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Abstract

Obesity and its associated metabolic syndrome continue to be a health epidemic in westernized societies and is
catching up in the developing world. Despite such increases, little headway has been made to reverse adverse
weight gain in the global population. Few medical options exist for the treatment of obesity which points to the
necessity for exploration of anti-obesity therapies including pharmaceutical and nutraceutical compounds. Defects
in brown adipose tissue, a major energy dissipating organ, has been identified in the obese and is hypothesized to
contribute to the overall metabolic deficit observed in obesity. Not surprisingly, considerable attention has been
placed on the discovery of methods to activate brown adipose tissue. A variety of plant-derived, natural
compounds have shown promise to regulate brown adipose tissue activity and enhance the lipolytic and catabolic
potential of white adipose tissue. Through activation of the sympathetic nervous system, thyroid hormone
signaling, and transcriptional regulation of metabolism, natural compounds such as capsaicin and resveratrol may
provide a relatively safe and effective option to upregulate energy expenditure. Through utilizing the energy
dissipating potential of such nutraceutical compounds, the possibility exists to provide a therapeutic solution to
correct the energy imbalance that underlines obesity.

Background
As the epidemic of obesity continues to grow, adipose
tissue has increasingly become an area of focus for re-
searchers. Adipose tissue plays an important role in the
human body not just in terms of lipid accumulation but
also in its endocrine functions. The expansion of white
adipose tissue (WAT) and subsequent changes in circu-
lating adipokines have been implicated in the pathogen-
esis of obesity [1]. Likewise, the perturbances in the
activity of brown adipose tissue (BAT), the energy dissi-
pating organ important for thermogenesis, also play an
additional role in driving the obese-state. Because of this,
activation of BAT has gained attention as a therapeutic
target for obesity recently [2]. Many advancements have
occurred in the area of brown fat technology, specifically
relating to pathways in which BAT is functionally and

physically different from WAT and various strategies
that can be used to activate BAT. Discovery of brown
adipocyte - like cells interspersed in WAT of human
adults, termed beige or brite adipocytes [3], has further
increased research investigating methods to activate
these cells as an approach towards prevention and treat-
ment of obesity. This review defines the current infor-
mation on the function of BAT and mechanisms that
drive its activation. Further, we will explore the current
research on phytochemicals which have shown some
promise as thermogenic agents or activators of BAT.

White and brown fat adipogenesis
The life cycle of an adipocyte begins at the stage of a
multipotent stem cell, which can differentiate into mul-
tiple cell types, including myoblasts and adipocytes. Ex-
pression of various transcriptional regulators such as
peroxisome proliferator-activated receptor gamma
(PPARγ) drives the differentiation of adipocytes. PPARγ
is a hormone receptor specific to adipocytes that has
been implicated as a key enhancer of adipogenesis.
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Activation of PPARγ occurs early in the preadipocyte life
cycle and is regulated by a variety of lipids such as tri-
glycerides, esters, and sterols [4]. While overexpressed
C/EBPβ (CCAAT enhancer binding protein β) has the
ability to promote adipogenesis in 3 T3-L1 preadipo-
cytes, the knockout of this gene in conjunction with C/
EBPδ results in a decreased number of adipocytes, lead-
ing to a reduced adipose tissue mass [5]. The knockout
of C/EBPβ gene alone showed little effect on decreasing
adipose tissue mass suggesting the redundancy of func-
tion by C/EBP family transcription factors. Nevertheless,
early expression of C/EBPβ is required for adipogenesis
and activates C/EBPα and PPARγ, the key transcription
factors that work together to in turn activate a group of
genes that promote adipogenesis (reviewed in [6]). The
expression of these two genes leads them to positively
cross activate one another and perpetuate the adipocyte
lineage. Interestingly, PPARγ is not only involved in
white adipogenesis but also plays a key role in the induc-
tion of brown adipocyte-specific genes (reviewed in [7]).
Unlike the majority of white adipocytes, the adipocytes

found in BAT are derived from the Myf5 lineage and
thus share a common precursor with skeletal muscle [8].
PR domain containing 16 (PRDM16) is a determining
transcription factor for BAT development and overex-
pression of this protein results in browning of primary
visceral preadipocytes [7]. PRDM16 promotes the induc-
tion of BAT genes by partnering with peroxisome
proliferator-activated receptor γ coactivator (PGC-1) α
and β. PGC-1α is a coactivator of PPARγ and it primar-
ily controls mitochondrial biogenesis through the induc-
tion of uncoupling proteins such as uncoupling protein
1 (UCP1) [8]. Sirtuin-1 (SIRT1) is another important
regulator of thermogenesis and its primary role is to
deacetylate PPARγ [9]. Deacetylation of PPARγ is

