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Abstract
Purpose of Review Hypertension is related to impaired metabolic homeostasis and can be regarded as a metabolic disorder. This
review presents possible mechanisms by which metabolic disorders increase blood pressure (BP) and discusses the importance of
the gut as a novel modulator of BP.
Recent Findings Obesity and high salt intake are major risk factors for hypertension. There is a hypothesis of “salt-induced obesity”;
i.e., high salt intake may tie to obesity. Heightened sympathetic nervous system (SNS) activity, especially in the kidney and brain,
increases BP in obese patients. Adipokines, including adiponectin and leptin, and renin-angiotensin-aldosterone system (RAAS)
contribute to hypertension. Adiponectin induced by a high-salt diet may decrease sodium/glucose cotransporter (SGLT) 2 expression
in the kidney, which results in reducing BP. High salt can change secretions of adipokines and RAAS-related components. Evidence
has been accumulating linking the gastrointestinal tract to BP. Glucagon-like peptide-1 (GLP-1) and ghrelin decrease BP in both
rodents and humans. The sweet taste receptor in enteroendocrine cells increases SGLT1 expression and stimulates sodium/glucose
absorption. Roux-en-Y gastric bypass improves glycemic and BP control due to reducing the activity of SGLT1. Na/H exchanger
isoform 3 (NHE3) increases BP by stimulating the intestinal absorption of sodium.Gastrin functions as an intestinal sodium taste sensor
and inhibits NHE3 activity. Intestinal mineralocorticoid receptors also regulate sodium absorption and BP due to changing ENaC
activity. Gastric sensing of sodium induces natriuresis, and gastric distension increases BP. Changes in the composition and function of
gut microbiota contribute to hypertension. A high-salt/fat diet may disrupt the gut barrier, which results in systemic inflammation,
insulin resistance, and increased BP. Gut microbiota regulates BP by secreting vasoactive hormones and short-chain fatty acids. BP-
lowering effects of probiotics and antibiotics have been reported. Bariatric surgery improves metabolic disorders and hypertension due
to increasing GLP-1 secretion, decreasing leptin secretion and SNS activity, and changing gut microbiome composition. Strategies
targeting the gastrointestinal system may be therapeutic options for improving metabolic abnormalities and reducing BP in humans.
Summary SNS, brain, adipocytes, RAAS, the kidney, the gastrointestinal tract, and microbiota play important roles in regulating
BP. Most notably, the gut could be a novel target for treatment of hypertension as a metabolic disorder.
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Introduction

Hypertension causes serious health problems if left un-
controlled [1]; it is the leading contributor to global

disease burden [2, 3]. Hypertension often coexists with
obesity, type 2 diabetes mellitus (DM), and dyslipid-
emia, referred to as metabolic syndrome. Hypertension
with versus without metabolic abnormalities is associat-
ed with higher risk for cardiovascular events. Hence, the
risk stratification of hypertension is based on the num-
ber and severity of metabolic risk factors [4]. Several
guidelines, including the Japanese hypertension guide-
line JSH 2014, for the management of high BP use
obesity, metabolic syndrome, DM, and dyslipidemia for
risk stratification among hypertensive patients [5]. For
hypertensive individuals with several metabolic abnor-
malities, rapid initiation and intensification of BP-
lowering therapy are strongly recommended.
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The number of adults with hypertension worldwide in-
creased from 594 million in 1975 to 1.13 billion in 2015 [6].
In parallel, the prevalence of obesity worldwide increased
more than three times in men and more than twice in women
during the last four decades [7]. According to the Global
Burden of Disease Study conducted in 195 countries, the
prevalence of obesity in 2015 was estimated to be 12% in
adults [8]. With increasing body mass index (BMI), the prev-
alence of hypertension, DM, and dyslipidemia increases in a
linear fashion [9••]. Therefore, hypertension is considered one
of the metabolic disorders.

Interrelationships Between High Salt Intake,
Obesity, and Hypertension

The JSH 2014 strongly recommends that adults should
consume less than 6 g of salt per day. However, salt intake
is still high in Japan. The 2018 ESC/ESH guideline recom-
mends that adults should consume less than 5 g of salt per
day [10]. The 2017 AHA/ACC/ASH guideline defines op-
timal salt intake as consuming less than 1500 mg sodium
(3.8 g salt) per day [11].

