
REVIEW

Intrauterine programming of obesity and type 2 diabetes

Denise S. Fernandez-Twinn1
& Line Hjort2,3 & Boris Novakovic4 & Susan E. Ozanne1 & Richard Saffery4

Received: 1 April 2019 /Accepted: 5 June 2019 /Published online: 27 August 2019

Abstract
The type 2 diabetes epidemic and one of its predisposing factors, obesity, are major influences on global health and economic
burden. It is accepted that genetics and the current environment contribute to this epidemic; however, in the last two decades, both
human and animal studies have consolidated considerable evidence supporting the ‘developmental programming’ of these
conditions, specifically by the intrauterine environment. Here, we review the various in utero exposures that are linked to
offspring obesity and diabetes in later life, including epidemiological insights gained from natural historical events, such as
the Dutch Hunger Winter, the Chinese famine and the more recent Quebec Ice Storm. We also describe the effects of gestational
exposure to endocrine disruptors, maternal infection and smoking to the fetus in relation to metabolic programming. Causal
evidence from animal studies, motivated by human observations, is also discussed, as well as some of the proposed underlying
molecular mechanisms for developmental programming of obesity and type 2 diabetes, including epigenetics (e.g. DNA meth-
ylation and histone modifications) and microRNA interactions. Finally, we examine the effects of non-pharmacological inter-
ventions, such as improvingmaternal dietary habits and/or increasing physical activity, on the offspring epigenome andmetabolic
outcomes.
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P-DMR Prenatal malnutrition-associated differentially
methylated region

PGC-1α Peroxisome proliferator-activated receptor,
gamma, coactivator 1, alpha

POMC Pro-opiomelanocortin

Intrauterine exposures and programming
of type 2 diabetes and obesity

Aside from the direct influences of genetics and the environ-
ment on an individual’s propensity to develop obesity and type
2 diabetes, the last three decades have seen strong evidence to
support the notion that many adult-onset diseases are linked to
in utero exposures. Hales and Barker proposed the ‘thrifty phe-
notype hypothesis’ to explain how poor availability of nutrients
or a poor diet in utero results in poor fetal growth and programs
structural and metabolic responses in the developing fetus [1].
These responses would be advantageous if the nutritional en-
vironment is reflected postnatally, but potentially deleterious in
an energy-rich postnatal setting. This hypothesis has evolved
to encompass the periconceptional period through to infancy
and describes how adverse exposures that occur at critical
points of development may affect function and/or structure
of an organ system into adulthood; it is now referred to as
the Developmental Origins of Health and Disease (DOHaD)
hypothesis.

Fetal undernutrition and overnutrition Fetal growth and
birthweight are crude but commonly used measures of fetal
wellbeing, shown to be regulated by maternal diet, lifestyle
factors and the complex maternal–placental interplay [2]. Low
birthweight is considered a marker for poor fetal nutritional
status and has been associated with metabolic abnormalities,
including type 2 diabetes and cardiovascular disease, in later
life [3, 4]. Indeed, studies on prenatal famine during the Dutch
Hunger Winter [5] showed that individuals exposed to famine
while in utero exhibit decreased glucose tolerance some
50 years later compared with those born the year before the
famine. Meanwhile, studies on adults born during the Chinese
famine, between 1959 and 1961 [6], found that exposed indi-
viduals were more prone to be overweight and have type 2
diabetes, hyperglycaemia and the metabolic syndrome com-
pared with those born after the famine. Additionally, interac-
tions of the effects of the famine with an intergenerational risk
of type 2 diabetes is cited as a major contributor to China’s
current type 2 diabetes epidemic [7]. Twin studies support
these findings: in monozygotic twin pairs discordant for type
2 diabetes, the twin with lower birthweight most often de-
velops metabolic dysregulation [8]. Moreover, young adults
with low birthweight display decreased muscle mass and
height and increased fat mass compared with individuals of
normal birthweight [4, 9]. Finally, more recent studies suggest

that high birthweight is also associated with increased risk of
obesity and type 2 diabetes [10]. This suggests that both fetal
undernutrition and fetal overnutrition increase the risk of poor
metabolic health later in life.