required to recruit PRDM16 which further leads to the
induction of BAT genes and repression of WAT genes
[7]. Association between these important transcription
factors leads to the development and regulation of BAT
function.
Not surprisingly, considerable cross-talk in the regula-

tion between BAT and WAT exists where WAT-specific
genes downregulate BAT activity. PRDM16 is required
for beiging in WAT and the repression of genes that pro-
mote WAT development [7]. Mice that are deficient in
adipose tissue-specific PGC-1α have dulled expression of
thermogenic and mitochondrial genes in WAT [10].
Lastly, similar adipogenic factors that stimulate the dif-
ferentiation of WAT such as PPARγ and C/EBPβ, also
appear to be the drivers of BAT differentiation and
hence are important regulators of adipogenesis for both
cell types [11, 12] (Fig. 1).

Thermogenesis
Thermogenesis is the process of converting chemical en-
ergy into heat. While shivering thermogenesis makes use
of rapid muscular twitches to produce heat, BAT is spe-
cialized to generate heat in a process called non-
shivering or adaptive thermogenesis [13]. BAT plays a
pivotal role in protecting animals from hypothermia and
is used during the periods of hibernation. It has long
been known that BAT is present in newborns, but a
number of recent studies conducted through the com-
bined utilization of 18-FDG PET and CT show that hu-
man adults do have brown fat [14, 15] paving way to a
new area in research relating to metabolic and obesity
therapies [16]. The functional properties of BAT that
makes it different from WAT mainly come from the lack
of a large, unilocular lipid droplet and the presence of
numerous mitochondria which allows for the production

Fig. 1 Developmental origins of white, brown and beige adipocytes. Beige adipocytes are derived from mesenchymal stem cells (Myf5−) and are
closely related to white adipocytes, while brown adipocytes are derived from Myf5+ precursor cells and are closely related to muscle lineage
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of energy. Mitochondria in brown adipocytes have low
levels of ATP synthase and so cannot utilize the proton
gradient of mitochondria to produce ATP. Instead, they
employ UCP1 which uncouples cellular respiration and
ATP synthesis, and thus results in the production of heat
[17]. In vivo studies have shown that mice that lack the
Ucp1 gene preferentially express an obese phenotype
[18]. These studies show the importance of BAT
thermogenesis and its role in preventing obesity.
The sympathetic nervous system plays a significant

role in the regulation of BAT thermogenesis. The release
of catecholamines such as norepinephrine as a result of
sympathetic stimulation from cold induction through
the transient receptor potential (TRP) cation channels
(members A1, M8, and V1) leads to the activation of the
mitochondria in BAT which further leads to heat gener-
ation. The subsequent binding of norepinephrine to β-3
adrenergic receptors causes the secretion of free fatty
acids from BAT which is the main energy source for
UCP1 driven thermogenesis [19].
Thyroid hormone is an additional critical driver of the

thermogenic response and brown adipose tissue activa-
tion. The conventional signaling cascade for thyroid hor-
mone starts from the release of thyroxin (T4) from
thyroid gland upon stimulation by the pituitary. Once
released, T4 travels through the bloodstream to target
tissues that express the necessary deiodinase (specifically
DIO2) for the creation of triiodothyronine T3 [20]. Rela-
tive to other tissues, brown fat expresses a relatively
large amount of deiodinase [21] and thus is reactive to
changes in circulating T4 concentrations, in addition to
the sympathetic activation that upregulates deiodinase
expression [22]. The UCP1 promoter contains a tran-
scriptional regulatory region for the thyroid hormone re-
ceptor β [23]. Thus, thyroid hormone can directly
upregulate the expression of UCP1 and serves as a ne-
cessary regulator for both brown adipogenesis and
thermogenesis. Further, the α-subtype of the thyroid
hormone receptor also regulates the expression of the β-
adrenergic receptors [24], thereby sensitizing brown fat
to sympathetic activation. Secondarily, active T3 can be
released from tissues and interact with additional cell
types not believed previously to be regulated by thyroid
hormone. Of most interest, T3 has demonstrated the
ability to activate the ventral medial hypothalamus
which serves as a central mediator of the sympathetic
nervous system [25]. Through this mechanism, T3 ap-
pears to further regulate sympathetic activity and drive
the activation of BAT in addition to direct transcrip-
tional control of UCP1. It should be noted that the levels
of T3 in BAT is influenced by DIO2 activity, which in
turn is inhibited by T4 and activated by adrenergic
stimulation. Thyroid hormone and the sympathetic ner-
vous system are thus intimately tied, both co-regulating

their respective responses and together drive the body’s
response to cold [26].