High salt intake links not only to increased BP but also
to obesity, i.e., “salt-induced obesity” (Table 1). A cross-
sectional study using a 7-day dietary record suggested
significant associations between salt intake and sugar-
sweetened soft drink consumption in children [12].
However, salt-obesity association was independent of en-
ergy intake [13]. The results suggest that salt intake may
contribute to obesity. In an experimental study, mice fed
on a high-salt diet had increased protein catabolism in the
liver and skeletal muscle and showed increased food in-
take [14]. The catabolized proteins are converted into urea,
which increases water reabsorption in the kidney. The ob-
served increased appetite of mice could be a compensatory
response to the energy-intensive salt-driven protein catab-
olism process.

Metabolic Abnormalities Associated
with High Blood Pressure

Sympathetic Nervous System

Greater sympathetic nervous system (SNS) activity precedes BP
elevation in experimental and human studies [17]. Greater SNS
activity, especially in the kidney, contributes to hypertension
[18]. Renal SNS increases sodium reabsorption and renin secre-
tion and impairs pressure natriuresis. Greater SNS activity also
contributes to metabolic disorders. In patients with metabolic
syndrome, SNS is activated due to hyperinsulinemia,
hyperleptinemia, activated renin-angiotensin-aldosterone system
(RAAS), baroreflex dysfunction, and obstructive sleep apnea
[19, 20]. High-fat and carbohydrate diets stimulate α1- and β-
adrenergic peripheral receptors [21]. Baroreflex, which inhibits
SNS activity in a compensatory manner when BP rises, is im-
paired in obese hypertensives [22]. Central SNS activation, in-
duced by hyperactivity of leptin and the preproopiomelanocortin
pathway, is also related to obesity and hypertension [23].

Increasedmicroglial activation and neuroinflammationwith-
in the brain regions that control autonomic response contribute
to hypertension [24]. SNS activity is heightened by activation
of brain regions controlling autonomic function due to high-fat
diet, salt, stress, and angiotensin II (AngII) [25, 26]. The
paraventricular nucleus of the hypothalamus (PVN) integrates
inputs from the brainstem and circumventricular organs with
the rostral ventrolateral medulla and intermediolateral nucleus
in the spinal cord [27]. In the presence of hypertension, neuro-
inflammation is evident with activated microglia and immigrat-
ing bone marrow progenitors assembled in PVN [28, 29••, 30].
Epigenetic aberration of PVN AngII type 1 receptor (AT1),
caused by DNA methyltransferase 3a, contributes to salt-
sensitive hypertension in rat offspring [31].

Adipokines

Adipocytes secrete a variety of bioactive substances, referred
to as adipokines. Under physiological conditions, adipocytes

Table 1 Salt-induced obesity: observations and possible mechanisms

Clinical/basic Subjects Observations Possible mechanisms Ref

Clinical studies Human Significant association between salt intake and sugar-sweetened
soft drink consumption

NA [12]

Human Significant association between salt intake and body fat mass NA [13]

Basic studies Mice High salt intake induces increased food intake Increased salt-driven protein catabolism [14]

Mice Salt intake activates the reductase-fructokinase pathway in the
liver and hypothalamus, leading to endogenous fructose
production

Increased leptin resistance [15]

Adipocytes High salt increases adipogenesis/lipogenesis and inflammatory
adipokines

Activation of salt-inducible kinase [16•]

BMI body mass index, NA not available
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release anti-inflammatory adipokines including adiponectin,
nitric oxide (NO), transforming growth factor (TGF)-β, and
inerleukin-10, which improve insulin sensitivity and exert
anti-atherosclerotic effect. However, in persons with metabol-
ic disorders, adipocytes are hypertrophied and secrete pro-
inflammatory adipokines including leptin, tumor necrosis
factor-α, angiotensinogen, and interleukin-6, which aggravate
insulin resistance and exert pro-atherosclerotic effect [32].

Lower plasma levels of adiponectin and leptin are associ-
ated with higher BMI [33]. Lower plasma adiponectin levels
are associated with hypertension and metabolic disorders.
Adiponectin decreases the expression of sodium/glucose
cotransporter (SGLT) 2 in the kidney [34•]. Obesity decreases
adiponectin secretion, which leads to higher SGLT2 expres-
sion in obese than in non-obese persons. In contrast, a high-
salt diet activates peroxisome proliferator-activated receptor δ
and adiponectin production, leading to decreased renal
SGLT2 expression and BP. This compensatory mechanism is
impaired in persons with diabetes [34•].

