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Abstract
Significant advances have been made in deciphering the mechanisms underlying fuel-stimulated insulin secretion by
pancreatic beta cells. The contribution of the triggering/ATP-sensitive potassium (KATP)-dependent Ca

2+ signalling and
KATP-independent amplification pathways, that include anaplerosis and lipid signalling of glucose-stimulated insulin
secretion (GSIS), are well established. A proposed model included a key role for a metabolic partitioning ‘switch’, the
acetyl-CoA carboxylase (ACC)/malonyl-CoA/carnitine palmitoyltransferase-1 (CPT-1) axis, in beta cell glucose and fatty
acid signalling for insulin secretion. This model has gained overwhelming support from a number of studies in recent years
and is now refined through its link to the glycerolipid/NEFA cycle that provides lipid signals through its lipolysis arm.
Furthermore, acetyl-CoA carboxylase may also control beta cell growth. Here we review the evidence supporting a role for
the ACC/malonyl-CoA/CPT-1 axis in the control of GSIS and its particular importance under conditions of elevated fatty
acids (e.g. fasting, excess nutrients, hyperlipidaemia and diabetes). We also document how it is linked to a more global
lipid signalling system that includes the glycerolipid/NEFA cycle.
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Abbreviations
ABHD6 α/β-Hydrolase domain 6
ACC Acetyl-CoA carboxylase
ACL ATP citrate lyase
ACOT7 Acyl-CoA thioesterase-7
AMPK AMP-activated protein kinase

CACT Carnitine acylcarnitine translocase
CPT-1 Carnitine palmitoyltransferase-1
DAG Diacylglycerol
FA-CoA Fatty acyl-CoA
FOXO Forkhead box protein O
G3PP Glycerol 3-phosphate phosphatase
GSIS Glucose-stimulated insulin secretion
HADHSC Short-chain hydroxy acyl-CoA dehydrogenase
KATP ATP-sensitive potassium
MAG Monoacylglycerol
MCD Malonyl-CoA decarboxylase
MCF Metabolic coupling factor
NEFA Non-esterified fatty acid
PPAR Peroxisome proliferator-activated receptor
TOFA 5-(Tetradecyloxy)-2-furoic acid

Introduction

Insulin secretion in response to various fuel stimuli, such as
glucose, some amino acids and fatty acids, involves transduc-
tion systems that require metabolism of the fuel stimulus in the

Electronic supplementary material The online version of this article
(https://doi.org/10.1007/s00125-019-04976-w) contains a slideset of the
figures for download, which is available to authorised users.

* Marc Prentki
marc.prentki@umontreal.ca

1 Department of Nutrition, University of Montreal, Montréal, QC,
Canada

2 Department of Biochemistry and Molecular Medicine, University of
Montreal, Montréal, QC, Canada

3 Montreal Diabetes Research Center, Centre de Recherche du Centre
Hospitalier de l’Université deMontréal (CRCHUM), Viger Tour, 900
rue Saint Denis, Room R08-412, Montréal, QC H2X 0A9, Canada

4 Evans Department of Medicine, Obesity Research Center, Boston
University School of Medicine, Boston, MA, USA

https://doi.org/10.1007/s00125-019-04976-w
Diabetologia (2020) 63:10–20

/Published online: 19 August 2019

http://crossmark.crossref.org/dialog/?doi=10.1007/s00125-019-04976-w&domain=pdf
https://doi.org/10.1007/s00125-019-04976-w
mailto:marc.prentki@umontreal.ca


pancreatic beta cell. Although much progress has been made
in recent years, we still have not entirely elucidated the path-
ways and signalling molecules involved. A glucose-induced
rise in the cytosolic ATP/ADP ratio leads to inhibition of ATP-
sensitive potassium (KATP) channels and depolarisation of the
beta cell, followed by an increase in cytosolic Ca2+, which
promotes insulin granule exocytosis [1, 2]. The KATP

channel-independent actions of glucose in beta cell signalling,
also known as the amplification pathways, involve several
metabolic coupling factors (MCFs) that link fuel metabolism
to insulin exocytosis [3, 4].