Phytochemicals in obesity
Natural, plant-derived compounds have made up the
backbone of many of the synthetic drugs which are used
today. The use of natural products for medical purposes
dates back thousands of years; however their use in the
discovery and development of modern drugs has only
occurred since the early 19th century. Nearly 50% of
drug approvals in the last 30 years came from com-
pounds that were directly or indirectly derived from nat-
ural products [27]. The safety of these synthetic
compounds however is hotly debated. Recent drug re-
calls and fatalities have led to resurgence in research on
natural products because of their ease of use and effi-
cacy. In particular, certain anti-obesity medications are
removed from market owing to their adverse side effects
[28]. In this context, natural products have been studied
for their role in the regulation of adipocyte life cycle
[29]. Phytochemicals can target different stages in the
adipocyte life cycle by decreasing adipogenesis, inducing
lipolysis, inducing adipocyte-apoptosis and by inducing
transdifferentiation of white to brown-like adipocytes
[30]. While the terms nutraceuticals, phytochemicals
and bioactives are often used synonymously, it should be
noted that phytochemicals are non-nutrient bioactive
compounds found in fruits, vegetables and other parts of
plants. Nutraceuticals on the other hand are broadly de-
fined as food supplements that are used to improve
health. This review focuses primarily on the effects of
purified bioactive compounds rather than the plant ex-
tracts. In the coming sections, we discuss some of the
phytochemicals that have shown promise as activators of
BAT or have potential to act as thermogenic agents for
future applications in the prevention and treatment of
obesity and metabolic syndrome.

Resveratrol
Resveratrol is a polyphenol found in a number of plants
including the skin of grapes and several other types of
berries. Numerous studies have indicated the anti-
oxidant properties of this compound and the research
around resveratrol continues to grow into other thera-
peutic uses such as cancer suppression and improving
insulin sensitivity [31]. Studies on resveratrol’s effects on
inflammation and thermogenesis have shown a decrease
in the production of inducible nitric oxide synthase 2
(iNOS-2) and an increase in the markers of mitochon-
drial biogenesis contributing to an overall increase in en-
ergy expenditure [32].
In regards to obesity and adipogenesis, resveratrol de-

creases adipocyte differentiation and lipid accumulation
via a decrease in the expression of key transcription
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factors involved in adipogenesis like PPARγ and C/EBPα
[33]. Furthermore, SIRT1 in WAT is activated by resver-
atrol to promote the mobilization of fat from adipocytes
[31, 33]. Unsurprisingly, resveratrol has shown the possi-
bility to also regulate BAT activity. Alberdi et al. found
elevated levels of UCP1 expression in the BAT and skel-
etal muscle of mice that were fed a diet supplemented
with resveratrol [32]. Further, oral administration of res-
veratrol in mice also showed an increase in SIRT1 ex-
pression in WAT [34]. Authors proposed that the
increased UCP1 expression seen in mice is due to stimu-
lation of SIRT1 contributing to the improved energy effi-
ciency and decreased fat mass. On the other hand, Um
et al. reported that resveratrol fails to upregulate
thermogenic proteins like PGC1α in adenosine mono-
phosphate activated kinase (AMPK) null mice and
AMPK null mice are resistant to the thermogenic effects
induced by resveratrol [35]. Subsequent studies however
revealed that SIRT1 plays a key role in potentiating
resveratrol-induced activation of AMPK and improving
mitochondrial function [36]. These findings suggest that
resveratrol – induced increase in whole-body energy ex-
penditure might be partly mediated by the induction of
browning in WAT.

