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ABSTRACT

The last decade has witnessed an exponentially growing interest in gut microbiota and the gut-brain axis in
health and disease. Accumulating evidence from preclinical and clinical research indicate that gut microbiota,
and their associated microbiomes, may influence pathogenic processes and thus the onset and progression of
various diseases, including neurological and psychiatric disorders. In fact, gut dysbiosis (microbiota dysregu-
lation) has been associated with a range of neurodegenerative diseases, including Alzheimer's, Parkinson's,
Huntington's and motor neuron disease, as well as multiple sclerosis. The gut microbiota constitutes a dynamic
microbial system constantly challenged by many biological variables, including environmental factors. Since the
gut microbiota constitute a changeable and experience-dependent ecosystem, they provide potential therapeutic
targets that can be modulated as new interventions for dysbiosis-related disorders, including neurodegenerative
diseases. This article reviews the evidence for environmental modulation of gut microbiota and its relevance to
brain disorders, exploring in particular the implications for neurodegenerative diseases. We will focus on three
major environmental factors that are known to influence the onset and progression of those diseases, namely
exercise, diet and stress. Further exploration of environmental modulation, acting via both peripheral (e.g. gut
microbiota and associated metabolic dysfunction or ‘metabolopathy’) and central (e.g. direct effects on CNS
neurons and glia) mechanisms, may lead to the development of novel therapeutic approaches, such as en-

viromimetics, for a wide range of neurological and psychiatric disorders.

1. Introduction
1.1. The gut-brain axis

The estimation of the density of bacterial cells in the colon is around
10'3 to 10'* per millilitre, making it one of the most densely populated
microbial habitats on earth (Sender et al., 2016). When compared with
approximately one trillion cells in the human body, bacterial cells
constitute an even greater number of cells, residing within (and on) the
body. Whilst these bacteria have largely evolved to have symbiotic
relationships with their host organisms, they can also engage in para-
sitic and pathological relationships. Furthermore, the gut microbiome
incorporates more than 150 times the number of genes than that which
exist in the human genome (MetaHIT Consortium et al., 2010). Those
impressive numbers reflect the complexity of community composition,
diversity, metabolite production, interaction with the host, and ulti-
mately the relationship between health and disease.

The fast progress of DNA sequencing approaches, such as shotgun-

sequencing metagenomics, and bioinformatics techniques has resulted
in the sequencing of the entire collection of DNA in microbial samples,
leading to the comprehensive phylogenetic identification of gut com-
munities of bacteria, as well as other microbes such as fungi and
viruses. Furthermore, high-throughput and less expensive approaches,
such as 16S rRNA amplicon sequencing, have allowed rapid uptake of
these approaches in fields as diverse as biomedicine, agriculture and
ecology. These breakthroughs in metagenomics and bioinformatics
have been revolutionary, transforming not only microbiology but also
our understanding of the myriad microbiomes which symbiose with all
animal species (Knight et al., 2018). The last decade has thus witnessed
an exponentially growing interest in the gut microbiome and more
specifically, the gut-brain axis, including proposed modulatory roles in
neurodevelopment, brain function and neurodegenerative diseases
(recently reviewed by (Cenit et al., 2017; Dinan and Cryan, 2017; Moos
et al., 2016; Spielman et al., 2018; Stefano et al., 2018)).

One hypothesis arising from these recent discoveries is that an
‘unhealthy gut’ can lead to an ‘unhealthy brain’, although this remains

* Corresponding author at: Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne Brain Centre, Parkville, VIC 3010, Australia

E-mail address: anthony.hannan@florey.edu.au (A.J. Hannan).

https://doi.org/10.1016/j.nbd.2019.104621

Received 7 April 2019; Received in revised form 14 September 2019; Accepted 23 September 2019

Available online 16 October 2019

0969-9961/ © 2019 Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/BY-NC-ND/4.0/).


http://www.sciencedirect.com/science/journal/09699961
https://www.elsevier.com/locate/ynbdi
https://doi.org/10.1016/j.nbd.2019.104621
https://doi.org/10.1016/j.nbd.2019.104621
mailto:anthony.hannan@florey.edu.au
https://doi.org/10.1016/j.nbd.2019.104621
http://crossmark.crossref.org/dialog/?doi=10.1016/j.nbd.2019.104621&domain=pdf

C. Gubert, et al.

to be systematically tested (Spielman et al., 2018). In that context, some
recent neurological and psychiatric research has investigated gut mi-
crobial population imbalance (also called gut dysbiosis), especially fo-
cusing on pathogenic imbalance (Keightley et al., 2015; Skolnick and
Greig, 2019). A more diverse gut microbiome is generally considered to
be healthy (in the absence of elevated pathogenic bacterial species) and
has been associated with improved learning/memory and behavioural
flexibility and, conversely, low microbial diversity is connected with
impairment of cognitive abilities (reviewed by (Davidson et al., 2018)).

The diversity and composition of gut microbiota is crucial for many
different reasons. Gut bacteria are regulators of basic processes such as
digestion along the gastrointestinal tract, mediating nutrient and me-
tabolite extraction, synthesis and absorption. Also, by competition for
nutrients, producing bacteriocins and maintaining the intestinal epi-
thelium integrity, commensal bacteria promote a first immune response
against pathogenic bacteria (Rinninella et al., 2019). Furthermore, gut
bacteria diversity and composition determines the abundance of mi-
crobiota-derived metabolites, neurotransmitters and the short-chain
fatty acids (SCFAs, e.g. butyrate, propionate and acetate), which are
major end-products of microbial fermentation in the gut (Campbell
et al., 2016). The balance between those SCFAs are vital for gut health.
Butyrate concentration, for example, is related to mucin production,
has anti-inflammatory effects and increases tight-junction protein le-
vels, ultimately promoting the maintenance of the intestinal barrier and
reducing mucosal gut permeability (Campbell et al., 2016; Matsumoto
et al., 2008). Imbalance in the aforementioned processes is associated
with impairment in gut integrity and functionality, ultimately resulting
in altered intestinal permeability and gut inflammation, establishing an
aberrant gut environment. This profile generates a milieu of signaling
molecules that ultimately can communicate with the brain through
neural communication (vagal nerve), endocrine signaling (including
the hypothalamus-pituitary-adrenal (HPA) axis) and the immune
system (cytokines) (Westfall et al., 2017), modulating brain function,
behaviour and, most remarkably, cognition (Gareau, 2016) (schema-
tized in Fig. 1).