Fat and lean mass, both prenatally and in early postnatal
life, also show relationships with in utero exposure, with a
potential impact on future type 2 diabetes risk. For example,
in a cohort of breastfeeding mother–infant dyads, in utero
exposure to a higher maternal diet quality, based on the 2015
Healthy Eating Index (HEI-2015) [11], was inversely associ-
ated with infant body fat percentage [12]. Postnatally,
breastfeeding or feeding a low-protein formula were associat-
ed with lower gain of fat mass (measured in children aged 5–
8 years), whereas higher protein intake during the first 2 years
postnatally resulted in higher BMI at 9 years of age and into
adulthood [13].

Infections and inflammationMetabolic and immune pathways
are extensively integrated in health and disease. Specific me-
tabolites in the cholesterol and tricarboxylic acid (TCA) cycle
have an effect on inflammation [14, 15], and, conversely, in-
fectious diseases in pregnancy may contribute to developmen-
tal origins of metabolic conditions [16]. Viral infections in
pregnancy, specifically by enteroviruses [17], have been asso-
ciated with type 1 diabetes in the offspring, though the mech-
anisms are complex and evidence circumstantial [18, 19]. Two
recent systematic reviews and meta-analyses identified a po-
tentially causative link between maternal viral infections in
pregnancy and type 1 diabetes in the offspring [20, 21].
Interestingly, monocytes from mothers with gestational diabe-
tes show a proinflammatory profile [22], which can also be
induced in fetal monocytes of mothers infected with hepatitis
B virus [22]. Together, these studies highlight a close relation-
ship between hyperglycaemia and inflammatory memory [23].
Infections in pregnancy, such as premature births with
chorioamnionitis, have been associated with histone modifica-
tion changes in cord-blood monocytes [24], and inflammation
memory in vitro is epigenetically modulated [25] and revers-
ible [26]. These findings indicate that infection in utero can
alter epigenetic patterns in offspring cells, supporting a causal
link between infection and offspring obesity, mediated by
metabolic and epigenetic reprogramming.

Environmental chemicalsOther prenatal exposures potentially
linked to type 2 diabetes risk in later life include exposure to
parental smoking [27, 28] and other environmental chemicals.
For example, in utero exposure to dioxins, pesticides or
bisphenol A in mice confers increased risk of developing type
2 diabetes [29]. In humans, exposure to organochlorines, as
measured in second trimester maternal serum, was positively
associated with BMI z scores and being overweight at 7 years
of age [30]. Additionally, exposure to arsenic is linked to
increased risk of gestational diabetes in the Maternal-Infant
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Research on Environmental Chemicals (MIREC) study [31]
and in cohorts in France [32] and China [33], which poses an
indirect threat to the affected offspring since gestational dia-
betes appears to be a programming factor for offspring meta-
bolic dysfunction [34].

Maternal stress Effects of prenatal maternal stress have been
studied in natural disaster cohorts, such as Project Ice Storm,
which included individuals who were exposed to the Quebec
Ice Storm [35]. In the children of mothers who experienced
hardship and stress during the ice storm, the severity of
stress predicted the levels of insulin [36] and C-peptide
[37] secretion. Similarly, a Danish longitudinal study found
that children who were prenatally exposed to bereavement
were more likely to have a type 2 diabetes diagnosis later in
life [38]. Prenatal stress has also been shown to increase rat
offspring susceptibility to diet-induced obesity [39].
Maternal sleep fragmentation-induced stress in mice has also
been shown to result in offspring metabolic disorders, in-
cluding increased body weight, visceral fat mass and
HOMA-IR [40]. It is likely that future studies will continue
to identify additional early-life exposures that impact the risk
of later-life obesity and type 2 diabetes.