Curcumin
Curcumin is a flavonoid found in turmeric, a spice
popular in south Asian cuisine. Administration of curcu-
min has been shown to improve insulin sensitivity and
increase weight loss in insulin-resistant obese mice [37].
Curcumin inhibits the early stages of adipogenesis in

3 T3-L1 adipocytes by lowering the expression of PPARγ
and C/EBPα leading to a decrease in lipid accumulation
[38]. Furthermore, curcumin-treated mice have lowered
amount of free fatty acids, triglycerides, and improve-
ment of insulin resistance and hyperglycemia suggesting
its anti-diabetic potential [37]. Subsequently, curcumin
has been shown to induce browning of 3 T3-L1 cells as
indicated through increased expression of brown fat
markers including PGC-1α, PPARγ, and UCP1 in dose
dependent manner [39]. Further, T-box transcription fac-
tor 1 (TBX1), a beige specific marker, was significantly
increased in 3 T3-L1 and primary white adipocytes fol-
lowing treatment with curcumin. Such findings have also
been replicated in the mouse model where curcumin ad-
ministration (50 or 100 mg/kg) resulted in the increased
appearance of beige adipocytes in subcutaneous and in-
guinal WAT. Within this study, curcumin treatment re-
sulted in the increased expression of many beige specific
markers such as Ucp1, Pgc1α, Dio2 and Prdm16. Cold
tolerance tests conducted on mice showed that curcu-
min treated mice had increased body temperature com-
pared to temperatures around 4 °C [40].

Additionally curcumin treatment stimulated the emer-
gence of beige cells in inguinal and subcutaneous WAT
but not epididymal WAT. The authors further postu-
lated that the curcumin-induced browning of WAT is
mediated by the upregulation of β3-adrenergic receptor
expression and elevation of plasma levels of norepineph-
rine by curcumin [40]. Not surprisingly, curcumin ap-
pears to act through the transient receptor potential
vanilloid receptor 1 (TRPV1) receptors located in the in-
testinal jejunum and thus may have downstream effects
on both WAT and BAT through direct modulation of
the sympathetic nervous system [41].

Genistein
Soy isoflavones are phytoestrogens which have shown
promise in lipid metabolism. A recent human clinical
trial with isoflavone supplemented soy probiotic for
42 days, showed an improvement in the lipid profile of
moderately hypercholesteremic men [42]. One major
photochemical belonging to this group of soy isoflavones
is genistein. Genistein is found primarily in soybeans
and broad beans, which are harvested in parts of West-
ern Asia and Europe. Effects of genistein on cancer pre-
vention have been under investigation for a long time
and these effects are attributed to the epigenetic effects
of genistein. Genistein was shown to target all the epi-
genetic mechanisms like altering DNA methylation, and
histone modifications that control the accessibility of
genes of interest (reviewed in [43]).
Not only has genistein been described as a PPARγ

agonist [44], but recent studies provide evidence that ge-
nistein has the potential to promote characteristics of
beiging in WAT. High dose treatment of genistein (50–
100 μM) on NIH3T3-L1 cells was shown to result in the
increased expression of SIRT1 and its downstream part-
ner, UCP1 [45]. Such an effect was also observed in pri-
mary culture whereas genistein increased mitochondrial
biogenesis by upregulating PGC-1α [46]. Recent research
however has shown confounding evidence on genistein’s
anti-obesity effects. In 3 T3-L1 and human primary adi-
pocytes, genistein has shown to inhibit adipogenesis at
concentrations of 50 μM [47]. However, Zanella et al.
found that using minimal doses (plasma concentration
of 4 μM) in mice models, genistein promoted 3 T3-L1
adipogenesis rather than inhibiting it [48]. This evidence
highlights the importance of dose range in the effect of
phytochemicals on the cellular mechanisms of adipocyte
differentiation. Genistein and its fellow isoflavone resver-
atrol have shown their ability to defend against meta-
bolic syndrome by regulating lipid and glucose
metabolism. Lastly, it is important to mention that the
use of both resveratrol and genistein has shown to have
a greater effect on adipogenesis and apoptosis of adipo-
cytes rather than each of these compounds alone [49].
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Thus, it is likely that the combination treatments of both
genistein and resveratrol may lead to an even greater
anti-obesity effect and activation of BAT which has not
yet been explored.