Increased circulating leptin levels are present in animals
and humans with hypertension [35]. Leptin crosses the
blood-brain barrier, acts on the hypothalamus, and regulates
energy metabolism via decreasing appetite and increasing en-
ergy expenditure with heightened SNS [36]. High salt intake
has been reported to activate the aldose reductase-fructokinase
pathway [15] and produce fructose in the liver and hypothal-
amus. Increased fructose contributes to leptin resistance, and
this, in turn, leads to hyperphagia, insulin resistance, fatty
liver, obesity, and hypertension.

Renin-Angiotensin-Aldosterone System

Obesity is associated with increased RAAS activity. RAAS
exists within several organs, referred to as the tissue RAAS
[37]. The brain, heart, kidney, immune cells, vasculature, and
adipose tissue express all components of RAAS [38].
Adipocytes, especially intra-abdominal adipocytes, produce
angiotensinogen and aldosterone. Urinary levels of aldoste-
rone are associated with insulin resistance and are higher in
overweight than in lean normotensive adults [39]. Soluble
factors secreted from the adipose tissue, including
complement-C1q TNF-related protein and leptin, increase al-
dosterone secretion from adrenocortical cells [40–42].

Salt intake may be associated with adipogenesis/
lipogenesis and inflammation via increasing the expression
of adipokines and the RAAS-related components, including
α-adducin-1, cytochrome P450 family 11-subfamily β-2, and
mineralocorticoid receptor [16•].

Reduced resting metabolic rate (RMR), which is partly
determined by RAAS within the hypothalamus, is associated
with obesity [43, 44]. AT1, agouti-related peptides (AgRP),
and the leptin receptor (Lepr) are co-expressed on arcuate
nucleus (ARC) cells in the hypothalamus. AT1 in the central

nervous system increases energy expenditure, whereas AngII
type 2 receptor in adipocytes reduces RMR [45, 46]; AT1 is
expressed in a specific subset of AgRP neurons named SST3
[47, 48]. AT1 is activated via a variety of stimuli including
leptin, high-fat diet, and deoxycorticosterone (DOCA)-salt
and increases thermogenic SNS activity and RMR [49].
Thus, RAAS in the ARC may contribute to obesity-related
hypertension.

Gastrointestinal Tract and BP Regulation

Salt, fat, and carbohydrates are absorbed through the gastro-
intestinal tract, and its dysfunction causes metabolic disorders
(Fig. 1). Thus, the gastrointestinal tract may be regarded as the
essential organ for metabolic syndrome and hypertension
[50].

Gut Hormones

Several gut hormones contribute to vascular function and BP
[51]. Chronic administration of glucagon-like peptide 1
(GLP1) improves endothelial dysfunction and reduces BP in
Dahl salt-sensitive rats with a high-salt diet [52]. These effects
are due to natriuretic effects of GLP1 that are attributable to
changing renal hemodynamics and inhibiting Na/H exchanger
isoform 3 (NHE3) activities in the renal proximal tubule. BP-
lowering effects of GLP1 receptor agonists have been docu-
mented in meta-analysis of clinical trials [53].

Ghrelin, secreted mainly from the stomach, exerts an
orexigenic effect including hunger sensation [54]. We demon-
strated that ghrelin inhibited BP elevation and renal damage
caused by AngII through an anti-oxidative stress mechanism
in hypertensive mice [55]. In this study, ghrelin inhibited
AngII-induced upregulations of TGF-β and plasminogen ac-
tivator inhibitor-1 in the kidney, which results in ameliorating
renal fibrosis. Therefore, ghrelin is a contributor to BP regu-
lation in the context of the gastrorenal axis [56]. Furthermore,
ghrelin increased the expression of mitochondrial uncoupling
protein 2 (UCP2) as well as PGC1α, a key regulator of mito-
chondrial biosynthesis. Ghrelin administration improved
physical function in sarcopenia mice via mitochondrial acti-
vation and muscular enhancement [57].

Taste Perception

Salt taste sensitivity is related to salt consumption and thus
may be associated with hypertension [58]. In Japanese wom-
en, impaired salt taste perception is associated with a higher
prevalence of hypertension [59].