Gut microbiota Disruption of the gut microbial community
in newborns of obese mothers has also been shown to con-
tribute to childhood inflammatory diseases, non-alcoholic
fatty liver disease (NAFLD) and increased obesity risk
[41]. This has been supported by studies showing that anti-
biotic use in the first year of life conferred an increased
obesity risk [42], while synbiotics conferred protection
against excessive fat accumulation under a high-fat diet
(HFD) challenge [43]. In non-human primates, a maternal
HFD was shown to reduce intestinal microbiota diversity in
juvenile offspring at 1 year of age, even after switching to a
healthy diet at the time of weaning [44].

Paternal factors Until recently, programming research has fo-
cused mainly on maternal exposures to programming.
Although limited, there is evidence in humans to support pro-
gramming of type 2 diabetes and obesity via paternal expo-
sures; a paradigm coined the Paternal Origins of Health and
Disease (POHaD) [45]. For example, paternal smoking has
been associated with increased body fat in male offspring
[46], while paternal obesity is associated with type 1 diabetes
in offspring [47]. Evidence from animal studies is much stron-
ger and will be discussed later in this review.

Epigenetic mechanisms

Although the relationships between suboptimal in utero envir-
onments and increased risk of subsequent metabolic

dysfunction are well established, underlying mechanisms
have, until relatively recently, been poorly defined. In the last
decade, numerous studies have implicated epigenetic mecha-
nisms in the development of metabolic diseases through gene–
environment interactions [48]. A range of exogenous expo-
sures can influence epigenetic modifications, including the
prenatal environment and adult lifestyle. Of particular note,
compelling reproducible data have linked in utero exposure
to smoking to defined changes in the offspring epigenome
(see below).

Epigenetic mechanisms regulate gene activity in the ab-
sence of changes to the underlying DNA sequence, hence
the name: ‘epi’, meaning ‘above’ in Greek, and ‘genetics’
[49]. Epigenetic mechanisms include DNA methylation, his-
tone variants/modifications, chromatin-modifying proteins
and non-coding RNAs. These processes regulate how densely
specific regions of DNA are compacted, thus either inhibiting
or enabling access of proteins, such as transcription factors, to
DNA [50].

DNA methylation/demethylation DNA methylation is the
most studied epigenetic feature, primarily because its covalent
chemical structure makes it highly stable and, therefore,
quantifiable in a range of archived tissue and cells. DNA
methylation is dispersed at varying densities across the
genome, with specific variations of the methylation pattern
being linked to cell identity and function [51]. In higher
animal species, including humans, the main target is cytosines
in CG dinucleotides, also referred to as CpG sites [52]. One
feature of the vertebrate DNA methylation profile is the
presence of CpG islands, regions of high-density CpG sites,
located near or in gene-promoter regions. Around 29,000 CpG
islands have been identified in the human genome [53]. DNA
methylation in promoter regions may induce transcriptional
inhibition or repression by affecting transcription-factor
binding or recruiting proteins that specifically bind to
methylated CpG sites [54].

DNAmethyltransferases (DNMTs) transfer a methyl group
to the 5′ position of cytosine. DNMT1, the maintenance methy-
ltransferase, copies methylation status of hemimethylated
sites after cell division [51]. In contrast DNMT3A and
DNMT3B carry out de novo DNA methylation of
unmethylated DNA, particularly in early embryonic develop-
ment [55].

