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ABSTRACT

Obesity-associated low-grade inflammation underlies insulin resistance and associated metabolic
comorbidities, such as type 2 diabetes (T2D) and nonalcoholic fatty liver disease. Excessive ectopic
fat deposition in obesity causes disorders of energy homeostasis and low-grade chronic
inflammation in metabolic tissues. In particular, obesity-induced recruitment and activation of
adipose tissue macrophages play a key role in the pathogenesis of insulin resistance and T2D.
Therefore, treatment options for energy metabolism and macrophage polarization in obese
subjects are needed. Sodium-glucose cotransporter (SGLT) 2 inhibitors increase urinary glucose
excretion by inhibiting renal glucose reabsorption, thereby having subsequent anti-hyperglycemic
effects and reducing body weight. We recently reported that the SGLT2 inhibitor empagliflozin
increases fat utilization and browning in white adipose tissue and attenuates obesity-induced
inflammation and insulin resistance by activating M2 macrophages. Thus, this review focuses on the
beneficial effects of empagliflozin in energy homeostasis and obesity-related inflammation and
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insulin resistance.

Safety and tolerability of the SGLT2 inhibitor
empagliflozin

The sodium-glucose cotransporters (SGLTs) SGLT1 and
SGLT?2 are responsible for glucose reabsorption in the
kidneys. SGLT1 is a high-affinity, low-capacity trans-
porter that is expressed in the distal proximal convoluted
tubule, where it acts as a transporter for dietary glucose
and galactose, and accounts for approximately 10% of
glucose reabsorption. By contrast, SGLT2 is a low-
affinity, high-capacity transporter that is expressed
exclusively in renal proximal tubules and reabsorbs 90%
of the glucose from urine [1]. Mutations in the gene
encoding SGLT?2 have been associated with familial renal
glucosuria, and SGLT2-deficient mice show higher uri-
nary glucose excretion (UGE) than wild-type mice [2-4].
These observations suggest that inhibiting SGLT2 func-
tion may be effective for treating hyperglycemia, obesity,
and type 2 diabetes (T2D).

Data from clinical studies have demonstrated that
oral administration of SGLT2 inhibitors induces
UGE, improves hyperglycemia, and reduces the body
weight of patients with T2D [5-7]. These SGLT2
inhibitors were developed based on the structure of

phlorizin [8]. Currently, several members of SGLT2
inhibitors are approved (empagliflozin, dapagliflozin,
canagliflozin, etc.) and some others are in develop-
ment (ipragliflozin, tofogliflozin, ertugliflozin etc.)
[8,9]. Among of these SGLT2 inhibitors, empagliflozin
is characterized by highly selective and potent inhibi-
tor of SGLT2 (Table 1), and which had already
approved in the EU and US in 2014 [9,10]. Linear
pharmacokinetics indicate that the half-maximum
inhibitory concentration (IC50) of empagliflozin is
3.1 nM (pIC50 £ S.E. 8.5 & 0.02 nM), and its selec-
tivity for SGLT2 is more than 2,500-fold and 5,800-
fold higher than that for SGLT1 in humans and mice,
respectively (Table 1) [11,12]. The high selectivity of
empagliflozin for SGLT2 suggests that the renal phar-
macological response to empagliflozin treatment is
mediated solely by SGLT2. Several studies have dem-
onstrated that empagliflozin is safe for rodents and
well tolerated [13,14]; doses of empagliflozin up to
800 mg/day do not cause clinically significant safety
concerns in healthy male subjects [15]. Taken
together, these findings indicate that empagliflozin is
a potent and competitive SGLT2 inhibitor with an
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Table 1. Comparison of each SGLT2 inhibitor in the potency on
SGLT2 and selectivity over SGLT1 in the kidney.