1.2. The gut-brain axis in neurodegenerative diseases

There is growing evidence that such gut dysbiosis may influence
pathogenic processes and thus the onset and progression of various
disorders, including neurological diseases (Catanzaro et al., 2015;
Patterson et al., 2016). In fact, preclinical and clinical data have asso-
ciated gut dysbiosis with a range of neurodegenerative diseases, in-
cluding Alzheimer's disease (AD) (Hu et al., 2016; Wu et al., 2017),
Parkinson's disease (PD) (Bedarf et al., 2017; Fields et al., 2018; Hill-
Burns et al.,, 2017; Keshavarzian et al., 2015), amyotrophic lateral
sclerosis (ALS; the most common form of motor neuron disease)
(Wright et al., 2018) and more recently, Huntington's disease (HD)
(Kong et al., 2018). Studies in germ-free mice have demonstrated sig-
nificant cognitive deficits due to the absence of microbes, corroborating
the critical link the gut-brain axis has to cognition and its modulation
(Gareau et al., 2011).

1.3. Environmental factors affect gut microbiota

Modulation of human gut microbiota by environmental factors has
been suggested since before the advent of metagenomics, when the
study of microorganisms was restricted to only those microorganisms
able to be cultured (Phillips, 2009; Tannock and Savage, 1974). Con-
sidering that the gut microbial community has a high level of com-
plexity, it can be assumed that each human subject hosts a unique gut
microbiome. In addition, the functionality, diversity, stability and re-
silience of the human gut microbiota vary between individuals, and in
health and disease (recently reviewed by (Rinninella et al., 2019)). The
gut microbiota thus constitute a changeable ecosystem constantly
challenged by many variables, including environmental factors such as
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exercise, diet, stress, altitude, temperature, toxicants/pollutants and
noise (recently reviewed by (Karl et al., 2018)). In this review we will
focus on three major environmental factors that are known to influence
the onset and progression of neurodegenerative diseases, namely ex-
ercise, diet and stress.

Since gut microbiota constitute a changeable ecosystem, they pro-
vide potential therapeutic targets that can be modulated as new treat-
ments for dysbiosis-related disorders, including neurodegenerative
diseases. Thus, this article reviews the environmental modulation of gut
microbiota and its relevance to brain disorders, exploring in particular
the implications for neurodegenerative diseases.

2. Exercise
2.1. Exercise, a protective intervention for neurodegenerative diseases

There is compelling evidence that many different types of exercise
can promote enhanced cognitive functions both in health and disease,
with a promising role for neurodegenerative diseases (Barnes, 2015;
Hamilton and Rhodes, 2015). A recent meta-analysis demonstrated that
regular exercise performed by elderly people is protective against AD
(Santos-Lozano et al., 2016), slowing down the decline of cognition (Du
et al., 2018). Besides improving cognitive performance, it was already
reported that exercise could also improve amyloid-} levels and slow
disease progression (Brini et al., 2018). Also, a systematic review
showed an inverse association between physical activity and risk of AD,
corroborating with other evidence of a protective role of exercise
(Stephen et al., 2017). Therefore, exercise has been considered by some
researchers to be an intervention for AD, which can be used con-
currently with pharmacotherapy, and also a cost-effective prevention
strategy (Cui et al., 2018).

The beneficial cognitive effects promoted by exercise have also been
suggested for PD, demonstrated in preclinical studies (Crowley et al.,
2018) and randomized controlled clinical trials (da Silva et al., 2018).
Exercise also showed benefits in improving physical capacities, such as
gait, and importantly, cognitive improvements in PD patients (reviewed
by (Intzandt et al., 2018; Lauzé et al., 2016)). Even for genetically
determined diseases such as Huntington's disease, there is preclinical
and clinical support for the exercise benefits in terms of motor function,
gait and cognitive outcomes (reviewed by (Fritz et al., 2017; Mo et al.,
2015).

The mechanisms behind those effects promoted by exercise are not
well understood. The knowledge has been based on preclinical studies
and particularly in the cognitive outcomes which lead to a focus on the
cerebral cortex, especially the hippocampus. Indeed, there is substantial
evidence that exercise increases levels of neurotrophic factors (e.g.
BDNF, NGF, VEGF), hippocampal neurogenesis and hippocampal vo-
lume, identifying exercise as a neuroplasticity promoter (reviewed by
(Cass, 2017; Hamilton and Rhodes, 2015; Hirsch et al., 2016; Ma et al.,
2017; Paillard et al., 2015)). Another significant mechanistic role has
been explored in terms of epigenetic modifications, with promising
outcomes (Grazioli et al., 2017). Although the aforementioned studies
point out important related mechanisms, due to the potential to become
a prescribed non-pharmacological therapy, a better understanding of
the beneficial role of exercise on neurodegenerative diseases is re-
quired. To complete the picture, we require new insights into brain—
body interactions, including the gut microbiome as a mediator, as dis-
cussed below.

2.2. Exercise modulates gut microbiota

The effect of exercise on microbiota has been extensively studied,
and has been a focus of several recent reviews (Campbell et al., 2016;
Cerda et al., 2016; Cronin et al., 2017; Hamasaki, 2017; Mitchell et al.,
2018; Monda et al., 2017). In general, positive effects have been re-
ported, mainly in order to enhance colon health, increasing the
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Figure 1. Schema of environmental modulation of gut microbiota and associated impacts on neurodegeneration and cognition.

A healthy gut is associated with high microbiota diversity and with a positive balance between commensal and pathogenic bacteria. This environment results in the
normal production of neurotransmitters and SCFAs, and in an intact mucin layer and intestinal barrier. The gut can communicate with the brain through neural
communication (vagal nerve), endocrine signaling (hypothalamus-pituitary—adrenal (HPA) axis) and the immune system (cytokines) modulating brain function,
behaviour and, more remarkably, cognition. Some environmental factors have been demonstrated to positively modulate these systems and their bidirectional
communication, such as exercise and specific diets, including ketogenic and Mediterranean diets and Omega-3 supplementation. On the other side, gut dysbiosis
includes poor microbiota diversity with an imbalance in the bacteria community composition promoting the establishment of pathogenic bacteria. This environment
diminishes SCFAs and neurotransmitter production and increases LPS. The mucin layer production is affected as well as the intestinal barrier, leading to an
impairment in gut integrity and functionality. This imbalance results in altered intestinal permeability and gut inflammation with an increase in circulating LPS and
cytokines. Imbalance in the aforementioned processes will be associated with impairment in gut integrity and functionality, ultimately resulting in altered intestinal
permeability and gut inflammation and establishing an aberrant gut environment. This gut dysbiosis has been associated with a wide range of neurodegenerative
diseases and cognitive disorders. Environmental factors such as stress, Western and high-fat diets and strenuous (stressful) exercise can promote those features. SCFAs

