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Roles of omental and bone marrow adipocytes in tumor biology
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ABSTRACT
Accumulatingevidencehighlights the importanceof interactionsbetween tumour cells and stromal cells
for tumour initiation, progression, and metastasis. In tumours that contain adipocyte in their stroma,
adipocytes contribute to modification of tumour microenvironment and affect metabolism of tumour
and tumour progression by production of cytokines and adipokines from the lipids. The omentum and
bone marrow (BM) are highly adipocyte-rich and are also common metastatic and primary tumour
developmental sites. Omental adipocytes exhibit metabolic cross-talk, immune modulation, and angio-
genesis. BM adipocytes secrete adipokines, and participate in solid tumour metastasis through regula-
tion of the CCL2/CCR2 axis andmetabolic interactions. BM adipocytes also contribute to the progression
of hematopoietic neoplasms. Here, we here provide an overview of research progress on the cross-
talks between omental/BM adipocytes and tumour cells, which may be pivotal modulators of tumour
biology, thus highlighting novel therapeutic targets.

Abbreviations: MCP-1, monocyte chemoattractant protein 1IL, interleukinSTAT3, signal transdu-
cer and activator of transcription 3FABP4, fatty acid binding protein 4PI3K/AKT, phosphoinositide
3-kinase/protein kinase BPPAR, peroxisome proliferator-activated receptorPUFA, polyunsaturated
fatty acidTAM, tumour-associated macrophagesVEGF, vascular endothelial growth factorVEGFR,
vascular endothelial growth factor receptorBM, bone marrowBMA, bone marrow adipocytesrBMA,
regulated BMAcBMA, constitutive BMAUCP-1, uncoupling protein-1TNF-α, tumour necrosis factor-
alphaRANKL, receptor activator of nuclear factor kappa-Β ligandVCAM-1, vascular cell adhesion
molecule 1JAK2, Janus kinase 2CXCL (C–X–C motif) ligandPGE2, prostaglandin E2COX-2, cycloox-
ygenase-2CCL2, C-C motif chemokine ligand 2NF-κB, nuclear factor-kappa BMM, multiple
myelomaALL, acute lymphoblastic leukemiaAML, acute myeloid leukemiaGDF15, growth differ-
entiation factor 15AMPK, AMP-activated protein kinaseMAPK, mitogen-activated protein
kinaseAPL, acute promyelocytic leukemiaCCR2, C-C motif chemokine receptor 2SDF-1α, stromal
cell-derived factor-1 alphaFFA, free fatty acidsLPrA, leptin peptide receptor antagonistMCD, mal-
onyl-CoA decarboxylase.
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Introduction

The tumour microenvironment (TME) affects tumour
biology through various biological processes. Adipocytes
are a particularly important component of the TME
exerting both systemic and local effects on tumour growth
and progression when tumours contain adipocyte in their
stroma [1,2]. Among the human organs containing adi-
pocytes, the omentum and bone marrow (BM) show
particularly high enrichment of adipocytes. Importantly,
the omentum and BM are also frequent metastatic sites of
tumours as well as common sites of primary tumour
development. Adipocytes of the omentum and BM have
different origins compared to those derived from other
sites, and thus exhibit specialized functions that affect
tumour biology. Therefore, it is essential to identify the
characteristics of omental and BM adipocytes, and their

impacts on tumour biology. We here review the research
progress on these adipocyte types with a focus on their
roles in metastasis through metabolic interactions, and
cross-talk with immune and tumour cells. Gaining
a greater understanding of the underlying molecular and
cellular mechanisms can highlight novel potential thera-
peutic targets for tumour treatment.

Basic characteristics of the omentum

The omentum is a visceral adipose tissue,mostly composed
white adipose tissue that consisted of vascularized connec-
tive tissue, and doubled mesothelial layered membranous
and translucent tissue[3]. The omentum, a main lipid sto-
rage and a source of bioactive factors, involves in the
immune response and fluid exchange [4–6]. Milky spots
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are the primary functional units of the omentum [7,8],
which are distributed along with the blood vessel net-
works[9]; detailed information of milky spots has been
reviewed previously[10]. The structural components of
milky spots are fibroblasts, adipocytes, mesothelial cells,
endothelial cells, macrophages, stromal cells, and high
endothelium of the vein, whereas the migratory compo-
nents include lymphocytes, granulocytes, and monocytes
[11]. Milky spots have recently come into the research
spotlight as the main implantation sites of omental cancer
cell metastasis. Since adipocytes composing the milky spots
are also distributed around the milky spots, various inter-
actions could occur between adipocytes and milky spots
that might mediate metastatic processes.