Of the numerous amplification pathways that contribute to
glucose-stimulated insulin secretion (GSIS), the following are
thought to be important players: anaplerosis/cataplerosis, the
ATP citrate lyase (ACL)/acetyl-CoA carboxylase (ACC)/
malonyl-CoA/carnitine palmitoyltransferase-1 (CPT-1) axis,
the glycerolipid/NEFA cycle [5], post-translational attachment
of small ubiquitin-like modifier to target lysine residues
(SUMOylation) [6], NADPH [7], reactive oxygen species [8]
and the redox control of exocytosis proteins [5, 9] (Figs 1, 2).
The idea that anaplerosis/cataplerosis and pyruvate cycling pro-
vide some of the essential MCFs is well accepted and this has
been reviewed extensively [5, 9–13].

Lipid signalling is essential for GSIS. Thus, a fatty acid-
dependent step is critically important for both GSIS and non-
glucose-stimulated insulin secretion in vivo [14] and ex vivo
[15] and if islets are deprived of NEFA their response to GSIS
is compromised [16]. Lipid signalling of GSIS was proposed
to involve three mechanisms. Extracellular lipid signalling is
mediated by NEFA activation of free fatty acid-activated re-
ceptor-1 (FFAR1, also known as GPR40), leading to genera-
tion of intracellular diacylglycerol (DAG) and inositol tris-
phosphate [17]. The intracellular pathways involve the
ACC/malonyl-CoA/CPT-1 network and generation of lipid
molecules via the glycerolipid/NEFA cycle [18, 19] (Fig. 2).
Our laboratory identified two important enzymes of the
glycerolipid/NEFA cycle: glycerol 3-phosphate phosphatase
(G3PP) and α/β-hydrolase domain 6 (ABHD6). G3PP hydro-
lyses glucose-derived glycerol 3-phosphate, the precursor for
lipogenesis [20], whereas ABHD6 controls the last step of
lipolysis by hydrolysing 1-monoacylglycerol (MAG) [21].
Importantly, 1-MAG is an MCF of GSIS by activating
Munc13-1, an exocytosis-facilitating protein [21] (Figs. 1, 2).

This review focuses on intracellular lipid signalling for
glucose- and NEFA-induced insulin secretion, highlighting
the role of the ACC/malonyl-CoA/CPT-1 network.

What is the ACC/malonyl-CoA/CPT-1
metabolic signalling network?

The hypothesis proposing an intracellular lipid amplification
arm for GSIS was originally laid out by us [22–25]. We

initially proposed that glucose-metabolism-derived
malonyl-CoA, by inhibiting CPT-1, diverts long-chain fat-
ty acyl-CoA (FA-CoA) from mitochondrial β-oxidation
towards the synthesis of complex lipids, such as DAGs,
that can act as signals for insulin secretion. The subsequent
realisation that lipolysis plays a key role in GSIS led us to
refine the model by linking the ACC/malonyl-CoA/CPT-1
network to the glycerolipid/NEFA cycle (Fig. 1). In this
revised model malonyl-CoA acts as a ‘metabolic switch’
signal by modulating fuel partitioning (the relative rates of
glucose and NEFA oxidation) and is a regulatory MCF in
insulin secretion, whereas the lipid signals generated via
lipolysis in the glycerolipid/NEFA cycle act as effector
signals [9]. Thus, inhibition of CPT-1 and fat oxidation
allows continuous operation of the glycerolipid/NEFA
cycle.

Here, we review the evidence for and against the ACC/
malonyl-CoA/CPT-1 hypothesis and present a consensus
view that emerges (Figs. 1, 2).

In vitro evidence for the role
of the ACC/malonyl-CoA/CPT-1 metabolic
signalling network in metabolic signalling

Biochemical evidence

It was initially noticed using HITβ cells and rat islets, that
glucose stimulation causes marked alterations in the acyl-
CoA profile, with early change occurring in malonyl-CoA
levels [22–25]. The rise in malonyl-CoA that preceded insulin
release and correlated with the dose dependency of GSIS
[22–25] was confirmed in several studies using metabolomics
approaches in INS-1(832/13) cells [26, 27]. As predicted by
the hypothesis, glucose caused a decrease in NEFA oxidation
in association with a rise in citrate and lipogenesis in rodent
islets and beta cell lines, and both correlated with the glucose
dose dependence of insulin secretion [9, 10, 26]. Finally, glu-
cose decreased ACC phosphorylation and increased its activ-
ity in a beta cell line and this was closely related to insulin
secretion [28].