Taste perception is a sensory function of the gastrointesti-
nal tract. Taste receptors are expressed on the taste buds in the
tongue, the gut, and the brain [60]. Taste receptors in

Curr Hypertens Rep (2019) 21: 63 Page 3 of 10 63



mammals, including the sweet taste receptor, are GTP-binding
protein-coupled receptors (GPCRs). The salt taste receptor is

supposed to be an epithelial sodium channel (ENaC), also
called as an amiloride-sensitive sodium channel.
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Luminal sugar/sweetener sensors in the intestine include
the sweet-responsive type 1 taste receptor subunit 3 (T1R3)
and the taste G protein gustducin. When intestinal sugar/
artificial sweetener sensors are activated, SGLT1 mRNA and
protein expression and glucose-absorptive capacity are in-
creased [61•]. SGLT1 is a major pathway of transporting die-
tary sugars from the intestinal lumen into the enterocytes.
SGLT1 is a Na+/glucose cotransporter, and thus sodium and
glucose are absorbed concomitantly, which may result in in-
creased BP. SGLT1 inhibitors such as phlorizin may reduce
not only glucose but also BP.

Taste perception is modulated by many vasoactive and
gastric hormones. The nervous system associated with the
amiloride-sensitive salt taste receptors is impaired in
aldosterone/sodium chloride-induced hypertensive rats [62].
AngII increases sodium intake via attenuating the sensitivity
of the amiloride-sensitive salt taste receptor and increases en-
ergy intake via enhancing sweet taste sensitivity in mice [63].
Salt and lipid taste sensitivity is attenuated in ghrelin-
knockout mice [64].

Intestinal Sodium Absorption

NHE3-knockout mice have lower BP than the control mice
[65]. Pharmacologic inhibition of the gut NHE3 prevents

hypertension in animals and humans through inhibiting intes-
tinal sodium absorption [66].

Gastrin is secreted from G cells in the stomach and duode-
num, and its secretion is upregulated by an oral sodium intake.
Gastrin is reabsorbed at the renal proximal tubules [67] and
has a natriuretic effect via inhibiting renal sodium transport
through the cholecystokinin type B receptor (CCKBR) on
several nephron segments [68]. Gastrin inhibits the activities
of NHE3 [69] and Na+,K+-ATPase [70] in renal proximal
tubule cells. Gastrin inhibits sodium transport in the intestine
due to stimulating cholinergic nerves or inhibiting sympathet-
ic nerves [56]. Gastrin can be regarded as an intestinal sodium
taste sensor. The CCKBR antagonist reduces natriuresis in
salt-resistant mice with a high-salt diet [71]. Germline deletion
of gastrin [56] and CCKBR [71] in mice reduces sodium
excretion after an oral sodium load, i.e., salt-sensitive
hypertension.

The mineralocorticoid receptor (MR) is expressed on the
epithelial cells in the renal tubules, intestine, and skin. Renal
MR regulates sodium balance through sodium absorption in
the kidney.We investigated the function ofMR in the intestine
using intestinal epithelial cell-specific MR-knockout (IEC-
MR KO) mice [72•] (Fig. 2). IEC-MR KO mice fed on a
standard diet had increased fecal sodium excretion with re-
duced colonic expression of β- and γ-ENaC. DOCA/salt-in-
duced BP elevation was also attenuated in IEC-MR KO mice.

Net sodium absorption in the small intestine is increased in
spontaneously hypertensive rats (SHRs) [73]. The aberrant
expression and function of SGLT1 in the jejunal epithelium
of SHRs have been reported [74]. Baud et al. reported that the
glucose uptake in the bile-deprived alimentary limb (AL) in
the intestine was reduced after conducting Roux-en-Y gastric
bypass (RYGB) in minipigs [75•]. When bile or sodium was
added to AL, glucose uptake was restored that was blocked by
the SGLT1 inhibitor phlorizin. The decrease in glucose uptake
in the intestine after RYGB has been observed in humans. The
glucose- and BP-lowering effects of RYGB may be attribut-
able to reducing activity of SGLT1.

Gastric Sodium/Volume Sensor

RYGB improved diurnal diuresis in morbidly obese patients
[76]. Although patients with RYGB tend to increase salt in-
take, their office BPs were not elevated [77]. The observed
increased salt intake in patients with RYGB may be due to a
compensation for natriuresis or a change in salt appetite after
the intervention. An experimental study suggested that gastric
sodium sensors regulate salt appetite and have natriuretic ef-
fects in response to food and water ingestion [78]. RYGBmay
modify the effects of gastric sodium sensors.