Demethylation can be a passive process, such as cell divi-
sion without maintenance by DNMT1, or actively carried
out by several enzymes, including the methylcytosine
dioxygenases (ten-eleven translocation [TET]) enzymes that
oxidise 5-methylcytosine (5meC) to 5-hydroxymethylcytosine
(5hyroxy-meC) and other derivatives [56]. Each of these de-
methylation processes are important for appropriate gene ex-
pression and cell specification, particularly during early preim-
plantation development, as shown in Fig. 1 [57].
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Although less dynamic, methylation also changes throughout
postnatal life and adulthood. It is estimated that methylation of
approximately 30%of all methylated sites in leucocytes or whole
blood changes in an age-dependent manner [58, 59]. The methy-
lation status of blood cells has also recently been shown tomirror
age-related epigenetic signatures in adipose tissue [59].
Therefore, diet and other environmental factors throughout child-
hood and adulthood should also be considered when investigat-
ing epigenetic mechanisms in birth cohort studies of long-term
health, since some epigeneticmarkers at specific loci appear to be
much more flexible compared with those reported as stable
markers over the long term [3].

The number of ‘epigenetic epidemiology’ papers and ‘epige-
nome-wide association studies’ (EWAS) published has increased
sharply in the last 6 years and, coupled with locus-
(gene-)specific epigenetic–environment studies, a plethora of da-
ta has emerged [60]. Despite good-practice approaches, such as
publishing primer sequences and correctly referencing genome
builds and CpG site locations, comparisons between datasets is
not always straightforward, especially regarding the interpreta-
tion of what the ‘functional’ consequence of a change in DNA
methylation means. For example, different quantification tech-
niques have vastly different sensitivities and, therefore, some can
detect small changes in DNA methylation (e.g. Infinium
HumanMethylation arrays or targeted bisulphite sequencing),
while others cannot (e.g. whole-genome bisulphite sequencing
or bisulphite cloning and sequencing) [61]. Second, while
genome-wide association studies (GWAS) studies can be carried
out on any available cell type, DNA methylation varies between
cell types and studies that use whole tissues or whole blood need
to use algorithms to account for different cell types [62].

Histone modifications Histone modifications occur in the N-
terminal tail domains, in the core histone domains and in new-
ly synthesised histones. Histone tails contain numerous sites

that are amenable to acetylation and phosphorylation, which
can alter the charge of the tails, thus affecting chromatin ar-
chitecture through electrostatic mechanisms. These modifica-
tions act as ‘docking’ sites for chromatin ‘readers’ that recog-
nise these modifications and recruit additional chromatin
modifiers and remodelling enzymes [63]. It is now widely
accepted that acetylation of histones inhibits the secondary
and tertiary nucleosome structure, resulting in chromatin
decondensation and increasing access to transcription factors
and co-activators of transcription. In contrast, histone methyl-
ation has opposing effects, causing nucleosomal arrays to fold
and condense, thus allowing active transcription [64].

microRNAs and long non-coding RNAs Yet another regulatory
mechanism contributing to phenotypic variation can occur at
the post-transcriptional and transcriptional level; the emerging
components of this type of regulation are microRNAs
(miRNAs), which are small (21–24 nucleotide long) mole-
cules that bind specifically to the 3′ untranslated regions of
mRNA and interact with the Dicer complex. This binding
sequesters the mRNA for degradation or prevents its transla-
tion by interfering with translation machinery. Additionally,
long non-coding RNAs (lncRNAs) can bind mRNAs and act
as molecular ‘sponges’ with opposing roles in transcript
stabilisation/destabilisation. The roles of these two regulatory
systems in type 2 diabetes pathogenesis has recently been
reviewed by Saeedi et al [65].