Guggulsterone
Guggulsterone (GS) is the bioactive gum resin derived
from the bark of the Commiphora mukul tree predomin-
antly found in India, Bangladesh and Pakistan. Choles-
terol lowering effects of GS were first reported in
hyperlipidemic rabbits [50] and since then, numerous
animal and clinical studies have been conducted to dem-
onstrate the effects of GS on lipid, cholesterol, and tri-
glyceride levels [51]. However, there is a lack of
reliability in several of the human studies that have
attempted to explore and better understand the potential
of GS due to flawed techniques [52]. In contrast, in vitro
studies investigating the effects of GS on adiposity have
found more success and clearly demonstrate i) inhibition
of adipogenesis [53], ii) increase glucose uptake in insu-
lin resistant conditions [54], iii) lipolytic effects in com-
bination with other agents such as genistein [55]
xanthohumol [56], and hormonal metabolite of vitamin
D [57]. To date there is no scientific-based research that
investigated the ability of GS to stimulate mitochondrial
uncoupling and thus increase metabolic rate.
GS is structurally similar to bile acids and has been

identified as a selective bile acid receptor modulator
[58]. Additionally, GS was also shown to exhibit thyroid
stimulating activity [59], indicating potential for GS as a
browning agent. Apart from interacting with farnesoid X
receptor [58], a bile acid receptor, GS may also act as lig-
and for Takeda-G-protein-receptor-5 (TGR5), another
bile acid receptor [59]. Bile acids have been implicated
in weight control by reversing and preventing diet in-
duced obesity [60]. TGR5 receptor is expressed in many
of the gastrointestinal tract organs, lungs, mammary

gland, uterus, skeletal muscle, macrophages and brown
adipose tissue and mainly functions to increase intracel-
lular adenosine monophosphate (AMP) [61]. Activation
of TGR5 drives to increase cyclic AMP-dependent up-
regulation of DIO2 which is a response to sympathetic
activation as well as increasing serum concentrations of
thyroxine (T4) [59]. Deiodinase facilitates the conversion
of T4 to 3,3′,5-triiodothyronine (T3), which is a critical
component in UCP1 induction [62] (Fig. 2). GS has been
shown to induce DIO2 expression in mature 3 T3-L1
adipocytes [63], further strengthening the hypothesis
that browning effects of GS may, in part, be mediated
via the activation of TGR5 signaling pathway.

Xanthohumol
Hop plants or Humulus lupulus are more widely known
for their usage in the beer brewing process but far less
known are the historic uses of hops in traditional medi-
cine. Xanthohumol, derived as the prenylated flavonoid
of female inflorescences of the hop plant, has some
promising anti-obesity effects. In addition to its in vitro
effects on inhibiting adipogenesis [64] and causing apop-
tosis in mature adipocytes [65], xanthohumol also ex-
tends to in vivo effects where it is found to protect
against diet induced obesity [66]. Xanthohumol increases
energy expenditure which has been demonstrated in
various cell types including white and brown preadipo-
cytes, hepatocytes and myocytes [67]. Administration of
xanthohumol increases oxygen consumption levels while
ATP synthase was inhibited indicating the uncoupling of
mitochondria.
The mechanism of xanthohumol’s effects on cellular

metabolism is through increasing the production of re-
active oxidative species, which leads to the activation of
5’ adenosine monophosphate-activated protein kinase
AMPK and PGC1-α [67]. Interestingly, xanthohumol,
like several other phytochemicals, exhibits hormesis

Fig. 2 Model for the induction of browning by phytochemicals. Guggulsterone binds to TGR5 and increases the expression of DIO2 which in turn
enhances T3 levels leading to the induction of beiging. Resveratrol is a sirtuin activator and enhances the levels of cAMP and also activates AMPK.
SIRT1 mediates PGC1α deacetylation and AMPK activates PGC1α. PRDM16 co-activates PGC1α and PPARγ driving the upregulation of thermogenic
genes. Likewise, naringenin also activates SIRT1 contributing to the induction of beiging. Abbreviations: AMPK (5’ adenosine monophosphate activated
protein kinase), DIO2 (type 2 deiodinase), PGC-1α (PPARγ coactivator 1α), PPARγ (peroxisome proliferator-activated receptor γ), PRDM16 (PR domain
containing protein 16), SIRT1 (sirtuin 1) and T3 (tri-iodothyronine)
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effect, wherein low dose of xanthohumol increased un-
coupling and oxygen consumption while high dose
inhibited respiration in an ROS-dependent manner.
Nevertheless, xanthohumol may ameliorate metabolic
syndrome, at least in part, through mitochondrial un-
coupling and stress response induction [67]. Xanthohu-
mol also has an effect on bile acid generation which may
lead to activation of bile acid G-protein coupled receptor
TGR5 and downstream activation of T3 and ultimately
UCP1 (Fig. 2). The uncoupling ability of xanthohumol
can be attributed to its nonpolar nature and the ease of
ability to which it can cross the plasma membrane and
potentially activate transcription nuclear receptors which
regulate metabolic genes [67].
While xanthohumol has demonstrated anti-obesity po-