Name SGLT2 (AMG) SGLT1 (AMG)
Emapgliflozin 3.1 8300
8.50 &+ 0.02 5.08 + 0.03
Dapagliflozin 12 1400
8.94 £ 0.06 5.86 £ 0.07
Canagliflozin 2.7 710
8.56 + 0.02 6.15 £ 0.06
Ipragliflozin 53 3000
8.27 £ 0.04 5.53 £ 0.02
Tofogliflozin 6.4 12000
8.18 £ 0.12 492 £ 0.09
Sergliflozin 7.5 2100
8.12 £ 0.01 5.69 £ 0.11
Remogliflozin 12 6500
7.93+0.13 5.19+0.19
T-1095A 44 260
8.36 + 0.08 6.58 + 0.04
Phlorizin 21 290
7.67 £ 0.03 6.54 £ 0.05

Results are shown as mean 1Cs, (nM) and plCsq &= SEM for inhibition of
human SGLT1 and 2. ["*C]-a-methyl glucopyranoside (AMG) was used as
substrate for SGLT1 and 2.

excellent selectivity profile that has potential as a
treatment for insulin resistance and T2D.

Macrophage polarization and insulin resistance

Obesity is characterized by excessive fat accumulation
and is highly correlated with the incidence and preva-
lence of insulin resistance, T2D, and nonalcoholic fatty

liver disease (NAFLD). Obesity is closely associated with
low-level chronic inflammation, which is characterized
by abnormal cytokine and chemokine production and
activation of inflammatory pathways that interfere with
insulin signaling (Fig. 1), including mitogen-activated
protein kinases, IxB-kinase B (I«kKf)/nuclear factor B
(NF-«B), and mammalian target of rapamycin/S6 kinase
[16]. Although the mechanism of this inflammatory
response remains unclear, increasing evidence reveals
that obesity-induced inflammation is mediated primarily
by immune cells, such as macrophages and T lympho-
cytes, in metabolic tissues [17,18]. Tissue macrophages
are phenotypically heterogeneous and are characterized
according to their activation/polarization state as
M1 (classically activated, proinflammatory) or M2
(alternatively activated, anti-inflammatory) macrophages
[19]. M1/M2 polarization of macrophages is a highly
dynamic process, and the phenotype of polarized macro-
phages can be reversed under certain physiological and
pathological conditions (Fig. 1). These subsets can be
triggered by in vitro incubation with interferon gamma,
tumor necrosis factor (TNF)-«, and lipopolysaccharide
(LPS) or interleukin-4 (IL-4), respectively [20,21]. The
polarization of MI-type macrophages in obesity is
enhanced, which leads to increased production of
various proinflammatory cytokines, such as TNF-o and
IL-6, which induce insulin resistance via IkK8- and JNK-
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Figure 1. Obesity-related macrophage polarization and insulin resistance. In a lean state, M2 macrophages are the primary resident
macrophages and maintain insulin sensitivity. In contrast, excess calories or a sedentary lifestyle cause adipocyte hypertrophy, which
initiates secretion of CCL2 and CCL5, leading to the recruitment of circulating monocytes in adipose tissues. Subsequently, CCR2* macro-
phages accumulate and presumably maintain inflammation as M1 macrophages in obese adipose tissue. Once these ATMs are present
and active, they maintain a vicious cycle involving ATM recruitment and the production of inflammatory cytokines, such as TNF-«, IL-6,
and IL-15, in conjunction with adipocytes and other infiltrated immune cells. These secreted proinflammatory cytokines subsequently
cause inflammation and insulin resistance in adipose tissue, liver, and skeletal muscle.



mediated inhibitory serine phosphorylation of insulin
receptor substrate proteins. By contrast, M2-polarized
macrophages generate anti-inflammatory cytokines,
such as IL-10 and IL-1 receptor antagonist, which are
suppressed in obese subjects [17,22].