(short-chain fatty acids), LPS (lipopolysaccharide).

diversity of microbiota and the balance between beneficial and patho-
genic bacterial communities (Allen et al., 2015; Evans et al., 2013). A
recent systematic review identified Firmicutes and Actinobacteria as the
main phyla that respond to exercise (Dalton et al., 2019), corroborating
the findings of Mitchell and collaborators (Mitchell et al., 2018), who
were able to conclude that exercise indeed produced a positive effect on
microbiota, in general, increasing butyrate-producing bacteria, such as
Roseburia hominis, Faecalibacterium pausnitzii and Ruminococcaceae. This
is also reflected by an exercise-induced increase in butyrate con-
centration, both in rodents and humans (Allen et al., 2018a,b; Batacan
et al., 2017; Campbell et al., 2016; Matsumoto et al., 2008; Queipo-
Ortufio et al., 2013).

Additionally, exercise is also able to reduce transient stool time in
the gastrointestinal tract, which reduces the contact of pathogens with
the gastrointestinal mucus layer and consequently with the circulatory
system, decreasing the action of this undesired population even when
they are present. Recently, a causal role of exercise in modulating the
gut microbiome for health benefits was demonstrated by the coloniza-
tion of germ-free mice with the microbiota from exercised mice com-
pared to the colonization from sedentary controls, resulting in an im-
proved gut morphology, inflammatory profile and response to induced
colitis (Allen et al., 2018a). In addition, one study recently reported a
specific close link between Veillonella atypica and exercise performance,
since inoculation of this strain to mice was able to increase their per-
formance in treadmill running, via its metabolic conversion of exercise-
induced lactate into propionate, suggesting a performance-enhancer
microbe (Scheiman et al., 2019).

The potential mechanisms by which exercise modulates gut micro-
biota have been explored, and besides the modulation of gut micro-
biome composition, the close relationship with the immunological
system has been implicated as a critical pathway of mediation (Bermon
et al., 2015; Cerda et al., 2016). Preclinical studies have shown that
exercise increases key antioxidant enzymes (catalase and glutathione
peroxidase), anti-inflammatory cytokines (including IL-10) and anti-
apoptotic proteins (including Bcl-2) in intestinal lymphocytes, while it
decreases proinflammatory cytokines (TNF-a and IL-17) and proa-
poptotic proteins (caspase 3 and 7), leading to an overall reduction in
gut inflammation (Hoffman-Goetz et al., 2010; Hoffman-Goetz and
Quadrilatero, 2003; Packer and Hoffman-Goetz, 2012). Unfortunately,
human clinical research in this area is limited, and the knowledge be-
hind the mechanisms underlying the effects of exercise on gut micro-
biota is still based mainly on animal models. In fact, the first study that
has longitudinally examined the effects of exercise in human gut was
recently published, demonstrating a compositional and functional
modulation of endurance-based training on gut microbiota and fecal
SCFAs, specifically in lean volunteers, showing a decrease in Bacter-
ioides and an increase in Faecalibacterium and Lachnospira followed by
an increase in fecal SCFAs (Allen et al., 2018b). In contrast, these in-
vestigators found a decrease in Faecalibacterium and an increase in
Bacteroides and Collinsella populations in obese volunteers (Allen et al.,
2018b).

Mitchell and collaborators have identified some inconsistencies
between studies after a systematic review, which not only made the
intra-systematic analysis difficult, but also limited the possibilities of
translatability to humans (Mitchell et al., 2018). This finding flagged
the need to standardize protocols when studying physical exercise,
considering mainly the heterogeneity of study design: protocol in-
tensity, training duration, anatomical gastrointestinal region examined
(Denou et al., 2016), age (Mika and Fleshner, 2016), control for dietary
factors (Batacan et al., 2017) and also for the consistency of reporting
(e.g. index used for diversity assessment).

Some exercise protocol details, including the intensity, have to be
thoroughly considered, especially since this feature has the power to
differentiate healthy physical exercise from a stress model (reviewed by
(Clark and Mach, 2016)). Most of the studies mentioned above referred
to voluntary or regular to moderate physical activity, which maintains
the intestinal blood flow during the period of activity, positively
modulating the gastrointestinal motility (Oettlé, 1991), and are well-
accepted protocols for reducing inflammation (Lambert et al., 2008;
Walsh et al., 2011). On the other hand, strenuous exercise (=60-70%
VO2max) has been shown to produce a classical stress response, with
higher concentration of stress-related molecules such as cortisol and
epinephrine (Clark and Mach, 2016; Qamar and Read, 1987), combined
with a reduction in blood supply to the intestinal epithelium which
leads to subsequent reperfusion that ultimately is able to damage the
gut barrier, increasing the permeability and promoting inflammation/
gastrointestinal distress (Lambert et al., 2008; Lamprecht and
Frauwallner, 2012; van Wijck et al., 2012).

The positive effects of exercise on gut health contribute to the un-
derstanding of the general promotion of well-being and quality of life that
exercise physiologically promotes (recently reviewed by (Cerda et al.,
2016)), as well as, to the known primary prevention and improvement of
several pathologies, including neurodegenerative diseases.

2.3. Is the gut microbiome the missing link between exercise and
neurodegenerative diseases?

Considering the already discussed dysbiosis present in various
neurodegenerative diseases, as well as the effects of exercise on both
the gut microbiome and neurodegeneration, it makes sense to trian-
gulate the three, and investigate whether exercise can, at least partly,
modulate neurodegeneration via gut microbiota. The gut microbiome
has been suggested as a driver of variation in cognitive function, with a
positive feedback loop between microbiome diversity and cognition. As
mentioned above, there have been only a few studies that have looked
to the effects of exercise in humans and its influence on the gut mi-
crobiota, and unfortunately, cognition was not one of the scientific
questions covered by those works (Allen et al., 2018b). Fortunately, a
few animal studies have already addressed this question, showing
promising outcomes (Table 1).