tential in rodent studies where dietary xanthohumol-rich
hop extract significantly lowered body weight gain, its
effects have been more related to WAT and very little at-
tention has been placed on BAT [66]. Administering ma-
ture hop plants to mice was found to induce
thermogenesis in brown adipocytes, which is demon-
strated by increased expression of PPARγ and UCP1
[68]. Because xanthohumol has shown the potential to
upregulate oxygen consumption rates and chemical un-
coupling, it can be suggested that xanthohumol may be
inducing such metabolic changes through systemic thy-
roid hormone signaling. Small, but significant increases
in T4 binding globulin was seen following xanthohumol
administration [69] and additionally, xanthohumol also
upregulated iodide uptake by thyrocytes indicating a
likely direct role in promoting thyroid hormone biosyn-
thesis [70]. Future research should be placed on the
metabolic impacts of xanthohumol and thyroid hormone
signaling and further research is needed to definitively
demonstrate xanthohumol’s potential on BAT activity

Naringenin
Naringenin, a flavonoid found in citrus fruits such as
grapefruits and oranges, has also been recognized as a
bioactive compound with protective properties against
adiposity. Significant evidence shows that naringenin
prevents metabolic syndrome by inhibiting diet-induced
dyslipidemia [71], lipogenesis [72] and adipogenesis [73].
Inflammation of the adipose tissue is one of the hall-

marks of obesity. This inflammation is derived from an
infiltration of macrophages in the adipose tissue [74].
The protective effects of naringenin were elucidated in
one study where mice fed a high fat diet along with nar-
ingenin had decreased levels of macrophage infiltration
and thus lower obesity-related adipose tissue inflamma-
tion [75]. Another study shows naringenin administered
to rats in conjunction with cholesterol-rich diet reduced
total cholesterol and triglyceride levels as well as in-
creased antioxidant activity [76].

Furthermore, naringenin-fed mice also show an upreg-
ulation in gene expression of PPARα, a regulator of lipid
catabolism [77]. In brown fat activators, PPARα is linked
to fatty acid oxidation as a direct result of UCP1 induc-
tion and thermogenesis [78]. Further, PPARα-dependent
induction of UCP1 is also found in WAT and is suggest-
ive of the beiging potential of naringenin [79]. Prelimin-
ary studies conducted in our lab showed that naringenin
at 25 and 50 μM concentration induced a dose-
dependent increase in the expression of UCP1 and
SIRT1 in primary human omental adipocytes. These pre-
liminary experiments suggest a possible potential for
naringenin as a thermogenic agent with therapeutic ap-
plications in obesity and metabolic syndrome.

Quercetin
Another flavonoid found to have beneficial anti-obesity
effects is quercetin (3,3′,4′,5,7-pentahydroxyflavone).
Commonly found in high concentrations in apples, broc-
coli, berries, onions, leafy vegetables and asparagus,
quercetin is a polyphenol that has significant data show-
ing its beneficial effects on cardiovascular system and
lipid homeostasis [80]. Quercetin supplementation in
high fat diet-induced obese mice protects against diet-
induced obesity by increasing energy expenditure and
inflammation [81]. Other studies demonstrating the pro-
tective effects of quercetin supplementation in mice fed
high fat diet found lower body weight gain, triglycerides,
and plasma cholesterol levels as a result of improved
regulation of metabolic genes [82]. Quercetin also im-
proved metabolic conditions in obese mice, as demon-
strated by improved dyslipidemic state [83]. In vitro
studies of quercetin rich extract showed inhibition of ad-
ipogenesis, decreased lipid accumulation and apoptosis
of mature white adipocytes [84].
Dietary quercetin has also shown the ability to in-

crease the expression of UCP1 and thus thermogenesis
in mice fed with quercetin-enriched diet [85]. In this
study, quercetin was shown to inhibit polarization of
bone marrow-derived macrophages towards pro-
inflammatory M1 lineage through an AMPK/SIRT1-me-
diated mechanism. Given the well-established role of
SIRT1 and AMPK in energy expenditure [86] it is likely
that quercetin has the potential in induce browning of
WAT. Although in vitro and in vivo studies provide sig-
nificant data in support of quercetin related response to
adiposity and obesity, the direct effects of quercetin on
white adipocyte transdifferentiation needs to be further
researched.