Pharmacological evidence

CPT-1 inhibition In early studies, inhibition of pancreatic islet
fatty acid oxidation by 2-bromostearate was shown to restore
GSIS in fasted islets [29]. In addition, inhibition of CPT-1 by
2-bromopalmitate in isolated rat islets promoted GSIS while
blocking β-oxidation [30]. Similarly, the CPT-1 inhibitor
etomoxir reduced β-oxidation in isolated rat islets and this
was associated with enhanced GSIS [30]. The reduced GSIS
in db/db mouse islets could be restored to near normal levels
by incubating the islets with etomoxir [31]. Evidence
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suggesting a role for CPT-1 in regulating GSIS was also ob-
tained in studies using CPT-1-overexpressing INS1E cells;
these cells showed a reduced GSIS response, which could be
restored by etomoxir [32]. Acute addition of etomoxir to the
INS1E cells also partially reversed the decreased GSIS in cells
chronically exposed to NEFA, a condition wherein NEFA
oxidation is enhanced [31].

ATP citrate lyase inhibition Besides its participation in the
Krebs cycle, citrate exits mitochondria via the dicarboxylate/
tricarboxylate carrier. In the cytoplasm, citrate is cleaved by
ACL to oxaloacetate and acetyl-CoA. ACC converts cytosolic
acetyl-CoA to malonyl-CoA, which regulates β-oxidation by
inhibiting CPT-1, the rate-limiting enzyme involved in the
transport of fatty acyl groups into mitochondria (Fig. 2).
Further evidence to support the ACC/malonyl-CoA/ CPT-1
hypothesis was garnered in a rat pancreas perfusion study,
which showed that inhibition of ACL by hydroxycitrate
caused a profound decline in GSIS [30]. The functional im-
portance of cataplerosis (the exit of Krebs cycle intermediates
into the cytoplasm) via citrate for GSIS is further supported by
the observation that radicicol, another ACL inhibitor, partially
blocked GSIS in purified rat beta cells [33] and INS832/13
cells [34].

Pyruvate carboxylase inhibition The Krebs cycle generates
citrate via the condensation of acetyl-CoA and oxaloacetate
formed by pyruvate carboxylase. Malonyl-CoA is derived
from cytosolic citrate. GSIS in beta cells was found to be
reduced by the inhibition of oxaloacetate formation by pyru-
vate carboxylase using phenylacetate [10, 11].

Inhibition of ACC It was noticed that ACC1 is the predominant
isoform expressed in pancreatic islets and INS-1(832/13) beta
cells and that inhibitors of ACC1, CP-640186 and
5-(tetradecyloxy)-2-furoic acid (TOFA), which curtailed lipo-
genesis, inhibited GSIS [35].

FA-CoA synthase inhibition Triacsin C, a FA-CoA synthase
inhibitor, curtailed GSIS in INS832/13 cells only in the pres-
ence of added NEFA, emphasising the importance of incuba-
tion conditions in addressing the role of lipid signalling for
GSIS [15]. This important point, which is at the root of the
controversy in the field, will be further discussed below. In
fact, depletion of NEFA by exhaustive washing with bovine
serum albumin in MIN6 beta cells was found to lower GSIS,
which could be restored by the addition of NEFA [16].

Evidence from altered expression of relevant genes

ACL andmitochondrial citrate carrierHigher expression levels
of ACL in the islets (a non-lipogenic tissue) in comparison
with liver, both in rodents and in humans [36], supports a role

for this enzyme in GSIS. The expression of ACLwas found to
be reduced by 60% in islets from individuals with vs without
type 2 diabetes, suggesting that a reduction in malonyl-CoA
formation in diabetic beta cells could contribute to compro-
mised GSIS [37]. Indeed, RNAi-knockout of Acl (also known
as Acly) in INS-1(832/13) cells inhibited GSIS and the KATP-
independent pathway of insulin secretion [34]. In a recent
study, the relative increase in GSIS response in pancreatic
islets from the juvenile stage to adulthood was attributed to