Emerging lines of evidence show that adipose tissue
macrophages (ATMs) release proinflammatory cytokines
similar to classically activated M1-type macrophages that
directly contribute to insulin resistance or T2D [23]. A
study by Hotamisligil et al. identified adipocytes as a
source of TNF-« in white adipose tissue (WAT) that ulti-
mately impairs insulin signaling in obesity [24]. Moreover,
findings by Xu et al. demonstrated that mainly the stromal
vascular fraction of obese WAT expresses inflammatory
cytokines [25]. Adipose tissue in lean mice is populated
with M2 ATMs and governs adipocyte lipid metabolism
by secreting factors such as IL-10 and catecholamines.
The M2 ATMs cooperate with regulatory T cells and
innate type 2 lymphoid cells to maintain the anti-inflam-
matory WAT environment [26,27]. During these pro-
cesses, anti-inflammatory cytokines, such as IL-4, IL-13,
and IL-33, in lean adipose tissue assist the ATMs in an
anti-inflammatory state and restrain the progression of
insulin resistance. ATM polarization in the obese state is
shifted toward the proinflammatory M1 macrophage phe-
notype that expresses the surface marker CD11c (Fig. 1)
[17,19]. Activation and accumulation of M1 ATMs in
obese WAT can be caused by oxidative stress that
increases a number of free fatty acids (FFAs) and LPS
[28]. Subsequently, expression of proinflammatory cyto-
kines, such as TNF-q, IL-6, and IL-18, in ATMs compro-
mises insulin action not only locally in WAT but also
systemically as these cytokines are released into circulation
(Fig. 1). Thus, inflammation triggered by ATMs consti-
tutes a turning point in the development of obesity-related
insulin resistance and T2D.

Kupffer cells (KCs) are resident hepatic macrophages
that play central roles in liver injury, such as nonalcoholic
steatohepatitis (NASH) [29]. In obesity, excessive fat storage
in WAT leads to hepatic ectopic lipid accumulation, result-
ing in NAFLD and fatty liver diseases. Ectopic fat storage in
the liver results in hepatic lipotoxicity, which in turn leads
to liver damage and inflammation [30]. The dynamic polar-
ization of KCs determines the pro- or anti-inflammatory
conditions in the liver. KCs in normal conditions exhibit an
M2-like phenotype and express several receptors such as
toll-like receptors (TLRs). In the presence of TLR ligands,
KCs become immunogenic and can induce T cell activation
and the generation of an efficient cytotoxic T-lymphocytes
response [31]. However, obesity-induced proinflammatory
cytokines, such as TNF-o, and chemokines, such as mono-
cyte chemoattractant protein-1 and regulated on activation,
normal T cell expressed and secreted (RANTES/CCL5),
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polarize KCs toward the M1 state, which in turn induces
insulin resistance in the liver and weakens liver function.
Inflammation driven by M1 KCs is counterbalanced by
alternatively polarized M2 macrophages that promote reso-
lution of inflammation and tissue repair [32]. The beneficial
properties of the alternative M2 KCs have been reported in
several inflammatory disorders, including insulin resistance,
T2D, and NAFLD [33,34].

Empagliflozin improves insulin resistance
by regulating both macrophage recruitment
and polarization

Obesity, insulin resistance, and other metabolic disorders
are closely associated with chronic inflammation character-
ized by abnormal cytokine production, increased acute-
phase reactants and other mediators, and activation of a
network of inflammatory signaling pathways [16]. More
than a decade ago, it was reported that TNF-« is overex-
pressed in the adipose tissue of obese mice; this provided
the first clear link between obesity, diabetes, and chronic
inflammation [24]. Not only TNF-« but other inflamma-
tory mediators and cytokines are overexpressed in adipose
and other tissues in experimental mouse models of obesity
and in humans [28]. A lack of TNF-« results in notably
improved insulin sensitivity in DIO and ob/ob mice [35],
which confirms that inflammation in obesity has a critical
role in impairing the physiological response to insulin.
SGLT?2 inhibitors (dapagliflozin and ipragliflozin) improve
inflammation in the kidneys and liver of diabetic mice
[36,37]. Empagliflozin also markedly decreases obesity-
induced inflammation in the liver and WAT of diet-
induced obese (DIO) mice [38]. These findings suggest
that SGLT2 inhibitors, particularly empagliflozin, improve
insulin resistance partially by attenuating chronic inflam-
mation in obese and diabetic subjects.

