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Brown adipose tissue and glucose homeostasis – the link between climate
change and the global rise in obesity and diabetes
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ABSTRACT
There is increasing evidence that the global rise in temperature is contributing to the onset of
diabetes, which could be mediated by a concomitant reduction in brown fat activity. Brown (and
beige) fat are characterised as possessing a unique mitochondrial protein uncoupling protein
(UCP)1 that when activated can rapidly generate large amounts of heat. Primary environmental
stimuli of UCP1 include cold-exposure and diet, leading to increased activity of the sympathetic
nervous system and large amounts of lipid and glucose being oxidised by brown fat. The exact
contribution remains controversial, although recent studies indicate that the amount of brown
and beige fat in adult humans has been greatly underestimated. We therefore review the
potential mechanisms by which glucose could be utilised within brown and beige fat in adult
humans and the extent to which these are sensitive to temperature and diet. This includes the
potential contribution from the peridroplet and cytoplasmic mitochondrial sub-fractions recently
identified in brown fat, and whether a proportion of glucose oxidation could be UCP1-
independent. It is thus predicted that as new methods are developed to assess glucose metabo-
lism by brown fat, a more accurate determination of the thermogenic and non-thermogenic
functions could be feasible in humans.
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There is increasing evidence that the rise in diabetes is
partly mediated by the increase in global temperatures
over the past 20 years.1,2 This has been observed across
the general population in the USA3 and, in pregnant
women in Canada relative to the onset of gestational
diabetes.4 Moreover, the prevalence of gestational dia-
betes in Canada is higher in the summer and rising
ambient temperatures in the 3–4 weeks prior to third
trimester glucose tolerance testing can predict gestational
diabetes onset.5 Consequently as brown fat is highly sen-
sitive to changes in ambient temperature and is normally
activated by cold exposure it would be expected to
become less active as temperature rises.6,7 The unique
capacity of brown fat to rapidly respond to cold exposure
resides within uncoupling protein (UCP)1 that is located
on the inner mitochondrial membrane.8 When activated
this results in the free flow of protons across the inner
mitochondrial membrane,8 thereby bypassing the need to
convert ADP to ATP, as occurs in the mitochondria of all
other tissues.

The presence of brown fat is adult humans was origin-
ally identified from positron emission tomography-

computed tomography (PET-CT) studies in cancer
patients,9 and has been confirmed across a range of ethni-
cities including Caucasian,6 Asian10 and African11 popu-
lations. This technique is dependent on subjects showing
an increase in radio-labelled glucose uptake within their
brown fat, a response that can be modulated by season
and sensitivity to cold.12 Consequently the extent to
which environmentally induced changes in brown fat
function can impact on glucose homeostasis remains
a matter of debate.13 It should be noted that with repeated
PET-CT scans on the same subject then brown fat is
identifiable in most, if not all, adults,14 and comparable
quantification of brown fat has been shown between PET-
CT and thermal imaging.15 Consequently, it is likely that
brown fat is present in all adults,16 and as shown in
rodents its temperature fluctuates appreciably over a 24h
period.17 The acute sensitivity of brown fat to changes in
temperature would thus mean that an overall rise in
current global temperature (see https://climate.nasa.gov/
vital-signs/global-temperature/) would be sufficient to
reduce its activity on a population wide basis. Moreover,
if the United Nations report on climate breakdown (see
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http://www.ipcc.ch/report/sr15/) is not swiftly acted upon
then an even greater challenge would present itself.

What is the contribution of brown fat to whole
body glucose homeostasis?

The primary factors that determine glucose consump-
tion by brown fat are the total amount of fat, its rate of
glucose oxidation and capacity to transport glucose.18

A number of important recent publications have
demonstrated that summary estimates appear to sub-
stantially underestimate each of these measures. It is
therefore highly likely that current calculations suggest-
ing only 1% of total daily glucose utilisation is parti-
tioned across brown fat are inaccurate.13 The total
contribution of brown fat should therefore be revised
due to the following:

(1) The amount of brown fat in adult humans is
routinely underestimated, mainly due to the cur-
rent imaging techniques and the difficulty in
measurement because of the mixing of brown
and beige fat with other white fat depots inmulti-
ple sites in the body.19 Beige fat is defined as
being a discrete region within white fat that pos-
sesses UCP1 although at approximately ten-fold
lower concentrations than “classic” brown fat,20

(2) Brown fat can be activated by diet21,22 to the
same degree as by cold exposure.21 The extent
to which these dual activation pathways may be
additive is unknown as current studies on cold
exposure have been conducted in fasted
subjects.