Fig. 1 Metabolic signal transduction of the beta cell in response to glu-
cose and NEFA. Glucose metabolism gives rise to various regulatory
(glutamate, GTP, citrate) and effectory (ADP, ATP, NADPH, ROS)
MCFs. The signalling actions of these key metabolites contribute to the
facilitation of insulin granule exocytosis at different steps, including Ca2+

influx following the closure of KATP channels. Malonyl-CoA formed
from glucose metabolism in beta cells controls the flux of NEFA through
β-oxidation, an ‘off’ pathway of GSIS, by inhibiting the rate-limiting step
of β-oxidation (catalysed by CPT-1). The accumulating FA-CoA thus is
diverted towards the lipogenesis arm of the glycerolipid/NEFA cycle (see
Fig. 2), leading to the formation of the lipolysis-derived MAG, which is
an effectory MCF. 1-MAG directly binds and activates Munc13–1, an
insulin granule exocytosis-facilitating protein. 1-MAG may be hydro-
lysed by the 1-MAG hydrolase ABHD6 (see Fig. 2) to generate NEFA
for subsequent oxidation, thereby negatively affecting the secretion of
insulin. Importantly, the inhibition of NEFA oxidation by malonyl-CoA
prevents the catabolism of lipid signalling molecules, such as MAG.
Figure 1 summarises the lipid signalling pathways that are shown in more
detail in Fig. 2. We previously proposed that two types of MCF can be
defined: (1) regulatory MCFs that modulate key metabolic pathways and
networks involved in fuel-induced insulin secretion; and (2) effectory
MCFs that are directly involved in the triggering and amplification arms
of fuel-induced insulin secretion at late steps of their signalling cascade
(e.g. exocytosis or membrane ionic events) [9]. ROS are produced in
mitochondria, during electron transport, when there is excess supply of
electron donors, such as glycerol 3-phosphate. DHAP, dihydroxyacetone
phosphate; Glu, glutamate; Gro3P, glycerol 3-phosphate; ROS, reactive
oxygen species. This figure is available as part of a downloadable slideset
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elevated pyruvate–citrate cycling, ACL expression and
malonyl-CoA production [38]. RNAi-knockdown of the mi-
tochondrial citrate carrier [39] in INS-1(832/13) cells resulted
in a decline in GSIS, which is compatible with a role for
malonyl-CoA signalling.

The possibility of cytosolic acetyl-CoA being generated
from glucose-derived pyruvate by alternative routes was sug-
gested by the observation that inhibition of ACL still allows
glucose carbon incorporation into lipids without compromis-
ing GSIS, probably via the acetoacetate pathway [40]. Thus,

Fig. 2 Lipid signalling and the ACC/malonyl-CoA/CPT-1 metabolic sig-
nalling network in beta cell function. Pyruvate produced from glucose in
the beta cells enters the mitochondria, where it is metabolised via the
Krebs cycle to generate citrate. Under conditions of high glucose avail-
ability, a significant amount of citrate exits the mitochondria
(cataplerosis) and is used by cytosolic ACL to form acetyl-CoA, which
in turn is carboxylated by ACC1 to generate malonyl-CoA. Elevated
glucose levels result in increased production of malonyl-CoA, which acts
as a metabolic switch by inhibiting CPT-1, the rate-limiting enzyme that
controls the entry of fatty acyl groups into mitochondria for β-oxidation.
Inhibition of CPT-1 results in diversion of FA-CoA towards the
glycerolipid/NEFA cycle, which produces signals that act as MCFs for
insulin secretion. The entry of FA-CoA into the lipogenic arm of the
glycerolipid/NEFA cycle is dependent on the availability of glycolysis-
derived glycerol 3-phosphate, the cytosolic levels of which are controlled
by G3PP, which negatively regulates the amplification of GSIS. As it is
important to maintain FA-CoA levels, normal beta cells do not express
ACOT7, which hydrolyses FA-CoA. The lipolysis arm of the
glycerolipid/NEFA cycle generates 1-MAG, which activates Munc13–1
(insulin exocytosis facilitator), and ABHD6 hydrolyses 1-MAG to nega-
tively control GSIS (not illustrated). ABHD6 is a more predominant
MAG hydrolase than the classical monoacylglycerol lipase (MAGL) in
pancreatic beta cells. NEFA generated via the lipolysis arm of the