Obesity or ectopic fat induces an innate immune
response with subsequent recruitment of immune cells,
which leads to the development of insulin resistance and
NASH. In particular, macrophage recruitment and polari-
zation are pivotal in obesity-induced inflammation and
insulin resistance [32]. Thus, strategies to restrain M1
polarization and/or drive the alternative M2 activation of
macrophages may have the potential to protect against
exacerbated inflammation and insulin resistance and even
attenuate progression to NASH. It is noteworthy that we
used highly specific gating strategies to determine pure
populations of ATMs and M1 and M2 ATMs. A flow
cytometry analysis clearly demonstrated a decrease in M1
ATMs that is reciprocal to an increase in M2 ATMs in
empagliflozin-treated DIO mice [38]. Moreover, infiltra-
tion of Th1 and CD8" T cells precedes M1-polarized mac-
rophage recruitment, and interactions between T cells and
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macrophages constitute a maladaptive feed-forward loop,
leading to adipocyte inflammation and insulin resistance.
Consequently, empagliflozin reduces the accumulation of
T cells and M1 macrophages and increases M2 macro-
phages to alleviate inflammation and insulin resistance in
obesity. Thus, empagliflozin attenuates obesity-associated
insulin resistance by polarizing M2 ATMs and decreasing
inflammation in DIO mice.

Empagliflozin decreases adiposity by shifting
fuel selection and promoting fatty acid oxidation

Obesity has been defined as abnormal or excessive fat
accumulation in adipocytes that presents a risk to health.
Triglycerides are the main form of fat storage in adipose
tissue resulting in adiposity. The release of excess FFAs
from the lipolysis of visceral adipose tissue into the circu-
lation or portal vein destroys the functions of other
organs, such as the liver, heart, and kidneys [39].
Therefore, attenuating the accumulation of triglycerides
or enhancing fat utilization in adipose tissue is the main
method of treating obesity.

Several studies have shown the protective effects of
SGLT?2 inhibitors against obesity in rodents. Rats pair-fed
with tofogliflozin for 8 weeks show suppressed high-fat diet
(HFD)-induced weight gain and hepatic steatosis [40].
Chronic administration of dapagliflozin for 35 days signifi-
cantly reduces body weight and enhances lipid lipolysis
[41]. By contrast, therapeutic treatment with remogliflozin
for 4 weeks attenuates hepatic steatosis without affecting
weight gain [42]. In addition, luseogliflozin decreases liver
weight and ameliorates steatohepatitis in streptozotocin-
treated mice fed an HFD without altering weight gain [43].
These observations suggest that the timing of the adminis-
tration of SGLT?2 inhibitors and the mouse model can affect
body weight gain. Moreover, in clinical studies, body weight
reductions are observed after the administration of SGLT2
inhibitors [9]. Paradoxically, SGLT2 inhibitors can aug-
ment energy intake in rodents, which counteracts the bene-
ficial effect on body weight reduction [40,41]. Therefore,
we pair-fed an HFD and an HFD with empagliflozin to
exclude the influence of increased food intake. We obtained
empagliflozin-reduced adiposity despite pair-feeding, which
suggests that preventing obesity and its comorbidities is not
simply secondary to calorie loss because of glucosuria or
reduced calorie intake [38].