Kang et al. (2014) performed a forced exercise paradigm using
running wheels for 16 weeks in adult mice, demonstrating memory
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improvement and a significant alteration in the gut microbial commu-
nity. Specifically, the exercise was able to increase the abundance of
Firmicutes and decrease the abundance of Bacteriodetes and Tenericutes.
Lastly, they found an association between Ruminococcaceae and Lach-
nospiraceae with some fear-conditioning relevant measures. The authors
suggest that the associations demonstrated between the microbial
abundance and the contextual memory could be used as potential mi-
crobiota biomarkers of the exercise effects on cognition, although fur-
ther investigation is clearly required (Kang et al., 2014).

The postoperative cognitive decline is considered a devastating
complication of surgeries, mainly for elderly people (Avidan and Evers,
2016). Interestingly, preoperative exercise, performed 6 weeks before
open tibial fracture in a rat model of metabolic syndrome, was able to
prevent the expected postoperative acute cognitive decline together
with an improvement in a and {3 diversity in the gut microbiome and
increasing abundance of Firmicutes and to decrease the abundance of
Bacteriodetes, indicating an enhancement of dysbiosis induced by the
operation. Furthermore, attenuation in the postoperative neuroin-
flammatory state was observed, and a persistent cognitive improvement
induced by the exercise after three months of the surgery. Since a less
diverse microbiome is associated with a hyperinflammatory state
(Buford et al., 2018), this study supports the hypothesis that the gut
microbiota may have contributed to the inflammatory modulation and
suggests a possible pathway of mediation for exercise in cognitive-re-
lated disorders (Feng et al., 2017). This further suggests that exercise is
a therapeutic intervention to prevent postoperative cognitive decline,
neuroinflammation and to enhance the diversity and stability of the gut
microbiome.

It has recently been demonstrated that exercise could improve
cognitive functions and histological markers of AD, while decreasing
the levels of microorganisms involved in disease exacerbation and in-
creasing the abundance of beneficial SCAFs-producing bacteria
(Abraham et al., 2019). This is the first study addressing the intestinal
microbiome mediation of exercise in an AD model. Specifically, APP/
PS1 transgenic mice were exposed to 20 weeks of a protocol of treadmill
running, inducing an increase in spatial memory, the abundance of
Eubacteria, Roseburia, and Clostridia in AD mice and to decrease the
abundance of Prevotella, Bacterioides, Bacterioides fragilis and L. johnsonii
in AD mice. Another interesting finding was the correlation between B.
thetaiotaomicron levels and poorer results in the Morris water maze test
(assessing spatial hippocampal memory) and the positive correlation
between L. johnsonii levels and B-amyloid content and localisation.
Altogether these data suggest that the beneficial effects of exercise
could be partly mediated by alteration of the microbiome in AD. Fur-
thermore, these findings suggest potential pathways linking gut mi-
crobiota with neurodegenerative diseases and open exciting new ther-
apeutic possibilities. More studies should address this relationship to
establish the link between gut dysbiosis and AD pathogenesis, as well as
expand to other neurodegenerative diseases which might share
common gut-related mechanisms.

3. Diet
3.1. Diet as an intervention for neurodegenerative diseases

There are extensive studies documenting a close relationship be-
tween dietary patterns and risk factors for neurodegenerative diseases
(reviewed by Erro et al., 2018; Luchsinger et al., 2007; Solfrizzi et al.,
2011). For example there is evidence that high consumption of satu-
rated fat exacerbated neurodegeneration in AD and PD (Bousquet et al.,
2012; Petrov et al., 2015) by enhancing oxidative stress and lipid per-
oxidation (Morris et al., 2010; Studzinski et al., 2009). Epidemiological
studies in HD have associated higher diary consumption and higher
caloric intake with earlier onset of the disease (Marder et al., 2013).
However, a preclinical study reported no effects of high fat diet on the
progression of HD in a preclinical model (van der Burg et al., 2008).
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Other studies have shown that increased consumption of saturated fat
induces an inflammatory response whereby peripheral immune cells are
recruited to the central nervous system (Buckman et al., 2014), which
may explain the exacerbation of symptoms in diseases mentioned pre-
viously.

Dietary manipulation has been sought after as a therapy for mod-
ifying the symptoms of the aforementioned diseases. An underlying
theme of such diet-based intervention is that nutrients and metabolic
substrates can exert beneficial effects on neuroinflammation and neu-
ronal function as well as improving the dysfunctional metabolic
homeostasis commonly reported in these diseases.

The ketogenic diet (KD) was initially introduced as an intervention
for epilepsy treatment and its therapeutic potential has been studied in
various neurological disorders including AD, PD, HD, multiple sclerosis
and autism spectrum disorder (Newell et al., 2016; Ruskin et al., 2013;
Swidsinski et al., 2017; Van der Auwera et al., 2005). This diet is
characterized by a high-fat, adequate-protein and low-carbohydrate
intake and aims to restrict glycolysis and increase fatty acid oxidation
to ketone bodies, resulting in a state of ketosis whereby ketone bodies
replace glucose as primary energy source for the brain. There has been
some success in utilizing KD to improve symptoms of preclinical models
of AD, PD and HD (Beckett et al., 2013; Brownlow et al., 2013; Ruskin
etal., 2011; Van der Auwera et al., 2005) as well as clinical trials for PD
and AD patients (Henderson et al., 2009; Vanltallie et al., 2005).

Several studies have elucidated the therapeutic effects and me-
chanisms of KD, which has been extensively reviewed elsewhere
(Gasior et al., 2006). For example, KD can protect against oxidative
stress and normalize neuronal bioenergetics by stimulating mitochon-
drial biogenesis and stabilizing synaptic function, as well as stimulating
BDNF production (Genzer et al., 2016). Thus, the effects of KD in at-
tenuating the symptoms of various neurological diseases could be
mediated by therapeutic effects on mitochondrial impairment, a well-
documented deficit in AD, PD and HD. Notably, the neuroprotective
effects of KD may be, in part, mediated by ketone bodies. AD risk scores
were reported to improve when f-hydroxybutyrate, a ketone body re-
leased during KD, was administered to AD patients (Henderson et al.,
2009). Infusion of B-hydroxybutyric acid protects mice from dopami-
nergic neurodegeneration and motor deficits induced by MPTP (Tieu
et al., 2003). Furthermore, B-hydroxybutyrate could inhibit the de-
gradation of an important neurotransmitter, y-aminobutyric acid
(GABA), and therefore increase the availability of GABA in the brain, as
enhancement of GABA levels were shown in clinical models (Dahlin
et al. 2005, Wang et al. 2003, Suzuki et al. 2009).