glycerolipid/NEFA cycle can exit the cell and activate free fatty acid-
activated receptor-1 (FFAR-1), resulting in a signalling cascade of 1,2-
DAG/ protein kinase D (PKD), stimulating insulin exocytosis. Thus,
malonyl-CoA, by controlling fat oxidation and the glycerolipid/NEFA
cycle flux, can regulate the lipid amplification of GSIS at several steps.
Blue arrows indicate an activating effect on insulin exocytosis. Red ar-
rows indicate pathways that negatively regulate GSIS. Dotted lines indi-
cate inhibitory effect on the corresponding target molecules. Molecules in
blue are key regulatory MCF signalling molecules, while those in brick-
red colour are effectory MCF molecules. Metabolic enzymes are shown
in green ovals. ψ, membrane potential; Ac-CoA, acetyl-CoA; ACSL,
acyl-CoA synthetase, long-chain; ATGL, adipose triglyceride lipase;
C1, phorbol esters/diacylglycerol binding domain of Munc13–1; C2, cal-
cium-dependent phospholipid binding domain of Munc13–1; [Ca2+]i,
intracellular calcium concentration; CGI58, comparative gene identifica-
tion-58; GL, glycerolipid; Gro3P, glycerol 3-phosphate; HSL, hormone-
sensitive lipase; KC, Krebs cycle; Kir6.2, a major subunit of the ATP-
sensitive K+ channel, an inward-rectifier potassium ion channel; LPA,
lysophosphatidic acid; Mal-CoA, malonyl-CoA; β-Ox, β-oxidation;
PA, phosphatidic acid; Pyr, pyruvate; SUR1, sulfonylurea receptor-1;
TG, triacylglycerol; VDCC, voltage-dependent calcium channel. This
figure is available as part of a downloadable slideset
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redundant pathways exist that can support malonyl-CoA for-
mation and the generation of lipid MCFs for GSIS.

ACC-1 Employing INS-1 cells stably expressing antisense Acc
mRNA, it was noticed that a decline in ACC protein expres-
sion was associated with reduced malonyl-CoA formation,
elevated β-oxidation and decreased GSIS response [41].

Malonyl-CoA decarboxylase Overexpression of cytosolically
targeted malonyl-CoA decarboxylase (MCD) in INS-1(832/
13) cells and rat islets resulted in lowered malonyl-CoA levels
in association with elevated fatty acid oxidation and reduced
GSIS in the presence of added NEFA, but not in their absence
[15]. This underscores the importance of added NEFA in as-
certaining the significance of lipid signalling for GSIS, a key
point that will be discussed below in the section related to
evidence against the hypothesis.

CPT-1 Studies in which wild-type CPT-1 was overexpressed in
INS1E cells, showed reduced GSIS, restorable by etomoxir or
supply of NEFA [32]. This strongly supports a role for CPT-1
in the negative control of GSIS. In addition, overexpression of
malonyl-CoA-insensitive mutant CPT-1 (M593S) in INS-
1(832/13) cells and rat islets curtailed GSIS and enhanced
fatty acid oxidation [42].

Long-chain acyl-CoA synthase The significance of FA-CoA in
GSIS was demonstrated in a study showing that RNAi-
knockdown of long-chain acyl-CoA synthases (either
ACSL3 or ACSL4), two enzymes concentrated in the insulin
granules and synthesising FA-CoA, led to a decline in GSIS in
human islets and INS-1(832/13) cells [43]. In addition, FA-
CoA directly promotes exocytosis of insulin granules in beta
cells [44].

Acyl-CoA thioesterase-7 About 60 genes expressed ubiqui-
tously are relatively silenced (disallowed) in beta cells. One
such gene encodes acyl-CoA thioesterase-7 (ACOT7), which
hydrolyses FA-CoA. ACOT7 downregulation is needed if FA-
CoA signalling is central to insulin secretion. Acot7-overex-
pressing INS-1(832/13) cells showed impaired GSIS,
supporting a role for FA-CoA or its derivatives in GSIS
[45]. Of note, all Acot family members are poorly expressed
in mouse islets [45].

Carnitine acylcarnitine translocase An important step in fatty
acid oxidation is the transport of fatty acylcarnitines into mi-
tochondria by carnitine acylcarnitine translocase (CACT)
[46]. Deficiency of the CACT-encoding gene (Slc25a20) is
associated with hypoketotic hypoglycaemia, though insulin
levels were not reported. Downregulation of CACT by miR-
132 or miR-212 in beta cells led to elevated fatty
acylcarnitines and increased insulin secretion [47]. Although

the authors of this study proposed that acylcarnitines may
directly modulate exocytosis, the possibility of a build-up of
FA-CoA for lipid signalling still remains.