Omental adipocytes have distinct characteristics from
adipocytes derived from other sites. In particular, the lipo-
lysis action of catecholamine is increased in omental adi-
pocytes compared with subcutaneous adipocytes, whereas
the anti-lipolytic action of insulin and prostaglandin is
more prominent in subcutaneous adipocytes than in omen-
tal adipocytes[12]. Expression of prostaglandin synthesis-
or signalling-related genes is also higher in omental adipo-
cytes than in subcutaneous adipocytes[13]. Similarly, tran-
scriptomics studies revealed that the expression of
adipogenesis and lipid metabolism-related genes differs
between omental and subcutaneous adipose tissues [14–
16], and proteomics analysis revealed differential expres-
sion of proteins related to lipid metabolism, oxidation-
reduction, and lipid transport between the tissues[17].
Lipidomic analysis of obese individuals showed that com-
pared to subcutaneous adipose tissue, omental adipose
tissue contained 54% and 34% more cholesterol and cho-
lesterol epoxide[18]. Moreover, omental and subcutaneous
adipocytes have different origins, and only the former
express Wilms’ tumour gene (WT-1)[19]; indeed, the pre-
sence of aWT-1-positivemesothelial cell layer in the omen-
tum is considered to be the possible origin of these
adipocytes. Omental adipocytes differ from other visceral
adipocytes in variable circumstances. Omental adipocytes
of obesity patients are larger in size, and have lower capil-
lary density compared with periaortic adipocytes[20].
Expression of IL-18, HGF, and MIF is higher in omental
adipocytes than in periaortic adipocytes[20]. Omental pre-
adipocytes are also different frommesenteric preadipocytes
in having lower replicative potential, lower differentiation,
lower adipogenic transcription factor expression and
higher TNF-α induced apoptosis[21].

Roles of omental adipocytes in tumour
development and metastasis

Most of the tumours found in the omentum are metastatic
tumours, and primary omental tumours are extremely rare.

Malignant mesothelioma is a representative example of an
omental primary tumour. It is suggested that adipocytes
can play a key role in tumour promotion during asbestos-
induced mesothelial carcinogenesis. Upon exposure to
asbestos, the levels of proinflammatory cytokines such as
monocyte chemoattractant protein 1 (MCP-1) increase,
while anti-inflammatory cytokines such as adiponectin
decrease in the adipocytes, resulting in an inflammatory
environment. Since MCP-1 promotes mesothelial cell pro-
liferation, these inflammatory stimuli could trigger
a carcinogenesis process under a proliferative state[22]
(Figure 1).

The most common carcinomas that metastasize to the
omentum include ovarian cancer, colorectal cancer, gastric
cancer, and pancreatic cancer[23]. In particular, 80% of
ovarian serous carcinomas exhibit omental metastasis[24].
Themain route of omental metastasis is via direct intraper-
itoneal seeding rather than hematogenous dissemination.
Hence, interactions between metastatic tumour cells and
the environment of the implantation site are key factors in
promoting omentalmetastasis. To establish omentalmetas-
tasis, cancer cells seeding in the omentum must pass
through several checkpoints, including survival in the peri-
toneal cavity, evasion of the immune system, reattachment
at the secondary site, and angiogenesis[23]. Accumulating
evidence has demonstrated that omental adipocytes influ-
ence every step of the omental metastasis process.

Adipokines

Adipocyte-derived metabolites and bioactive peptides are
collectively referred to as adipokines, with more than 600
identified to date[25]. In general, adipokines play roles in
the regulation of appetite, fat distribution, insulin secre-
tion, energy expenditure, inflammation, and blood pres-
sure[26]. In the adipose tissue, adipokines participate in
adipogenesis, immune cell migration, and adipocyte
metabolism [27,28]. In tumours, adipokines act via adi-
pokine receptors on tumour cells[29]. In an ovarian can-
cer mouse model, omental adipocytes promote tumour
cell homing to omentum after intraperitoneal tumour cell
injection through the actions of interleukin (IL)-8, IL-6,
MCP-1, and adiponectin secreted by omental adipocytes
[30]. The adipokines secreted from omental adipocytes
activate pro-survival pathway, p38, and signal transducer
and activator of transcription 3 (STAT3) in ovarian can-
cer cells. Omental adipocytes show increased IL-8 secre-
tion, which promotes the invasiveness of ovarian cancer
cells [30,31]. Upon establishment of the omental metas-
tasis of ovarian cancer, secreted IL-8 and TP53 upregulate
the expression of fatty acid binding protein 4 (FABP4),
which enhances the fatty acid uptake of tumour cells to
promote cancer cell growth[31]. Moreover, the
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peritumoral adipokine profile changes of omental metas-
tases of pancreatic cancer have been described; specifi-
cally, leptin expression increases to enhance metastasis
[32]. Secretory factors from omental adipocytes promote
the reprogramming of pancreatic cancer cells, such as an
increase of extracellular matrix and adhesion molecules,
resulting in the promotion of cancer cell growth, migra-
tion, invasion, and chemo-resistance[33].