Capsinoids
Capsaicinoids are a group of phytochemicals including,
but not limited to, capsaicins and capsinoids. The cap-
saicinoid family consists of capsaicin, dihydrocapsaicin,
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nordihydrocapsaicin and others. There has been exten-
sive research showing that capsaicin has anti-obesity,
anti-diabetic, and anti-inflammatory characteristics. Re-
cent studies also indicate that capsaicin acts by activat-
ing the sympathetic system to induce BAT
thermogenesis and reduce fat accumulation [87].
Administration of capsaicin in mice has shown to in-

duce thermogenesis via the activation of BAT [88]. This
is evidenced by the increase in markers related to mito-
chondrial biogenesis such as PPARγ, PGC-1α and UCP1
[88]. Capsaicin also induces the development of beige
adipocytes at an early stage of adipogenesis [88]. The ef-
fect of capsaicin/capsinoid treatment has been compared
to that of chronic cold exposure, in which sympathetic
stimulation results in the activation of BAT [87]. Simi-
larly to the aforementioned curcumin, capsaicin binds to
the intestinal transient receptor potential vanilloid
1(TRPV1) receptor, also referred to as the capsaicin re-
ceptor, thereby launching the sympathetic response ob-
served with treatment [89]. Surprisingly, capsaicin has
also been proven to be harmful to humans and these
harmful effects are mediated, in part, by the capsaicin
receptor, TRPV1 [90–92].
Capsinoids are capsaicin analogs, similar in function

to capsaicins, but are far less pungent thus, less toxic,
and physiologically compromising to humans. The low
pungency characteristic of the naturally occurring ‘CH-
19 Sweet’ pepper makes them edible in comparison to
capsaicinoids and therefore, are an attractive target for
anti-obesity therapy.
It has been demonstrated that capsinoids decrease fat

accumulation in adipocytes both in vitro and in vivo in
mice [93]. Acute administration of capsinoids augments
energy expenditure, sympathetic nervous system activa-
tion, and thermogenesis with comparable efficacy to cap-
saicins. Capsinoids are TRPV1 agonists and increased
energy expenditure and fat oxidation is dependent on
TRPV1, much like capsaicin, but the capsinoid sensory
receptor is found in the gastrointestinal tract while cap-
saicin’s sensory receptor is located on the tongue. The
difference in the location of sensory neurons and capsi-
noid’s subtle pungency decreases its likelihood for hyper-
algesia effects in comparison to capsaicin [94].
As an inducer of the browning of WAT, a diet supple-

mented with capsinoids fed to mice kept at 17 °C for
8 weeks, significantly increased energy expenditure, but
not at 25 °C. This was confirmed by increased BAT and
beige specific gene markers such as Ucp1, Pgc1α, Cidea,
Cd137, and Tmem26, in inguinal WAT, respectively. It
has been shown that capsinoids upregulated the expres-
sion of the PRDM16 protein in inguinal WAT under
ambient and mildly cold temperatures upon β-
adrenergic stimulation [95]. Yoneshiro et al. demon-
strated that acute administration of capsinoids increased

energy expenditure in BAT-positive subjects, but not in
subjects without metabolically active BAT, under cold
exposure [96]. Capsinoids seem to be promising in that
they are accompanied with fewer side effects than capsa-
icins but there are conflicting studies of their potential
as browning agents. Therefore, further research needs to
establish its role in the browning of WAT and the asso-
ciated underlying molecular mechanisms.

Cinnamaldehyde
Cinnamaldehyde is a pungent spice extracted from the
plant cassia and is the most abundant phytochemical in
cinnamon [97]. Used since the medieval times for medi-
cinal purposes, cinnamaldehyde has now been identified
to have multiple therapeutic uses such as anti-diabetic,
anti-arthritic, anti-inflammatory, anti-microbial, and
anti-cancer effects [98]. Cinnamaldehyde activates TRP
cation channels, similar to capsaicinoids. More specific-
ally, cinnamaldehyde activates the cold-gated ion chan-
nel, transient receptor potential Ankyrin subtype 1,
TRPA1 [99]. It has been shown that the cinnamaldehyde
acts as an agonist to TRPA1 and upregulates adrenaline
secretion in rats [100]. This adrenaline secretion stimu-
lation by cinnamaldehyde could explain the induction of
thermogenesis and inhibition of heat diffusion in mice
[101].
Cinnamon decreased lipid accumulation in vitro in