In vivo studies in support
of ACC/malonyl-CoA/CPT-1 signalling
for insulin secretion

Pharmacological studies

CPT-1 inhibition Supranormal GSIS response was noticed
when 24 h-fasted rats under hyperglycaemic clamp were
maintained at high plasma levels of NEFA, and infused with
etomoxir to block fatty acid oxidation [48].

Suppression of ACC1 activity Support for the role of ACC1 in
insulin secretion has been reported in studies using the ACC
inhibitor ND-630, which lowered malonyl-CoA levels in tis-
sues and reduced GSIS in Sprague Dawley rats fed a high-
sucrose high-fat diet, and also in ZDF rats [49].

Inhibition of ACL activity Inhibition of ACL in vivo by
bempedoic acid in high-fat-diet-fed mice curtailed
hyperinsulinaemia and improved glucose tolerance [50].
Interestingly, a crossover study involving 3 days of adminis-
tration of the ACL inhibitor hydroxycitrate revealed a consis-
tent decrease in plasma insulin levels, though the results were
not significant possibly due to the low number of participants
(n = 10) [51].

Genetic studies

Fatty acid oxidation enzymes Many genetic defects in fatty
acid oxidation, including those of CPT-1, CPT-2, CACT,
long-chain acyl-CoA dehydrogenase and short-chain hydroxy
acyl-CoA dehydrogenase (HADHSC), are associated with
hypoketotic hypoglycaemia, although the precise causes are
unknown [52]. At least in the case of the HADHSC defect, it
was found to be associated with hyperinsulinism [53, 54]. In
many other cases, insulin levels were not reported. Thus, it
would be interesting to know whether the hypoglycaemia is
partly due to elevated plasma insulin levels, besides other
contributions such as reduced gluconeogenesis.

Acot7-overexpressing mice Transgenic expression of mito-
chondrial Acot7 specifically in the beta cells of mice led to
glucose intolerance and reduced GSIS [45]. The changes in
GSIS were related to reduced islet FA-CoA and ATP/ADP. Of
interest, islet levels of DAG and MAG, which are thought to
be MCFs for insulin secretion, were reduced by 45% and
60%, respectively, although they did not reach significance
possibly due to the large SD.
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Modulation of transcription factors controlling lipid metabo-
lism genes An inverse relationship between fatty acid β-
oxidation and GSIS was noticed in studies wherein the tran-
scription factors peroxisome proliferator-activated receptor
(PPAR)δ [55] or PPARα [56, 57], which control the expres-
sion of β-oxidation genes, including Cpt-1 (also known as
Cpt1A), were genetically deleted. Pparα (also known as
Ppara)-knockout mice develop hyperinsulinaemic
hypoglycaemia in the fasting state [56]. Similarly, using a
mouse model in which three isoforms of forkhead box protein
O (FOXO) were knocked down specifically in beta cells, we
observed that there is a preferential utilisation of lipids by the
beta cells, associated with elevated β-oxidation and curtailed
GSIS [58]. Also, a knockin mouse model expressing
deacetylated FOXO1 (activated form) specifically in beta cells
displayed reduced mitochondrial β-oxidation and enhanced
GSIS response in vivo [59].

Acc1-knockout and -knockin mice A recent study employing
beta cell-specific Acc1 (also known as Acaca)-knockout mice
demonstrated that ACC1 is critical for GSIS [60].
Interestingly, ex vivo islet studies showed that the reduced
secretion occurs at low and intermediate glucose concentra-
tions and that the inhibitory effect was overridden at high
(20 mmol/l) glucose. A simple explanation for why high glu-
cose overrides the inhibition of GSIS in the beta cell Acc1-
knockout mice may be that other amplification pathways take
over in order to ensure secretion. In our view, this paper pro-
vides direct key support for the role of malonyl-CoA in GSIS.
The authors mentioned that Acc1-knockout mouse islets did
not show changes in fatty acid oxidation or lipid signalling
molecules. Unfortunately, they measured these variables at a
concentration of glucose where secretion was unchanged
(20 mmol/l) and they did not show under their experimental
condition that high glucose itself was able to inhibit fat oxida-
tion, as anticipated. Interestingly, this study reported a novel
role of ACC1 related to the control of beta cell mass prior to
adulthood [60].