Pressure-induced gastric distention increases both heart
rate and BP in anesthetized rats. Gastric distension affects
the splanchnic nerve systems, and this, in turn, activates the

�Fig. 1 The gut, brain, and kidney play important roles in regulating blood
pressure. Enhanced renal SNS induces sodium retention, increases renin
secretion, and impairs pressure natriuresis. Central SNS is enhanced
through increased microglial activation and neuroinflammation. Leptin
acts on the hypothalamus and regulates energy metabolism by decreasing
appetite and increasing energy expenditure. Adiponectin is induced by a
high-salt diet and decreases the expression of SGLT2. AT1 in the brain
stimulates thermogenic SNS activity, energy expenditure, and RMR.
Low-pressure gastric distention raises blood pressure. Ghrelin exerts an
orexigenic effect and increases taste sensitivity. Gastrin, whose secretion
is stimulated by oral sodium intake, is reabsorbed by renal proximal
tubules and inhibits NHE3 activity. T1R3 and gustducin act as sweet
taste receptors in the intestine. When they sense sugar/sweetener, they
increase the expression of SGLT1. Intestinal MR modulates ENaC
activity and regulates sodium absorption. Sodium in the bile is required
for the proper function of SGLT1 in the intestine. Gut microbiota
produces both pro-inflammatory mediators, such as uremic toxin, and
anti-inflammatory mediators, such as SCFA. SCFA stimulates the
secretion of anti-inflammatory gut hormones, such as GLP-1 from the
enteroendocrine cells. High-salt and high-fat diets alter the microbial
composition and induce intestinal inflammation and gut barrier
disruption, leading to the leaky gut mucosa. AgRP agouti-related
peptide, AngII angiotensin II, ARC arcuate nucleus, AT1 angiotensin II
type-1 receptor, BP blood pressure, ENaC epithelial sodium channel,
GLP glucagon-like peptide, Glu glucose, IL interleukin, Lepr leptin
receptor, MR mineralocorticoid receptor, Na sodium, NHE3 Na/H
exchanger isoform 3, NO nitric oxide, POMC preproopiomelanocortin,
PVN paraventricular nucleus, PYY peptide YY, RMR resting metabolic
rate, SCFA short-chain fatty acid, SGLT sodium/glucose cotransporter,
SNS sympathetic nervous system, TGF transforming growth factor, TNF
tumor necrosis factor
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nucleus of the solitary tract, nucleus ambiguous, lateral retic-
ular nucleus, and ventrolateral medulla [79]. The pressor re-
sponse is attenuated after splanchnic denervation.

Gut Microbiota

High Salt/Fat Intake and Microbiota

Changes in the composition and function of the gut microbiota
contribute to cardiometabolic diseases, including hyperten-
sion, obesity, type 2 DM, and dyslipidemia [19]. When mi-
crobiota from mice with metabolic syndrome or mice geneti-
cally deficient in Toll-like receptor 5 was transferred to the
germ-free wild-type mice, the wild-type mice exhibited met-
abolic syndrome including insulin resistance, obesity, dyslip-
idemia, and hypertension [80].

Most Proteobacteria and some Firmicutes family produce
pro-inflammatory uremic toxins [81, 82], while Lactobacilli
produce anti-inflammatory mediators, including short-chain
fatty acid (SCFA) and NO [83, 84]. SCFAs increase anti-
inflammatory gut hormones, including GLP-1, GLP-2, and
PYY from enteroendocrine cells [83].

A high-salt diet changes the microbial composition; e.g.,
fecal SCFA (acetate, propionate, and isobutyrate) production
is increased in Dahl salt-sensitive rats [85•]. In this study,
differences in microbial composition were present between
the mice fed on normal- and high-salt diets, and the abundance
of seven microbial taxa was associated with BP. It was also
reported that high-salt diet aggravated colitis due to changing
fecal microbiota composition in mice [86•]. In the experimen-
tal murine colitis model, the relative abundance of
Lactobacillus and levels of the butyrate (protective SCFA)
were reduced, which results in a pro-inflammatory state in
the gut.

A high-fat diet also affects the microbial composition and
function [87]. A high-fat diet increases intestinal inflammation
and disrupts the gut barrier, which makes the gut mucosa

leaky. Bacterial endotoxins generated by gut microbiota pass
the mucosal tissue and enter into the systemic circulation if the
intestinal barrier was disrupted [88]. Therefore, the leaky gut
mucosa induced by a fatty diet leads to inflammation [89],
insulin resistance, reducing glucose uptake, and hepatic glu-
cose production in vivo.

Using the macrophage-specific chemokine receptor 2-
knockout and IEC-specific tamoxifen-inducible Ccl2-
knockout mice [90••], we reported that a high-fat diet in-
creased Ccl2 expression in the IECs that results in the recruit-
ment of pro-inflammatory macrophages, increased gut perme-
ability, inflammasome activation, and insulin resistance in the
adipose tissue.