Epigenetic variation in utero and metabolic
programming

Maternal exposures Several EWAS studies have found an
association between maternal smoking and altered DNA
methylation in cord blood [66], an effect that can persist

Fig. 1 DNA methylation dynamics during human development. Male
(blue line) and female (red line) embryos follow different DNA methy-
lation patterns, from the birth of the parent through to zygote production
(conception) and blastocyst implantation. Imprinted genes (dashed black

line) do not undergo demethylation post-fertilisation and, hence, reflect
parental-allele-specific methylation. PGC, primordial germ cells.
Adapted from [125], with permission from Elsevier. This figure is avail-
able as part of a downloadable slideset
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postnatally [67] and into adulthood [68]. Maternal smoking
has previously been linked to offspring obesity, with a linear
dose-dependent effect, plateauing at 15 cigarettes or more per
day [69]. Data from multiple studies and meta-analyses sug-
gest a causative link between maternal smoking and increased
risk of obese or overweight offspring [70]. Importantly DNA
methylation at a specific gene, GFI1, was shown to mediate
the effect of maternal smoking on offspring birthweight,
explaining up to 19% of the difference in birthweight between
offspring frommothers who smoked or did not smoke (control
group) during pregnancy [71].

Maternal nutritional status and epigenetics In the first study
examining the effect of the Dutch Hunger Winter on epigenetic
marks (i.e. chemical modifications on the DNA sequence), indi-
viduals who were 60 years old and prenatally exposed to this
faminewere found to have lessDNAmethylation at the imprinted
IGF2 gene locus compared with their unexposed same-sex
siblings [3]. More recently, genome-scale analysis in whole blood
from this cohort identified that prenatal malnutrition-associated
differentially methylated regions (P-DMRs) preferentially
occurred at regulatory regions and were characterised by differ-
ential DNA methylation at regions associated with birthweight
and serum LDL-cholesterol, i.e. INSR and CPT1A [72]. Hence,
differential methylation of the P-DMRs extends along pathways
related to growth andmetabolism. Further exploratory analysis of
six P-DMRs showed that they do not overlap with previously
published adult tissue-specific differentially methylated regions
(DMRs), highlighting that their establishment is dependent on
specific exposure to famine during gestation.

Further evidence for a role of maternal nutrition in regulating
the offspring epigenome comes from the Kiang West
Longitudinal Population Study (KWLPS) [73], which included
a cohort of 14,000 individuals from The Gambia that were sub-
ject to two distinct seasons, a hot dry ‘harvest’ season associated
with high food abundance and a wet ‘hungry’ season associated
with low energy intake [74]. Residents born in the hungry season
were more likely to die prematurely (before the age of 25 years)
[75] and to be small for gestational age [76]. Targeted epigenetic
metastable epialleles, which are genomic regions that show sig-
nificant inter-individual variation in DNA methylation in the
absence of a genetic difference [77], were generally
hypermethylated in individuals conceived during the hungry sea-
son, possibly as a result of increased one-carbon donor concen-
trations in the mother during this period [78]. Subsequent studies
showed that multiple one-carbon donors, folate, riboflavin, beta-
ine and choline all showed season-specific variation and their
plasma concentrations predicted DNA methylation levels at
metastable epialleles [79, 80]. The KWLPS cohort was used in
conjunctionwith other datasets to identify a novel obesity-related
(-predictive) metastable epiallele at the gene encoding pro-
opiomelanocortin (POMC), which is similarly affected bymater-
nal one-carbon donor concentration at conception [81].

Maternal overnutrition/obesity The incidence of maternal obe-
sity at conception and in pregnancy is increasing [82] and there is
evidence that it contributes to increased infant birthweight
(macrosomia and large for gestational age) and higher BMI in
adolescent offspring [83, 84]. Excessive gestational weight gain
(GWG) during pregnancy is also associated with increased off-
spring BMI and inflammatory markers (IL-6 and C-reactive pro-
tein), with early-gestation GWG having a stronger effect on off-
spring BMI at age 5 years and adiposity at age 9 years than mid–
late-gestation GWG [85, 86]. Interestingly, while GWG in all
trimesters affects birthweight, only first-trimester GWG affects
child weight gain, suggesting that moderation during the first
trimester may have the biggest impact on childhood weight [86].