Regulation of ACC1 by AMP-activated protein kinase
(AMPK) is well established [61]. It was found that mice with
serine-to-alanine knockin mutations in both Acc1 (Ser79) and
Acc2 (also known as Acacb) (Ser212), which render ACC
constitutively active and not susceptible to inhibitory phos-
phorylation byAMPK, display elevated fasting plasma insulin
levels [62]. Thus, it appears that in vivo, when ACC activity is
reduced and there is less malonyl-CoA production in the beta
cell, insulin secretion is reduced; conversely, when ACC is
constitutively active, beta cells secrete more insulin.

Liver kinase B1-knockout mice Beta cell-specific Lkb1-knock-
out mice show enhanced insulin secretion by an undefined

mechanism [63–65]. They display impaired mitochondrial
metabolism and lower ATP levels following glucose stimula-
tion, yet compensate for this by upregulating the production of
citrate. It was found that at low-glucose Lkb1−/− beta cells
failed to inhibit ACC1 and consequently accumulated
malonyl-CoA derived fatty acids [65]. Thus, this study also
supports a role for ACC/malonyl-CoA signalling in insulin
secretion.

Evidence against a role for
ACC/malonyl-CoA/CPT1 signalling
for insulin secretion

In vitro pharmacological approaches

Despite overwhelming support for the role of malonyl-CoA/
CPT-1/fatty acyl-CoA metabolic signalling in the regulation
of GSIS, a few studies have raised doubts about this model.
These discrepant results can be explained by the methodology
that was employed.

Inhibition of fatty acid oxidation by bromopalmitate In a
study using normal mouse islets incubated in the presence
of 30 mmol/l KCl plus the KATP opener diazoxide to ex-
amine KATP-independent signalling, the fatty acid oxida-
tion inhibitor bromopalmitate failed to modify basal
(3 mmol/l) and high-glucose (20 mmol/l)-stimulated insu-
lin secretion, which would be against a role for the
malonyl-CoA switch [66]. However, at supramaximal
concentrations of glucose, fat oxidation is maximally
inhibited such that bromopalmitate cannot further change
fat oxidation. Conversely, at 3 mmol/l glucose, cytosolic
Ca2+ is low and because a rise in Ca2+ is a prerequisite for
the amplification pathways of secretion, even if
bromopalmitate reduced fat oxidation, it should not
change secretion. In addition, fat oxidation was not mea-
sured, and this study examined pathways under interesting
but totally unphysiological conditions (very high KCl and
cytosolic Ca2+ plus diazoxide) so its relevance to a normal
situation is unclear.

Inhibition of ACC, ACL and fatty acyl-CoA synthase An inhib-
itor of ACC1, TOFA, was found to have no effect on GSIS
in INS-1 cells [67]. Similarly, the ACL inhibitor
hydroxycitrate lacked effect on GSIS in INS1(832/13) cells
and rat islets [68]. In 13C isotopomer flux measurements,
inhibiting the flux of glucose carbons into malonyl-CoA by
hydroxycitrate had no effect on GSIS in INS1 cells [40].
Finally, the use of the FA-CoA synthase inhibitor, triascin
C, did not reveal a modification of GSIS in INS-1 cells [69]
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or INS 832/13 cells [70]. However, in all these studies, no
fatty acid was present during incubations. The premise for
the lipid signalling hypothesis is that substantial endoge-
nous triacylglycerol stores or exogenous NEFA are re-
quired because the first step of this process is the synthesis
of FA-CoA. These experiments were in fact performed in
fatty-acid-depleted cells due to the presence of 0.2% fatty-
acid-free BSA, which traps cellular fatty acids. At the time
these studies were done, scientists were not aware of the
potential caveats related to depleting beta cells of NEFA in
examining lipid signalling for GSIS. Thus, the experimen-
tal conditions were not appropriate for testing the
hypothesis.