In addition to the KD, consumption of a Mediterranean diet (MD)
has been reported to be protective against the occurrence of several
different health outcomes. MD is not a specific diet but rather a col-
lection of eating habits traditionally adhered to by people in the
countries bordering the Mediterranean Sea. The diet is characterized by
a high dietary intake of fruit, vegetables, legumes, complex carbohy-
drates, with moderate consumption of fish and olive oil as the main
source of fats and a low-to-moderate amount of red wine during meals.
A meta-analysis on the consumption of MD revealed better cognitive
scores (Psaltopoulou et al., 2013; Sofi et al., 2010) and hence, was
thought to have potential as a therapeutic treatment for various neu-
rological disease. Indeed, multiple preclinical and clinical studies pro-
vided evidence for a favourable relationship of MD with reduced risk of
AD (Mosconi et al., 2014; Scarmeas et al., 2006, 2009) and later onset
of PD (Alcalay et al., 2012), although there are no clear benefits of MD
on HD (Marder et al., 2013). The Mediterranean diet is high in mono-
unsaturated and polyunsaturated fats, both of which have been linked
to overall reduced risks for AD and PD (Calon and Cole, 2007; de Lau
et al., 2005; Kamel et al., 2014). In addition, docosahexaenoic acid
(DHA), an omega-3 fatty acid enriched in the brain and enriched in the
MD from high fish intake, is known to have anti-depressive effects and
is capable of improving cognitive performance including learning and
memory (Gamoh et al., 1999, 2001; Gharekhani et al., 2014; Hashimoto
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et al., 2002). Interestingly, KD also results in enhanced levels of DHA
and other fatty acids, including eicosapentaenoic acid (EPA) and lino-
leic acid (LA) in children (Dahlin et al., 2007).

Given that DHA is known to promote neuronal growth and learning,
as well as neuroimmunomodulation (Salem Jr et al., 2001), it is not
surprising that DHA supplementation has been beneficial in improving
the symptoms of neurodegenerative diseases (Bousquet et al., 2009;
Cansev et al., 2008; Hacioglu et al., 2012; Ozsoy et al., 2011). Several
epidemiological studies revealed that high dietary intake of DHA and
other PUFAs, was associated with reduced risk of AD, PD, HD and ALS
as well as improving depressive symptoms in PD (Barberger-Gateau
et al., 2002; da Silva et al., 2008; Fitzgerald et al., 2014; Morris et al.,
2003; Quinn et al., 2010; Vaddadi et al., 2002). Notably, the DHA levels
in AD and PD subjects were extremely reduced (Fabelo et al., 2011;
Tully et al., 2003) and oral supplementation with DHA could normalize
its deficiency. Preclinical studies have also elucidated the disease-
modifying mechanisms of DHA which decreased neuro-inflammation
and amyloid-beta load in AD brain, as well as attenuating dopaminergic
neuronal death in PD through activation of Akt/p-Akt and Bcl-2 path-
ways (Calon et al., 2004; Hacioglu et al., 2012; Lim et al., 2005;
Oksman et al., 2006; Salem Jr et al., 2001).

Moreover, the Mediterranean diet is rich in polyphenols, vitamins C,
E, B12, folate and carotenoids, and may counteract the detrimental
effects of oxidative stress and lipid peroxidation, so as to be protective
against not just cardiovascular disease, but also beneficial for brain
health. This diet is rich in dietary antioxidants and limited in amount of
saturated fat which may contribute to the lower risk for specific neu-
rodegenerative diseases, such as PD (Gao et al., 2007).

Although there are some inconsistencies between preclinical and
clinical studies, the neuroprotective effects of these dietary manipula-
tions observed in preclinical models warrant further investigation of the
mechanisms, as well as more clinical research to explore their ther-
apeutic potentials for other neurodegenerative diseases beyond AD and
PD. The beneficial effects of these dietary patterns may be partly due to
the direct action of the supplementation of specific compounds on the
host cells (Rabot et al., 2016). However, given the important role of diet
in shaping the bacterial communities in the gut, it is also likely that
some of the neuroprotective effects may be mediated by the gut mi-
crobiota.

3.2. Modulation of gut microbiota through diet

Diet is a key contributor in sculpting the microbial communities in
the gut, and changes in dietary pattern can directly influence the
composition and functionality of the gut microbiota, through the
availability of macro- and micronutrients in the gut. Extensive studies
have been performed, both preclinically and clinically, to examine the
effect of dietary patterns on gut bacterial composition. Long-term high
dietary intake of saturated fat and simple sugars, characteristic of a
‘Western diet’, has been linked to Bacteroidetes, especially the bile-tol-
erant microorganisms including Alistipes spp. and Bacteroides spp., with
decreased levels of Firmicutes in humans as well as preclinical models
(Turnbaugh et al., 2009). A short-term dietary change can alter gut
microbial populations within 24 hours, although the main enterotypes
remain largely similar (Turnbaugh et al., 2009). Individuals consuming
plant-based diets have a more complex microbiome compared to those
with animal-based diets, more specifically, they have enhanced levels of
fiber-fermenting bacteria which leads to augmented levels of fermen-
tation end products including the SCFA in the local gut environment as
well as the circulatory system (Wu et al., 2011).

It is not surprising that the aforementioned dietary interventions
would have some effect on the gut microbial population. There are
some studies on the effect of KD on the gut microbiota, albeit with some
contradictory evidence. Ma et al. reported a reduction in the relative
abundance of Desulfovibrio and Turicibacter and an enrichment in
A.muciniphila and Lactobacillus (Ma et al., 2017), one of which is a
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known SCFA producer and both are commensal bacterium (Dao et al.,
2016; Derrien et al., 2004; Lukovac et al., 2014). Many independent
studies reported that KD decreased overall microbial diversity based on
the Shannon index and observed taxa (Ma et al., 2018; Newell et al.,
2016; Olson et al., 2018). However, there is evidence that the effects of
KD are biphasic, whereby the bacterial diversity is reduced in the be-
ginning of a KD intervention, which subsequently normalizes and then
exceeds the baseline (Swidsinski et al., 2017). Notably, the microbiota
composition shaped by intermittent fasting is not similar to those in KD
(Beli et al., 2018).

Adherence to the Mediterranean diet has been shown to be bene-
ficial to cognitive health and was associated with higher abundance of
Bacteroidetes and Prevotellaceae and Prevotella and lower concentration
of Firmicutes and Lachnospiraceae (De Filippis et al., 2016). Higher levels
of fecal propionate and butyrate were detected in subjects with higher
adherence to MD (Gutiérrez-Diaz et al., 2016), which were associated
with increased diversity when compared to those consuming a Western
diet.