Epigenetics are thought to mediate these effects, prompting
several studies into the DNA methylation changes associated
with maternal obesity [87–89]. Maternal diabetes correlates with
obesity; in these studies, it was either removed as a covariate
[88], was considered indistinguishable from obesity [87] or the
cohort was structured to only contain pregnant women with obe-
sity but not diabetes [88]. Two epigenome-wide studies analysed
blood from the umbilical cord of offspring, and from 4–5-year-
olds and 9–16-year-olds [87], who were exposed to maternal
obesity (with orwithout gestational diabetes) and identifiedmany
differentially methylated sites in exposed offspring. Despite the
relatively modest effect (generally <5% change), such data sug-
gest that maternal obesity can lead to DNAmethylation changes
that are present at birth and remain postnatally.

Animal studies

Much of our understanding of programmed metabolic disease
comes from animal models of under- and overnutrition.
Studies in models of both ends of the nutritional spectrum
have sought to understand potential programming mecha-
nisms of type 2 diabetes and obesity risk by exploring epige-
netic changes throughout the life course of exposed offspring.
Importantly, unlike human studies, animal models allow the
direct assessment of molecular and cellular defects.

Sperm and seminal fluid Paternal low-protein diet (LPD) has
been shown to enhance offspring fetal growth and predisposition
to increased adiposity, glucose intolerance and cardiovascular
dysfunction in the adult [90, 91], with both sperm and seminal
fluid of LPD-fed fathers exerting programming effects. Similarly,
diet-induced obesity in the father programs an impaired metabol-
ic profile in his offspring, [92, 93]. In both fathers whowere LPD
and HFD fed [94], sperm cells displayed global DNA hypome-
thylation and altered miRNA expression. Aside from diet-
induced programming, cold exposure has also been shown to
induce differential methylation in sperm, which conferred en-
hanced brown adipose tissue (BAT) activity and protection from
diet-induced obesity in male offspring [95]. In parallel, it was
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observed in humans that the presence of BAT and the season of
conception were linked to offspring BMI.

Oocytes Mitochondria are the most important organelle in the
oocyte. While somatic cells maintain a healthy population of
mitochondria by mitophagy, this pathway may not be active in
oocytes. Thus, mitochondria damage in these germ cells may
be transmitted to the developing blastocyst [96]. Such mito-
chondrial damage has been shown to occur in oocytes of obese
dams, which have reduced mitochondrial DNA (mtDNA), ac-
cumulate the mitophagy marker phosphatase and tensin
homologue-induced kinase 1 (PINK1) and demonstrate re-
duced developmental potential. The developing blastocysts
show reduced levels of mtDNA and parallel mitochondrial loss
in offspring that is caused by endoplasmic reticulum (ER) stress
and which is reversible by ER stress inhibitors [97].

Pancreatic islets Pancreatic failure and/or peripheral tissue in-
sulin resistance are both programmed by adverse in utero ex-
posures. Islet transcription factors are vulnerable to epigenetic
changes as a response to suboptimal in utero environments
leading to intrauterine growth restriction (IUGR). Uterine ar-
tery ligation in rats led to decreased histone H3 and H4 acetyl-
ation and loss-of-binding of the upstream stimulatory factor 1
(USF-1) transcription factor to the proximal promoter of Pdx1
in pancreatic islets, resulting in its markedly reduced transcrip-
tion [98]. Maternal protein restriction in rats also led to re-
duced expression of Hnf4a in pancreatic islets of young male
offspring in adulthood, which was associated with increased
DNA methylation at the active Hnf4a promoter (P2) and in-
creased repression through histone methylation at the enhanc-
er region of this gene [99]. Consistently, the P2–enhancer
interaction in islets of affected male offspring was significant-
ly reduced, providing a mechanistic basis for reduced Hnf4a
expression. Furthermore, the repressive histone mark, histone
3 lysine 27 trimethylation (H3K27me3), was found to accu-
mulate with age in programmed offspring islets [99]. While
insulin resistance was also observed in the female offspring in
this model of IUGR, this was only evident in older mice [100].
Changes in DNA methylation have also been observed in
pancreatic islets from a mouse model of maternal and fetal
hyperglycaemia. Hypermethylation of the imprinted Igf2/
H19 loci in pancreatic islets was observed and proposed to
drive impaired islet structure and function [101] and, at the age
studied, impaired glucose tolerance was more evident in male
offspring than in females and accompanied by male-specific
transmission to the next generation.