In vitro gene expression studies

MCD overexpression One of the arguments against the role of
malonyl-CoA as a regulator of GSIS is that overexpression of
MCD in INS-1 cells had no effect on GSIS in one study [69].
However, this study suffers from drawbacks: (1) the MCD
construct used was not directed to cytosol and may not have
lowered the cytosolic pool of malonyl-CoA and (2) the INS-1
cell line used does not elicit the KATP channel-independent
pathway of GSIS, as discovered subsequently [71]. To address
this caveat, a later study by the same group employed anMCD
construct that lacked both mitochondrial and peroxisomal
targeting sequences for overexpression in INS-1(832/13) cells
and reported a lack of effect on GSIS at 15 mmol/l glucose,
both in the presence and absence of NEFA [70]. If one closely
examines the results in cells cultured in the presence of NEFA,
they do indicate a substantial (40%) reduction of GSIS in
MCD-overexpressing cells, compared with controls, although
the difference was deemed not significant [70]. Additionally,
15 mmol/l glucose is a supramaximal concentration for
INS832/13 cells; no intermediate glucose concentration was
tested and very high glucose concentrations override the inhi-
bition of GSIS, as discussed above. Thus, the inhibition of
GSIS in Acc1-knockout mouse islets is observed at basal
and intermediate but not maximal glucose concentrations
[60]. In a subsequent study, we repeated theMCD overexpres-
sion experiments and found similar results, observing that
GSIS is markedly reduced in MCD-overexpressing INS832/
13 cells but only if the medium is supplemented with exoge-
nous fatty acids to permit intracellular lipid signalling [15].

Suppression of ACLACL knockdown was reported to have no
effect on GSIS in INS-1(832/13) cells when measured only at
maximal 16.7 mmol/l glucose, possibly due to the absence of
NEFA in the incubation medium for insulin secretion as well
as GSIS not being tested at submaximal glucose [68]. The lack
of effect could also be due to the presence of alternate routes

that provide cytosolic acetyl-CoA, as mentioned above [40].
We reported that ACL knockdown in the same cell line under
similar experimental conditions does result in reduced GSIS
but that the inhibitory effect is most prominent in the presence
of exogenous NEFA or at intermediate glucose [34].

Where does the balance tip?

Collectively, the above summarises the comprehensive infor-
mation accumulated over the years and provides overwhelm-
ing evidence in favour of an ACC1/malonyl-CoA/CPT-1/fatty
acyl-CoA network playing a key role in the regulation of beta
cell glucose and fatty acid signalling for insulin secretion. This
network appears to be particularly involved in GSIS regula-
tion under conditions where fatty acids are elevated (fasting,
cells chronically exposed to NEFA, obesity and diabetes) (see
Textbox). In vitro and in vivo studies, as well as data from
human islets, addressing various components of this network
employing biochemical, pharmacological, molecular and ge-
netic tools directly support this view. In contrast, the evidence
against the hypothesis is not strong and is based on question-
able experimental approaches. Furthermore, these experi-
ments have been exclusively in vitro without support from
in vivo experiments.

Conclusion and perspective

The consensus that emerges places malonyl-CoA as a signal
that acts as a ‘metabolic switch’, playing a critical role in
regulating insulin secretion promoted by glucose and other
fuel stimuli, particularly when islet fat oxidation is elevated
as under conditions of fasting, obesity and diabetes, via mod-
ulation of β-oxidation flux (see Textbox). Thus, the Textbox
shows many situations where the ACC/malonyl-CoA/CPT1
network was shown to be involved in GSIS. The role of this
network as a metabolic on/off switch is also in line with the
significance of the glycerolipid/NEFA cycle and its lipolysis
arm in GSIS (Fig. 1). Nevertheless, unlike MAG, which acts
as an ‘effectory’MCF [9] at the late event of insulin exocyto-
sis by activating Munc13-1, malonyl-CoA is a ‘regulatory’
MCF, controlling insulin secretion at earlier steps in the am-
plification pathway. Besides functioning as a switch for
redirecting fatty acid flux, malonyl-CoA has also been as-
cribed a central fuel-sensing role in the hypothalamus and as
an anorectic mediator in the central control of feeding [72, 73].
Interestingly, these actions may in part be independent of fatty
acid oxidation regulation. Thus, future studies should be di-
rected towards delineating the underlying mechanisms that
encompass the various regulatory roles of malonyl-CoA in
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beta cell function, some independent of CPT-1, possibly in-
volving protein malonylation [74]. Studies of these processes
may also be relevant to fuel signalling in other tissues.
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