Increased consumption of omega-3 fatty acids, found in fatty fish,
led to increased circulating DHA levels which correlated with high le-
vels of Lachnospiraceae and Ruminococcacae family, taxonomic groups
of the human gut involved in the fermentation of dietary fibers to
produce SCFA (Biddle et al., 2013). Some of these dietary associations
with gut bacteria appear to be mediated by the abundance of fecal
metabolite N-carbamylglutamate (Menni et al., 2017). In addition, the
dietary intake of polyphenols, vitamins and other micronutrients also
have the capacity to shape the gut microbiome (reviewed by Serra
et al., 2018).

The gut microbiome composition is malleable and quick to respond
to changes in dietary patterns. Hence, it entirely plausible that dietary
manipulations could exert at least some of their effects on general
physical as well as cognitive well-being through gut microbiota.

3.3. Gut microbiota as mediators of dietary effects on neurodegenerative
disease

The gut microbiota appears to play pivotal roles in regulating host
metabolism, endocrinology and physiology. A seminal study demon-
strated that gut microbiota are not merely reflective of dietary intake
but they can be key mediators of metabolic state (Turnbaugh et al.,
2006). Subsequent studies have highlighted the link between the reg-
ulatory effect of diet on cognition and behaviour to the compositional
changes in the gut microbial population (Table 1).

The high-fat diet is known to play a key role in the aetiology of
various metabolic diseases, or ‘metabolopathies’, and has been asso-
ciated with increased risk for various neurodegenerative diseases in-
cluding AD and PD. The cognitive impairments and the increased
neuroinflammation induced by high-fat diets appear to be mediated, at
least partly, by gut microbiota (Bruce-Keller et al., 2015). Furthermore,
high-fat diets increase anxiety-like behaviours, and this association also
appears to be mediated by the gut microbiota (Kang et al., 2014),
possibly through the HPA axis (Sivanathan et al., 2015). Since the HPA
axis establishes a crucial communication between the gut and the brain,
it has been suggested that HPA dysfunction may lead to modification in
intestinal permeability, motility and mucus production (Fung et al.,
2017), effects which may be attenuated by the supplementation of
polyphenols and other dietary interventions (Li et al., 2018).

There are additional studies highlighting the role of the gut mi-
crobiota in mediating the effects of the aforementioned dietary pat-
terns. A diet high in fiber would result in an enrichment of fiber fer-
mentation and SCFA producers, leading to an overall increase in
microbial by-products, which has been shown to benefit cognitive
performance in both humans and animal models (Hanstock et al., 2004,
2010).

Moreover, dietary intake of DHA has been shown to be associated
with reduced risk of AD and PD. The antidepressant-like effects of
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dietary consumption of DHA may be, in part, mediated by the gut mi-
crobiome in addition to directly regulating gene expression and neu-
rotransmission (Miiller et al., 2015). Recent evidence demonstrated that
omega-3 PUFAs differentially shaped the murine gut microbiota (Davis
et al., 2017). The authors reported that Allobaculum and Ruminococcus
significantly correlated with behavioural changes observed in the male
mice. Supplementation of EPA and DHA changed gut microbiome
composition and attenuated corticosterone response from early-life
stress (Pusceddu et al., 2015). Moreover, transplantation of microbiota
from mice fed with fish oil, to mice fed with lard, resulted in the alle-
viation of inflammation and adiposity caused by high saturated fat in-
take (Caesar et al., 2015). This study highlighted the role of A. muci-
niphila in mediating the anti-inflammatory effects of fish-oil
supplementation and, yet again, demonstrated the key role of micro-
biota in mediating protective effects of dietary manipulation.

KD has been shown to elicit its neuroprotective effects via several
pathways (reviewed in Masino and Rho, 2012), including the gut-mi-
crobiota. The anti-seizure effects of KD were negated in germ-free mice
as well as antibiotic-treated mice and restored once the gut was re-
colonized with SPF gut microbiota (Olson et al., 2018). The gut mi-
crobiota may confer its beneficial effects via modulating selective me-
tabolism of gamma-glutamylation and other ketogenic amino acids
which were reflected in the serum and resulted in an increase in brain
GABA levels (Olson et al., 2018). Another study revealed that mice fed
with KD had enhanced cerebral blood flow, as well as elevated relative
abundance of beneficial microbes which inhibited mechanistic target of
rapamycin (mTOR) signaling by activating endothelial nitric oxide
synthase (eNOS), resulting in improved neurovascularisation (Ma et al.,
2018). Furthermore, (D)-3-hydroxybutyrate ketone body production,
which is altered by HD interventions, is regulated by the gut microbiota
and has the capacity to interact with the peripheral tissues as well as the
brain via GPCR signaling, in addition to epigenetically regulated genes,
to protect against oxidative stress (Ma et al., 2018).

Diet has thus been used as a therapeutic agent to modify the severity
of various neurological diseases with some degree of success and there
is evidence that at least some of the observed effects may be mediated
by gut microbiota.

4. Stress
4.1. Stress as a risk factor for neurodegenerative diseases

Stress can be classified as environmental (e.g. climatic extremes,
noise, toxicants/pollutants), physical (e.g. sleep deprivation, under-
nutrition, strenuous exercise) and psychological (e.g. chronic anxiety,
fear, excessive cognitive demands) (reviewed by (Karl et al., 2018)) and
it is present ubiquitously, to varying extents, in daily life. Different
biological effects, including the core stress response system, the hy-
pothalamic—pituitary—adrenal (HPA) axis, promoted by severe, chronic
or uncontrolled exposure to those stressors, have been studied and the
maladaptive changes in brain structure and function leading to negative
physical and mental consequences are well described (Lupien et al.,
2009; McEwen, 1998; Nutt and Malizia, 2004). The ability of stress to
mediate pathological changes increasing the vulnerability or even
predisposing susceptibility to diseases has been widely explored, in-
cluding for cardiovascular diseases, gastrointestinal and psychiatric
disorders (Caruso et al., 2018; Ross et al., 2018). Similarly, there is
substantial evidence that stress can modulate the pathogenesis of var-
ious neurodegenerative diseases.