Oral administration of Akkermansia (A) muciniphila im-
proves the gut barrier dysfunction and metabolic disorders in
obese and type 2 diabetic mice [91]. Higher abundance of
A. muciniphila is observed to be significantly associated with
the improvement of cardiometabolic parameters in obese in-
dividuals undergoing caloric restriction [92]. Treatment with
live or pasteurized A. muciniphila had no adverse effects in
humans [93•], suggesting the potential novel treatment for
metabolic disorders in humans.

Gut Microbiota and Hypertension

Emerging evidence indicates that the gut microbiota contrib-
utes to hypertension [94]. Gut microbiota generates vasoactive
hormones including dopamine, norepinephrine, and serotonin
[51]. Gut dysbiosis has been present in both animals [95] and
humans with hyper tens ion [96] . Fi rmicutes and
A. muciniphila decrease while Bacteroidetes increases in ro-
dents and humans with hypertension [94, 96, 97]. The ratio of
Firmicutes to Bacteroidetes may be associated with
hypertension.

Deletion of NHE3 changes gut microbiota composition
and attenuates BP elevation in mice infused with AngII [65,
98]. SCFAs, including acetate, propionate, and butyrate, are
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produced by the interaction between dietary fiber and micro-
biota and enter into the systemic circulation. SCFAs bind to
GPCRs, including Gpr41, Gpr43, Olfr78, and Gpr109a [99],
and regulate BP. For example, SCFAs increase SNS activity
via binding to GPR41 and increase renin secretion through
Olfr78. Conversely, SCFAs induce vasodilation via binding
to Gpr43 and Gpr109a [100]. Therefore, modifying gut mi-
crobiota using probiotics and antibiotics may be a possible
target for regulating BP. A meta-analysis study demonstrated
that probiotics reduce systolic BP by 3.56mmHg and diastolic
BP by 2.38 mmHg in 543 adults with or without hypertension
[101].

Administration of minocycline changed microbiota com-
position and lowered BP in hypertensive rats infused with
AngII [94]. Minocycline, neomycin, and vancomycin have
been shown to increase systolic BP in Dahl salt-sensitive hy-
pertensive rats. However, minocycline and vancomycin de-
creased while neomycin did not change systolic BP in SHR
[102]. The inconsistent results suggest that the differences in
genetic factors and gut microbiomemay influence the effect of
antibiotics on BP. Furthermore, minocycline reduces
microglial activation and neuroinflammation in the brain,
which improved dysbiosis and hypertension [94, 103]. In ex-
perimental studies using two hypertensive rats (rat infused
with chronic low-dose AngII and SHR), the administration
of CMT-3 (chemically modified tetracycline-3) into the cere-
bral ventricle inhibited AngII-induced activation of microglia
and pro-inflammatory cytokines in the PVN of the hypothal-
amus [29••]. Intracerebroventricular CMT-3 administration al-
so attenuates BP elevation and SNS activity in rats infused
with AngII due to improving dysbiosis and pathological alter-
ations (thickening of the muscular layer, increased areas of
fibrosis, decreased goblet cell number, and shortening of villi)
in the gut wall. These results suggest an effect of microglia
and microbiota on BP, and antibiotics may be effective for
controlling hypertension.

Gastrointestinal Bypass Surgery

Gastrointestinal bypass or metabolic surgery improves meta-
bolic abnormalities in persons with morbid obesity. Diabetes,
hypertension, hyperlipidemia, and obstructive sleep apnea
were substantially improved after the intervention [50].
Although BP reduction after gastrointestinal bypass surgery
is attributable to weight loss, BP reduction is observed before
body weight reduction [104]. Therefore, the BP-lowering ef-
fect of the surgery may be independent of weight loss. The
potential mechanisms underlying the BP-lowering effects of
bypass surgery include increased secretion of gut hormones,
including GLP-1 and PYY [105], decreasing leptin levels
[106], increasing urinary sodium excretion [107], change in
gut microbiota [108], and reducing SNS activity [109].

Conclusion

Hypertension often coexists with metabolic abnormalities.
Shared underlying mechanisms between hypertension and
metabolic abnormalities may be present, including altered
gut hormones, intestinal sodium absorption, and gut microbi-
ota. Strategies targeting the gastrointestinal system may be
therapeutic options for improving metabolic abnormalities
and reducing BP in humans.
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