: Randomized Controlled Trial; BMI: Body Mass Index; CRP: C-reactive protein; hs-CRP: high-sensitivity C-reactive protein.
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All these studies were biased by small sample sizes (in the largest one [147], only 40 subjects
were enrolled). The composition of nutritional supplements administered to intervention (i.e., active
pressurized whey, whey extracts, and enteral formulas) and control groups (bovine colostrum, casein,
and placebo) was not homogeneous. Moreover, whey supplements were prescribed in association
with physical training, except for the study performed on patients with acute stroke [150]. Finally, in
one study [147], the mean age of participants was 59, despite their definition as “older” individuals.
All these elements represent a strong limitation to the validity of the results, and do not allow drawing
any conclusive recommendation.

However, another recent fair-quality study suggests that the quality of ingested proteins seems to
have a strong modulatory effect on inflammatory markers in the elderly. In this cluster randomized
controlled trial, 100 females dwelling in self-care retirement villages and aged between 60 and 90
were randomized to receive progressive resistance training and 160 g of lean red meet six days per
week vs. progressive resistance training alone. After four months, the intervention group experienced
a significant decrease in serum IL-6 levels and a mild, though statistically significant, increase in
IGF-1 [151]. The reason for this modulation may depend on the high content in leucine of the
employed protein supplement. In fact, other evidence also suggests that leucine may represent the key
anti-inflammatory amino acid in proteins [152].

Moreover, an eight-week whey supplementation was associated with a significantly enhanced
serological response against 12 out of 14 bacterial types of Streptococcus pneumoniae contained in a
commercially available vaccine compared with placebo [153]. This study was performed in a very
small group (17 subjects) aged on average 67 years, but is in favor of the role of whey supplements
in immunomodulation.

In summary, the existing evidence does not support the hypothesis that whey protein has an
anti-inflammatory effect in the elderly. However, more high-quality studies are needed to further
investigate this possible association.

5. Combined Dietary Interventions and Conclusive Remarks

The interaction between different nutrients with putative anti-inflammatory properties on the
modulation of inflammation is still poorly investigated. In fact, all the studies reviewed above, linking
vitamin D, n-3 PUFA or whey proteins with inflammatory markers, considered the effect of only one
single nutrient or simple nutritional intervention. Very few studies assessed the effects of combined
interventions on inflammation modulation, especially in the elderly population.

However, the hypothesis that the putative anti-inflammatory activity of one nutrient is influenced
by the intake of another is supported by some data, and should be considered for designing future
studies. For example, Itariu and colleagues interestingly found that the inverse association between
vitamin D deficiency and systemic inflammation, measured through IL-6 and CRP in serum, is
overcome by treatment with n-3 PUFA supplements in severely obese adults, although vitamin D
status is unaffected [154]. These results allow to hypothesize that the mechanisms by which vitamin D
and n-3 PUFA influence inflammation are strictly interconnected, and that the correction of a single
nutritional deficiency may be sufficient to limit the negative effects of the other.

In a recent multicenter RCT, a group of 380 sarcopenic older community-dwellers with Short
Physical Performance Battery (SPPB, range 0–12) score between 4 and 9 were randomized to receive
a vitamin D and leucine-enriched whey protein oral nutritional supplement vs. an isocaloric control
product. The intervention group showed a significant improvement in anthropometric (appendicular
muscle mass), functional (chair stand test) and laboratory parameters (25-OH-D and IGF-1), but
unfortunately the effects on inflammation markers are still not available [155]. Ongoing protocols
should fill this gap in the future. The RISTOMED study has recently demonstrated that a balanced
anti-inflammatory diet, either alone or supplemented with probiotics or d-limonene, modulates
inflammatory status in elderly community-dwellers, particularly in those with high baseline CRP
levels [156]. Similarly, the NU-AGE study has been specifically designed to investigate the effects of a
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balanced diet with adequate vitamin D, vitamin B12 and calcium intakes on inflammatory markers,
including CRP, IL-1, IL-6 and IL-12 [157]. Moreover, based on the results of the LIFE Study showing that
structured physical activity programs are effective to prevent physical frailty in elderly subjects [158],
the ongoing SPRINTT project will investigate the combined effects of nutritional supplementation and
exercise [159]. Although not specifically designed for evaluating inflammation, this study will help to
clarify the mechanisms linking inflammaging, nutrition and physical frailty.

In conclusion, despite basic and translational studies underline the potential role of vitamin
D, n-3 PUFA and whey proteins as anti-inflammatory nutrients, current state of art of the scientific
literature allows to state that only n-3 PUFA have a documented, though mild, anti-inflammatory
effect in elderly subjects. There is no solid evidence for supporting the anti-inflammatory effects of
vitamin D or whey supplements in older individuals. Epigenetic mechanisms have been proposed to
significantly influence the association between diet and inflammatory response on an individual basis,
and may thus represent one of the reasons of the existing gap between physio-pathological and clinical
studies [160]. Gut microbiome and diet-microbiome interactions might also have a role in promoting
or controlling inflammation in older persons [13,161]. Future research should better address all these
issues, clarifying the molecular and clinical rationale of combined nutritional interventions especially
with vitamin D, n-3 PUFA and whey proteins.
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