Adipose tissue Adipose tissue has been shown to be an impor-
tant target of developmental programming in animal models of
both maternal undernutrition and overnutrition. In studies carried
out only in male offspring and, specifically, in the epididymal
white adipose tissue (eWAT), both maternal undernutrition [102]

and maternal obesity [103] program an adipose tissue-insulin
resistant phenotype accompanied by increased adiposity [102,
104, 105]. These programmed changes have both been attributed
to epigenetic changes in adipose tissue. In addition, eWAT tissue
hyperplasia due to maternal high-fat feeding during lactation was
associated with increased expression and activity of stearoyl-
CoA desaturase-1 (SCD1), a key enzyme in fatty acid metabo-
lism. Changes in the expression of this enzyme were related to
reduced DNA methylation of the Scd1 promoter [106].

Programmed changes in miRNAs have also been implicated
in the programming of both adipose tissue expandability and
insulin resistance. For example, using a rat model of maternal
protein restriction, it has been shown that the imprinted miR-483
is programmed in eWAT of male offspring [107]. This was ac-
companied by a reduction in the expression of its direct target,
Gdf3, and a reduction in the expandability of adipose tissue and,
therefore, increased ectopic fat deposition, which is a major con-
tributor to the development of insulin resistance. Importantly, an
increase in adipose tissue miR-483 and parallel reduction in
growth differentiation factor 3 (GDF-3) was also observed in
adipose tissue from humans with low birthweight, showing con-
servation of this programmed mechanism. Programmed changes
in miRNAs were also observed in a mouse model of maternal
diet-induced obesity [103, 105]. Maternal feeding of a high-fat
and high-simple-carbohydrate diet led to a programmed increase
in miR-126, which led to a reduction in its direct target, insulin
receptor substrate-1 (IRS-1), in eWAT of male offspring [103].
This programming effect was cell autonomous and was main-
tained in cultured pre-adipocytes differentiated in vitro, demon-
strating that it was related to the programming of the adipocyte
precursor stem cell pool.

Brain The intrauterine environment also imposes important pro-
gramming effects on the developing brain. Hypermethylation
within a 500 bp region of the translation initiation start of the
Pomc gene was observed in female offspring (Wistar outbred
rats) exposed to maternal obesity in utero, corresponding with
decreased Pomc transcription and increased body weight [108].
Diet-induced maternal obesity has also been shown to program
feeding behaviour in the offspring by altering dopamine and
opioid-related gene expression within the mesocorticolimbic re-
ward pathways and hypothalamus [109]. This was linked to
gene-specific promoter hypomethylation of the dopamine reup-
take transporter, the μ-opioid receptor and proenkephalin, lead-
ing to an increased preference for sucrose and fat. The effects of
overconsumption of these highly palatable and energy-dense
foods are associated with obesity.

Conversely, in sheep, exposure to IUGR resulted in increased
H3 lysine 9 acetylation (H3K9Ac) and decreased H3K27me3
modifications associated with the POMC promoter, and de-
creased methylation at a POMC proximal promoter region.
However, these were not associated with either transcriptional
or circulating POMC levels [110, 111]. In male C57BL/6J mice
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with IUGR followed by postnatal catch-up growth, differential
expression and phosphorylation of components of the insulin
signalling pathway in the arcuate nucleus of the hypothalamus
effectively contributed to resistance to the anorectic effects of
central insulin and impaired glucose homeostasis [112].