3T3-L1 preadipocytes and the expression of adipogenic
transcription factors PPARγ, C/EBPα and SREBP-1c dur-
ing adipocyte differentiation [102]. In a dose-dependent
manner, cinnamaldehyde also decreased visceral fat de-
position, partly mediated by the activation of interscapu-
lar BAT, as evidenced by the upregulation of UCP1
expression levels, in high fat and high sucrose diet-fed
mice [97]. Taken together, this data suggests the poten-
tial of cinnamaldehyde to act as a browning agent and
exert its anti-obesity effects with future research.

Fucoxanthin
Fucoxanthin, extracted from edible brown alga, is a ca-
rotenoid known to have anti-carcinogenic, anti-
inflammatory, anti-diabetic and apoptotic effects in
metastatic cells. Fucoxanthin has been shown to ameli-
orate the progression of obesity in vitro and in vivo in
mice and human models [103]. Fucoxanthin reduced
lipid accumulation accompanied by a decrease in PPARγ
expression in 3T3-L1 adipocytes [104]. Kang et al. dem-
onstrated that fucoxanthin stimulated 3T3-L1 adipogen-
esis at an early stage mediated by an increase in the
expression of PPARγ and C/EBPα and the adipocyte dif-
ferentiation marker, aP2. However, fucoxanthin signifi-
cantly downregulated the adipogenesis of 3T3-L1
adipocytes at the intermediate and late stages of
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differentiation, and the expression of PPARγ, C/EBPα
and SREBP1c transcription factors [105].
Maeda et al. investigated the potential anti-obesity and

anti-diabetic effects of fucoxanthin supplemented diets
in rodent models. Results from these studies suggested
that fucoxanthin significantly lowered WAT weight gain
in mice with high fat diet-induced obesity, as well as
mRNA levels of leptin in WAT. Further, fucoxanthin sta-
bilized blood glucose and insulin levels and downregu-
lated monocyte chemoattractant protein-1, MCP-1,
expression in WAT of diet-induced obese mice. MCP-1,
a protein secreted from adipose tissues, stimulates
macrophage accumulation and the production of pro-
inflammatory mediators. Finally, β3-adrenergic receptor,
Adrb3, mRNA expression levels were upregulated in
WAT of mice maintained on fucoxanthin high fat diets.
As discussed earlier, Adrb3, expressed in both BAT and
WAT, is suggested to play a role in lipolysis and thermo-
genesis [106].
Fucoxanthin-fed obese mice experienced a decrease in

WAT weight as well as a significant upregulation in the
expression of UCP1 protein and mRNA in WAT, result-
ing in energy expenditure in the form of heat and fatty
acid oxidation in WAT [107]. This increase in UCP1 ex-
pression was nearly diminished in WAT in mice main-
tained on a control diet. In another study of Maeda and
his colleagues, fucoxanthin significantly decreased the
body weight of mice on high fat diets [108]. Overall,
these studies suggest that fucoxanthin may have promis-
ing anti-diabetic and anti-obesity effects and deserve
more research focus, primarily in human subjects.

Conclusions
Natural compounds have clear stimulatory effects on en-
ergy metabolism through direct actions on TRP channels
and subsequent sympathetic signaling, intracellular regu-
lation of the SIRT1-PRDM16 pathway and through
modulation of thyroid hormone (Fig. 3). Through these
mechanisms, natural compounds can promote chemical
uncoupling and energy dissipation in brown adipose tis-
sue that may be able to counteract the loss of function
of brown fat seen in obesity. While safety and efficacy
will always be in question with nutraceuticals, the spe-
cific compounds described herein have been safely used
for hundreds of years without major adverse events that
render them unsafe for use. Future research is needed to
more appropriately answer the questions on efficacy, as
some compounds which have the potential to stimulate
brown adipose tissue have not been thoroughly investi-
gated alone or in combination with other natural prod-
ucts that may act synergistically. Similarly, few
compounds have been used in large, randomized clinical
control trials to definitively answer their potential anti-
obesity effects. Despite this, the mechanistic data in both

cell and rodent models show promise that natural,
plant-derived compounds do contain the capacity to
promote a beneficial metabolic profile.
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