Consistent with other SGLT2 inhibitors, administering
empagliflozin to HFD-induced obese mice mitigates
weight gain and fatty liver. The underlying mechanism for
the weight reduction depends partially on increased
energy expenditure and enhanced fatty acid oxidation.
Empagliflozin increases oxygen consumption and tends to
elevate carbon dioxide exhalation, leading to increased

sugar and fat utilization [38]. It is important to note that
in clinical trials, a small increase in plasma low-density
lipoprotein cholesterol (LDL-C) has been reported with
SGLT2 inhibitors [9]. Empagliflozin increases the plasma
LDL-C level concomitant with higher FFAs and total
ketone body levels, which suggests that inhibiting SGLT2
induces ketogenesis and a metabolic switch toward lipid
oxidation to counterbalance the carbohydrate restriction
[44]. Chronic administration of empagliflozin to patients
drives a fuel shift to fat utilization accompanied by
decreased tissue glucose disposal and increased lipid use
[45]. These findings suggest that empagliflozin suppresses
weight gain by shifting energy metabolism toward fat and
sugar utilization. A study by Hawley et al. demonstrated
that SGLT2 inhibitors promote fatty acid oxidation by
activating AMP-activated protein kinase (AMPK)-«
in vitro and lowering liver lipid content [46]. Our findings
revealed that empagliflozin increases the phosphorylation
of AMPK and acetyl-CoA carboxylase (ACC) in the skele-
tal muscle of DIO mice [38]. These results suggest that
empagliflozin enhances fatty acid oxidation partially by
activating the AMPK pathway.

Administering empagliflozin increases fatty acid oxi-
dation by altering the expression of adiponectin and lep-
tin in epididymal WAT. The adipose tissue-specific
adipokines leptin and adiponectin are involved in the
regulation of food intake and energy homeostasis [47].
Plasma leptin levels increase during the development of
obesity and decline during weight loss. Leptin stimulates
fatty acid esterification to triglycerides and causes an
even greater increase in hydrolysis so that there is a net
efflux of fatty acids from the cells. By contrast, adiponec-
tin exerts its insulin-sensitizing effects by increasing
B-oxidation of fatty acids and reducing serum triglycer-
ide and FFA levels, thus indirectly improving insulin
sensitivity. Furthermore, leptin and adiponectin interact
with AMPK, which regulates fatty acid and energy
metabolism. Administering empagliflozin increases adi-
ponectin mRNA expression and downregulates leptin
expression in epididymal WAT and contributes to fat
lipolysis and energy expenditure. Taken together, these
findings indicate that empagliflozin improves abnormal
lipid metabolism and obesity by enhancing fat and sugar
utilization and increasing fatty acid oxidation.

Empagliflozin increases energy expenditure
by promoting browning in white adipose tissue

Brown adipose tissue (BAT) constitutes a metabolically
active tissue responsible for non-shivering thermogenesis
and depletion of excess calories. Brown adipocytes pro-
duce heat along with increasing the expression of uncou-
pling proteins (UCPs) by utilizing fatty acids. Among