Preclinical and clinical studies have shown that stress can accelerate
onset of AD and exacerbate pathology (reviewed by (Futch et al., 2017;
Machado et al., 2014)). Stressful events can trigger cellular, molecular
and behavioural hallmarks of AD, accelerating the appearance of the
disease (reviewed by (Caruso et al., 2018)). Furthermore, increased
cortisol levels are consistently observed in patients affected by AD
(Curto et al., 2017; Greenwald et al., 1986; Hoogendijk et al., 2006;
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Peskind et al., 2001), and this is not surprising considering the burden
of the diagnosis and the devastating nature of the disease, which in
itself can be considered a stressful condition. Some mechanisms of
mediation between stress and AD have been proposed, such as altered
expression and function of amyloid 3 (APB) and tau proteins, as well as
neuroinflammation (Carroll et al., 2011; Chong et al., 2005; Ricci et al.,
2012). In addition, glucocorticoids and/or corticotropin-releasing hor-
mone (CRH) could act as mediators, and centrally contribute to the
pathology, since transgenic mice overexpressing CRH show increased
levels of phosphorylated tau in the hippocampus (Carroll et al., 2011).
Similarly, antagonism of CRH demonstrated positive effects on both Ap
amyloid and tau pathology, supporting the idea of a potential new
therapeutic target for AD based on the stress response (reviewed by
(Futch et al., 2017)). Moreover, a role for stress as a link between
psychiatric disorders and AD, focusing on neuronal resilience and al-
lostatic load, has been suggested (reviewed by (Ross et al., 2018)).

Similarly, the potential role of stress in the pathogenesis of PD has
been explored (Djamshidian and Lees, 2014). Extreme psychological
stress exposure, including that associated with holocaust and war, was
found to be clinically associated with the development and incidence of
PD (Gibberd and Simmonds, 1980; Salganik and Korczyn, 1990). Fur-
thermore, the burden of diagnosis together with the uncertainty of PD
progression is itself a psychological stressor, and has been shown to
worsen symptoms and the functional capacity leading to an overall
impairment in the quality of life (Austin et al., 2016). Indeed, patients
with PD demonstrate increased levels of stress, indicated by increased
cortisol levels when compared to healthy controls (Charlett et al., 1998;
Soares et al., 2019). Regarding mechanisms, it has been suggested that
stress could contribute directly to dopaminergic loss, culminating in
nigrostriatal degeneration in susceptible individuals (Smith et al., 2002,
2008). Furthermore, stress as a link between psychiatric disorders and
neurodegenerative diseases is also relevant for PD; specifically stress as
a contributor to the development of depression, which is a common
non-motor symptom that precedes the motor symptoms in PD patients
(Dallé and Mabandla, 2018). Besides the shared role for stress in the
aetiology of both depression and PD, it has been suggested that de-
pression may contribute to worsening the motor symptoms, possibly
injuring the nigrostriatal system, although more studies are needed to
clarify this relationship (Hemmerle et al., 2012).

Similarly, for HD, stress is also able to modulate the pathogenesis of
the disease (reviewed by (Mo et al., 2015)). Preclinical studies have
suggested an increased susceptibility to stress in R6/1 HD transgenic
mice together with relevant changes in the HPA axis and hippocampus
(Du et al., 2012; Mo et al., 2013, 2015). Clinical studies have revealed a
similarly dysfunctional HPA axis in HD patients, including the balance
between mineralocorticoid and glucocorticoid receptor signaling (Aziz
et al., 2009), correlating with HPA-axis changes in the R6/2 transgenic
mouse model of HD (Bjorkqvist et al., 2006) (reviewed by (Rodrigues
et al.,, 2018)). Collectively, these data suggest that stress should be
considered as a potential risk factor for neurodegenerative diseases and
that it is necessary to uncover the mechanisms of modulation inter-
connecting stress with these diseases.

4.2. Stress modulates microbiota

Recent evidence has linked stress to gut dysbiosis suggesting that
the intestinal microbiota could serve as mediators of chronic stress re-
sponses (Karl et al., 2018; Mackos et al., 2016; Sudo et al., 2004). In-
deed, one study in germ-free mice demonstrated that a mild restraint
stress induced an exacerbated release of corticosterone and adreno-
corticotropic hormone (ACTH) when compared with controls, in-
dicating a critical role of microbiota in the development of the HPA axis
and the stress response (Sudo et al., 2004). In fact, gut microbes have
been shown to contribute to several physiological and behavioural
consequences of stress exposure, such as the above-cited HPA axis
dysregulation (Gareau et al., 2007; Sudo et al., 2004), increased
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inflammation (Bailey et al., 2011; Maslanik et al., 2012), impaired
cognition (Gareau et al., 2011), altered social behaviour (Bailey and
Coe, 1999) and impaired intestinal barrier function (Bailey and Coe,
1999; Gareau et al., 2007; Mackos et al., 2016; Soderholm and Perdue,
2001; Zheng et al., 2013, 2017) leading to intestinal permeability and
ultimately establishing a ‘leaky gut’ (Ait-Belgnaoui et al., 2012;
Eutamene et al., 2007; Zareie et al., 2006). Nevertheless, stressor ex-
posure is able to directly affect the composition of the gut microbiota,
damaging the ecology of the intestinal microbial community, and is
thus considered a dysbiosis promoter (Karl et al., 2018; Mackos et al.,
2016; Mika and Fleshner, 2016; Tannock and Savage, 1974).

Animal and clinical studies have shown that stressors negatively
impact the gut microbiota (reviewed by (Bailey et al., 2011; Bailey and
Coe, 1999; De Palma et al., 2014; Karl et al.,, 2018; Tannock and
Savage, 1974)) identifying new avenues by which stress disrupts health.
Regarding animal models of stress, different models were able to alter
the gut microbiota composition, such as maternal separation, restraint
conditions, heat stress, noise and crowding (Bailey et al., 2011; Bailey
and Coe, 1999; O’Mahony et al., 2009; Tannock and Savage, 1974).
Specifically, one robust finding has been the lower levels of Lactoba-
cillus observed after maternal separation (Bailey and Coe, 1999) and
chronic restraint stress (Zheng et al., 2013). Interestingly, the reduced
abundance correlated with stress and did not correlate with cortisol
levels, indicating an independent pathway of modulation (Bailey and
Coe, 1999). In accordance with these findings, when oral Lactobacillus
was administered in a rodent model of stress, the behaviour, cognition
and biochemical parameters were improved (Liang et al., 2015),
whereas the corticosterone levels were decreased (Gareau et al., 2011)
and the barrier leakiness prevented (Ait-Belgnaoui et al., 2012). Also,
an increase in the family Clostridiales has been observed after different
chronic stress paradigms, as well as a decrease in abundance of Bac-
teriodes due to stress, both correlating with the altered levels of proin-
flammatory cytokines (Bailey et al., 2011; Galley and Bailey, 2014;
O’Mahony et al., 2009). Collectively, these data support the importance
of the gut-brain axis in modulating the stress response (Cryan and
Dinan, 2012).