The importance of intervention studies

Lifestyle: diet and physical activity The influence of dietary
factors on both epigenetic patterns and phenotype provides

a possible link between epigenetic marks and human
metabolism.

Certain nutrients function as substrates for epigenetic
modifications or co-factors for epigenetic enzymes and,
therefore, diet can influence epigenetic patterns by varying
epigenetic substrate availability or by altering the activity
of enzymes that are involved in the addition or removal of
epigenetic marks. A well-studied example is S-adenosyl
methionine (SAM), a methyl donor substrate that provides
methyl groups to both DNA and histone methyltransfer-
ases [113].
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One of the strongest examples of an epigenetic alteration in
adulthood, which is caused by environmental exposures during
prenatal, childhood or adult life, is promoterDNAmethylation of
the key metabolic regulator, peroxisome proliferator-activated
receptor, gamma, coactivator 1, alpha (PGC-1α) (encoded by
PPARGC1A). PGC-1α plays a role in the regulation of genes
required for energy metabolism, mitochondrial biogenesis and
adaptive thermogenesis [114]. PPARGC1A expression is down-
regulated in skeletal muscle from individuals that have impaired

glucose tolerance or diabetes [115], while healthy men exposed
to a high-fat overfeeding (HFO) diet for 5 days show increased
DNA methylation at the PPARGC1A promoter in both adipose
tissue and skeletal muscle [116, 117]. Feeding status has also
been shown to affect methylation state; for example, 36 h of
fasting affected DNA methylation of genes encoding leptin
(LEP) and adiponectin (ADIPOQ) in adipose tissue [118].

Regular exercise has also been associated with wide-spread
DNA methylation changes in a variety of tissues [119]. On the

a

b

c

d
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other hand, sedentary behaviour (9 days of bed rest) in healthy
young men resulted in increased PPARGC1A DNA methylation
and decreased PPARGC1A gene expression in skeletal muscle
[120]. Recent data also shows that exercise may regulate histone
deacetylases (HDAC) that further induce the expression of genes
that play a role in metabolic pathways [121]. All in all, evidence
suggests that a sedentary lifestyle can lead to genome-wide epi-
genetic changes and that physical exercise could be a possible
mechanism to reverse these changes.

The benefits of increased physical activity have been inter-
rogated in animal obesity or HFD-feeding models of pro-
grammed disease. In murine models of maternal obesity, daily
treadmill running for 1 week prior to and throughout gestation
led to improved insulin sensitivity in young adult offspring,
which was associated with prevention of the programmed
reduction in adipose tissue IRS-1 [122]. These exercise-
driven improvements were analogous to those observed in
1-year-old offspring of mothers fed a HFD and housed with
running wheels [123, 124]. The same research group showed
similar benefits to 1-year-old offspring of HFD-fed fathers
that had been exposed to voluntary exercise [92].

Conclusions and future perspectives

There is now compelling evidence for the transmission of poor
metabolic health across generations. Mounting evidence
shows that specific in utero environments (exposures) can

have an impact on offspring epigenetic profile in a manner
that is stable postnatally, into adulthood, in association with
changed phenotype (Fig. 2). Despite these compelling data,
only limited evidence exists for a causal role for epigenetic
variation in mediating the effects of adverse in utero environ-
ment(s) on poor offspring metabolic health. Further additional
longitudinal human studies are urgently needed to build this
evidence base, supplemented with ongoing animal model
studies that allow direct assessments of target tissues of rele-
vance. Such a complementary approach should reveal the ex-
tent to which variation in epigenetic profile might act as a
predictive early-life biomarker of increased metabolic risk,
enabling targeting of novel interventions to those most likely
to benefit. Further, the considerable interest in developing
therapeutic epigenetic-modifying drugs and the increasing
knowledge about the epigenetic-modifying properties of
many dietary factors represent likely future approaches for
modifying and reversing adverse metabolic health trajectories
by (nutri) pharmacogenomic approaches.
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