UCPs, UCP1 is the major isoform expressed in BAT,
which is regulated by the transcription factor peroxisome
proliferator-activated receptor-gamma coactivator lo
[48]. Several studies have revealed that certain depots of
WAT take on a BAT phenotype when subjected to cer-
tain stimuli: Brown-like adipocytes, also known as beige
cells, express UCP1 and contribute to thermogenesis
[49,50]. In response to physiological stimuli (such as
chronic exposure to cold), hormonal stimuli (such as iri-
sin), pharmacological treatment (such as peroxisome
proliferator-activated receptor y agonist or S-adrenergic
stimulation), or a brown fat-like gene expression pro-
gram (such as UCP1), cell death-inducing DFFA-like
effector-a and diodinase 2 are induced in WAT [51,52].
Indeed, brown-like adipocytes have anti-obesity and
antidiabetic effects in rodent models [51]. Chronic treat-
ment with empagliflozin increases whole-body energy
expenditure, heat production, and the protein levels of
UCP1 in both BAT and WAT, which suggests that
empagliflozin promotes adipose tissue browning [38].
Some studies have revealed that M2-type macrophages
promote browning of WAT by activating type 2 cyto-
kines production during exposure to cold [53,54]. In
cold conditions, various type 2 cytokines released from
M2 macrophages activate S-adrenergic receptors in adi-
pocytes to turn on the thermogenic program, including
induction of UCP1. In addition, adiponectin plays a role
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in SGLT2 pathway and promoting beige adipocytes
[55,56]. Zhao et al. showed elevation of adiponectin
downregulates the renal SGLT2 by activating PPARS,
which in turn reduces reabsorption of sodium and glu-
cose [56]. On the other hand, inhibition of SGLT2 by
SGLT?2 inhibitors increases the expression of adiponectin
in diabetic subjects and obese model [38,57]. Thus,
empagliflozin promotes browning in WAT, at least in
part, by polarizing M2 ATMs and increasing adiponectin
expression in WAT. Fibroblast growth factor 21 (FGF21)
is a central mediator of fatty acid oxidation and lipid
metabolism in WAT and the liver [58,59]. Pharmacolog-
ical doses of FGF21 improve glucose tolerance, lower
serum FFAs, and lead to weight loss in obese mice
through increases in energy expenditure [60]. Moreover,
FGF21 also activates the f;-adrenergic receptor in WAT
and regulates recruitment of beige adipocytes [61],
thereby leading to increased energy utilization and
browning. Our previous study revealed that chronic
treatment of empagliflozin increased the hepatic mRNA
expression of FGF21 and plasma levels of FGF21 [38].
These evidence suggest that FGF21 can mediate a shift of
energy metabolism toward fat use in response to SGLT2
inhibition. Thus, an increase in FGF21 in the
liver and circulation following the administration of
empagliflozin may be another factor promoting fat utili-
zation and browning in obesity.
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Figure 2. Protective effects of empagliflozin in high-fat diet-induced obese mice. Inhibiting SGLT2 with empagliflozin directly decreases
blood glucose levels, leading to the following: (1) Empagliflozin promotes fat utilization by enhancing AMPKa and ACC phosphorylation
in skeletal muscle and increasing hepatic and plasma levels of FGF21. (2) Empagliflozin enhances browning and thermogenesis in WAT
and BAT, which results in increased energy expenditure. (3) Empagliflozin improves insulin sensitivity by polarizing M2 macrophages in

fat and liver.
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Conclusions and perspectives

In conclusion, Xu et al. presented compelling evidence that
empagliflozin plays a crucial role in obesity-induced adipose
tissue inflammation and insulin resistance by regulating
macrophage recruitment and M1/M2 status (Fig. 2). Note
that Xu et al. demonstrated that empagliflozin acts against
adiposity by promoting fat and sugar utilization and
enhancing p-oxidation of FFAs. Moreover, they found
increased energy expenditure in empagliflozin-treated DIO
mice and enhanced expression of UCP1 and browning in
WAT, which suggests that empagliflozin regulates the pro-
ton influx back into the mitochondrial matrix and dissipates
oxidative energy as heat instead of synthesis of adenosine
triphosphate (ATP) (Fig. 2). In light of these new data,
SGLT?2 inhibitors may be a promising treatment for insulin
resistance, NAFLD, and T2D. However, the main limitation
of this study is that the effects of empagliflozin were evalu-
ated on a preventive, not a therapeutic, treatment schedule,
which makes it difficult to translate the results to humans.
Therapeutic studies will aid in the translation of experimen-
tal results regarding the anti-obesity effects of SGLT?2 inhibi-
tors to clinical settings.

Abbreviations

ACC Acetyl-CoA carboxylase

AMPK  AMP-activated protein kinase
ATMs  Adipose tissue macrophages
ATP Adenosine triphosphate

BAT Brown adipose tissue

DIO Diet-induced obese

FFAs Free fatty acids
FGF21  Fibroblast growth factor 21
HFD High-fat diet

IL-4 Interleukin-4
LPS Lipopolysaccharide

NAFLD Non-alcoholic fatty liver disease
NASH  Non-alcoholic steatohepatitis
SGLT  Sodium/glucose cotransporter
T2D Type 2 diabetes

TNF Tumor necrosis factor

UCP Uncoupling protein

UGE Urinary glucose excretion
WAT  White adipose tissue
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