4.3. Are gut microbiota targets for stressors in neurodegenerative diseases?

The involvement of the gut-brain axis in various central nervous
system disorders related to stress has been the focus of several reviews
(Bravo et al., 2012; Collins et al., 2012; Cryan and Dinan, 2012; Foster
and McVey Neufeld, 2013; Scott et al., 2013). However, the particular
relationship between stress, gut microbiota, and neurodegenerative
diseases, as well as cognition and behaviour, remain underexplored.
Few studies have addressed this relationship, as shown in Table 1.
Burokas and colleagues (Burokas et al., 2017) evaluated the effect of
chronic psychosocial stress in mice focused on the microbiota effect and
how the nurturing of the community with the use of prebiotics (fructo-
oligosaccharides (FOS) and galacto-oligosaccharides (GOS) and a
combination of both) could modulate this effect (Burokas et al., 2017).
This study indicates an impairment of cognition induced by the stress
model together with a change in the microbiome profile, with an es-
sential decrease in the Bifidobacterium abundance and a decrease in the
Actinobacteria:Proteobacteria ratio, which interestingly is the profile
described in patients with major depressive disorder (Jiang et al., 2015;
Kelly et al., 2016). All these effects were ultimately prevented by the
prebiotic treatment.

Prenatal stress has also been shown to be able to modulate cognition
and microbiota composition. In fact, restraint stress during the last
week of pregnancy in rats can induce long-term exacerbation in the
HPA response to acute stress, cognitive impairment and dysfunctional
gastrointestinal development and function, associated with changes in
intestinal microbiota composition (Golubeva et al., 2015). Specifically,
male offspring from dams exposed to prenatal stress demonstrate an
increase in the abundance of Oscillibacter, Anaerotruncus, and
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Peptococcus (from Clostridiales order) and a decrease in the abundance
of Streptococcaceae, as well as an impairment in distal colon innervation
with enhanced colonic secretory response to norepinephrine. Those
findings suggest that prenatal stress has long-term effects that pass
through the central nervous system but also affect the gastrointestinal
tract, with impacts on gut neurodevelopment and gut microbiota.
Likewise, prenatal stress was able to produce long-term modifications
in cognition and microbiome composition in female offspring as well as
intrauterine dysfunction, implicating the microbiota as a link between
the acute and chronic effects of stress (Gur et al., 2017). Specifically,
prenatal stress decreased the abundance of Bacteriodetes and Firmicutes
as well as Bifidobacteriaceae, Rikenellaceae and S24-7 and increased the
abundance of Proteobacteria. In addition, prenatal stress produced in-
flammatory changes in utero, BDNF dysregulation and altered the mi-
crobiome during pregnancy. Overall, these studies indicate that ex-
posure to stress during gestation can induce intestinal cognitive
impairment together with dysbiosis into offspring adulthood, sug-
gesting a new approach of modulation to prevent those negative out-
comes.

More recently, a study showed that psychosocial stress could ex-
acerbate the PD phenotype, associated with the establishment of a
dysfunctional gut-brain axis in mice (Dodiya et al., 2018). Six weeks of
restraint stress was able to increase stress markers as well as to increase
intestinal permeability when compared to control mice. In addition,
stress exacerbated pathological features including neuroinflammation,
cell death in substantia nigra and reduced striatal dopamine and me-
tabolite levels. The rotenone animal model of PD exhibited dysfunction
in the intestinal barrier, as well as gut and central inflammation, which
was exacerbated by the stress model. Regarding microbiome composi-
tion, it was demonstrated that the stress model can decrease the
abundance of Lactobacillus when compared with control mice, which is
considered a bad outcome since this genus is considered to promote
anti-inflammatory function. Furthermore, the PD rotenone model can
increase the abundance of Akkermansia, mucin-degrading bacteria, and
stress was also able to potentiate this effect. Altogether, these data
provide evidence that stress leads to a dysfunctional gut-brain axis,
establishing a dysbiosis environment including gut permeability and
inflammation which is capable of potentiating the PD pathology and
phenotype. More studies are needed to further test this hypothesis,
clarifying whether this dysbiosis is a key component of PD pathogenesis
or whether it is another consequence of the disease. If indeed the gut
microbiome can modulate pathogenesis this could provide a new
therapeutic target for the prevention and treatment of PD.

5. Concluding remarks

A higher diversity in the gut microbial community and a positive
balance between commensal/pathogenic bacteria, together with gen-
eral gut health including integrity and functionality, have been re-
markably associated in recent years with various aspects of brain
function, affect and cognition. Furthermore, gut dysbiosis has been
associated with a wide range of neurodegenerative diseases. The con-
cept that human gut microbiota constitutes a dynamic ecosystem con-
stantly challenged by many variables, including environmental factors,
provides hope for new potential therapeutic targets for dysbiosis-re-
lated diseases. In fact, negative effects of stress on gut dysbiosis, asso-
ciated with exacerbation of pathogenesis and of neurological impair-
ments, suggest that the gut microbiota could be a stressor target in
neurodegenerative diseases. Furthermore, positive effects of exercise
and diet on gut microbiota and cognition, have been shown for non-
strenuous exercise and ketogenic diet, Mediterranean diet and Omega-3
supplementation, with impressive cognitive outcomes. In contrast, op-
posite effects have been observed for strenuous (stressful) exercise, as
well as Western and high fat diets (schematized in Fig. 1). Nevertheless,
a causal relationship between gut microbiota and the pathogenesis and
progression of neurodegenerative diseases is yet to be comprehensively
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demonstrated, either preclinically or clinically. Understanding the
mechanisms by which key environmental factors (e.g. exercise, diet and
stress) can modulate neurodegeneration, via interactions between the
periphery and the nervous system, including intermediates such as gut
microbiota, will have major therapeutic implications. More research is
needed to address the many remaining questions in this field and sys-
tematically investigate the gut, and its microbiota, as potential ther-
apeutic targets for neurogenerative diseases, and other dysbiosis-asso-
ciated disorders.
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