(3) Brown fat shows appreciable metabolic activity
in warm ambient temperatures, effects that
remain for at least two hours after removal of
cold exposure.23

It is now apparent that the total amount of brown and/or
beige fat in adult humans could be up to ten-fold higher,
even in obese adults.19 This is based on studies that have
been able to conduct repeated PET-CT scans of the same
individual,14 together with further refinements in image
analysis.19 Furthermore, a significant proportion of adipo-
cytes present in brown or beige depots do not appear to be
activated by acute cold exposure. Consequently, we suggest
that as much as 20% of daily glucose oxidation could be
potentially accounted for within brown fat, as
a consequence of either diet and/or cold exposure (see
Figure 1). This is in accord with the recognition that
brown fat has a regulatory role in glucose homeostasis18

explaining why cold-induced stimulation of brown fat has
the potential to improve glucose metabolism in both lean24

and diabetic25 subjects. Indeed, it has recently been shown
in obese adults, that long term caloric restriction sufficient
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Figure 1. Summary of the potential change in glucose utilisation by brown and beige fat between (A) warm and (B) cool ambient
temperature increases. Overall the fraction of whole body-glucose utilisation increases in parallel with an increase in the amount of
brown and beige fat, but this is lower in the warm. It is based on calculated estimates of glucose oxidation in adult humans as
determined in the cold (e.g.13) or after feeding (e.g.40).
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to reduce body weight by 16.5% (primarily due to fat loss)
promoted the brown adipocyte content in subcutaneous fat
by 10%.26 At the same time, fasting blood insulin and
glucose were improved. Furthermore, in humans, brown
fat appears to exhibit a glucose responsive biorhythm that is
disrupted when the abundance of brown fat is low.27

Is glucose metabolism by brown fat
independent of UCP1 mediated thermogenesis?

Glucose utilisation within UCP1-containing adipocytes in
brown and beige fat can occur independently of UCP1-
mediated thermogenesis.18 This would explain the obser-
vation of substantial glucose present in brown fat
depots,28 and its appreciable utilisation even at
thermoneutrality.23 Glucose present within brown fat
could act, in part, as a reserve to be utilised during cold
exposure, as the amount of glucose taken up within
supraclavicular brown fat, for example, is closely asso-
ciated with cold-induced thermogenesis.28 Cold exposure
is also likely to be accompanied by increased uptake of
triglycerides which, in murine obesity models, results in
improved glucose homeostasis and up to a five-fold rise in
glucose uptake within interscapular brown fat.29 If trigly-
ceride uptake is inhibited pharmacologically, then the
uptake of glucose by brown fat is greatly reduced whereas,
in other tissues such as skeletal muscle, it is unaffected.30

Gene deletion studies in mice indicate an increasing
number of pathways which can restrict glucose uptake
by brown fat.18 These appear to be linked to glucose
transporter 4, e.g. the GAP complex RalGAP which,
when inactivated, results in a seven-fold rise in glucose
uptake by brown fat.31 It is likely that other pathways are
involved and that these may differ between brown and
beige adipocytes. For example, deletion of endonuclease
G is associated with increased expression of thermogenic
genes in beige, but not brown, adipocytes.32 This, is turn,
is accompanied with improved glucose homeostasis and
reduced white fat mass. Indeed, multiple pathways are
involved and extend to a wide range of signalling mole-
cules as identified inmice e.g. DJ-1,33 although these need
confirming in humans.

Two types of brown fat mitochondria and their
differential roles in energy balance

The concept that the regulation of UCP1 differs between
brown and beige adipocytes and that the utilisation of
glucose by these different cell populations requires further
investigation. Glucose oxidation by beige fat has been
shown to be independent of UCP1 and is, therefore, non-
classical.34 The potential divergence inmitochondrial func-
tion between dietary and cold-induced thermogenesis

could be partly explained by the recent discovery that
brown fat contains two different types of mitochondria
i.e. the peridroplet and cytoplasmic mitochondrial sub-
fractions.35 It has been suggested that these fractions are
functionally different in their bioenergetic capacity and
fatty acid oxidation despite both possessing UCP1. One
potential consequence is that there is a greater recruitment
of lipid-droplets within the peridroplet mitochondrial
domain after feeding,35 and perhaps cytoplasmic mito-
chondria are dominant with cold exposure (see Figure 2).
Such an adaptation to feeding would be in accord with the
diurnal rhythm in brown fat activity seen in mice, which is
consistent with a lower postprandial lipid response, in the
morning compared to evening in humans.36 The funda-
mentally different processes between the peridroplet and
cytoplasmic mitochondrial sub-fractions35 have yet to be
examined in different human disease states. These types of
investigations could determine whether glucose metabo-
lism differs between each domain. They could also start to
explain the recent demonstration of considerable hetero-
geneity in nutrient, including glucose uptake by brown
adipocytes.37

Future research on the role of brown and/or
beige adipocytes on glucose homeostasis

Given the increasing evidence that brown and/or beige
fat has a role in both dietary and cold-induced thermo-
genesis, more focus is now required on the impact of
diet especially under thermoneutral conditions.38

A combined effect of diet and cold exposure could
therefore herald ground-breaking approaches to dia-
betes prevention and/or treatment. The urgent need
to make such an intervention is high-lighted by the
continued rise in global temperatures, and the
increased duration of “summer” (see https://www.
metoffice.gov.uk/binaries/content/assets/mohippo/pdf/
uk-climate/state-of-the-uk-climate/soc_supplement-
002.pdf) which currently appear to be largely unpre-
ventable. Moreover, the impact of ageing needs to be
considered as this is accompanied with a “natural”
decline in brown fat mass, which could underpin the
onset of type 2 diabetes.39 Critically, more sophisticated
assessments (including the potential use of glucose
tracers) to accurately assess glucose uptake by brown
adipose tissue and of UCP1, both in vivo and in vitro,
are required to enable a more accurate partitioning of
its thermogenic and non-thermogenic functions.
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