Lipid supply and metabolic interactions

Omental adipocytes supply lipids to tumour cells and
also support their survival and proliferation in the
omentum. An in vitro study with ovarian cancer cells
demonstrated the lipid transfer from adipocytes to
tumour cells, which was enhanced for omental adipo-
cytes compared with subcutaneous and mesenteric adi-
pocytes[30]. Lipids entering tumour cells supply the
energy required for tumour cell proliferation by β-

oxidation[30]. To meet the high energy demand,
tumour cells upregulate the lipolysis of adipocytes,
and their secretion of free fatty acids and glycerol[30].
FABP4 [31] and CD36 [34] are the main lipid trans-
porters during the interaction of tumour cells and
adipocytes. After lipid transfer, the size of the adipo-
cytes decreases by consuming lipid droplets. Thus,
omental adipocytes become smaller during omental
metastasis, and ultimately disappear to become
replaced by the metastatic tumour cells, referred to as
the ‘omental cake.’[35] In gastric cancer, oleic acids are
transferred to tumour cells from omental adipocytes.
Intracellular oleic acid activates the phosphoinositide
3-kinase/protein kinase B (PI3K/AKT) pathway of
tumour cells, which promotes their invasiveness[36].
The metabolites produced as by-products during lipid
metabolism also affect tumour cell metabolism, includ-
ing glycerol, a by-product of lipolysis, which can act as
a substrate for the glycolytic pathway to promote meta-
static tumour cell growth and adaptation [37,38].

Figure 1. The role of omental adipocytes in tumour development and metastasis.
In omental adipocytes exposed to asbestos, MCP-1 secretion is increased and adiponectin secretion is reduced, resulting in an inflammatory reaction
andmesothelial cell hyperplasia that induces the development of mesothelioma. Among adipokines from omental adipocytes, leptin, adiponectin, IL-
8, IL-6, and MCP-1 induce tumour cell homing, survival, proliferation, migration, invasion, and chemo-resistance in metastatic tumour cells in the
omentum. VEGF, VEGFR3, and CD106 enhance angiogenesis. Metastatic tumour cells in the omentum promote lipolysis, and the generated fatty acids
are transferred to tumour cells and used in β-oxidation. Oleic acid activates the PI3K/AKT pathway and promotes cancer cell invasiveness. PUFAs
activate PPARβ/δ in macrophages and polarizes them into tumour-associated macrophages. MCP-1, monocyte chemoattractant protein 1; IL,
interleukin; VEGF, vascular endothelial growth factor; VEGFR, vascular endothelial growth factor receptor; PUFA, polyunsaturated fatty acid.
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Cross-talk with immune cells

As mentioned above, a milky spot, the functional unit of
the omentum, is composed of diverse cell types, including
immune cells such as macrophages, mast cells, and B- and
T-lymphocytes, that are important in the immune
response of the omentum [39,40]. The milky spot is the
initial tumour cell attachment site for metastasis[9], and is
thus critical for tumour growth and survival. Milky spots
are only found in the omentum and splenoportal adipose
tissue among the peritoneal adipose tissues [35,41].
Interactions between adipocytes and peritoneal macro-
phages have been shown to contribute to ovarian cancer
cell metastasis. Peroxisome proliferator-activated receptor
(PPAR)β/δ is involved in cancer-associated processes and
activated by various lipid ligands[42]. Analyzing of
tumour-associated macrophages driven from ovarian
cancer ascites showed constantly upregulated PPARβ/δ
with impaired ligand response[43]. Ovarian cancer ascites
was rich in polyunsaturated fatty acids (PUFAs), particu-
larly linoleic acid[43], which could be derived from omen-
tal adipocytes. PUFAs could serve as ligand of PPARs, and
PUFA/PPARδ structure promoted their FA sensing abil-
ity[44]. PPARδ promotes lipid accumulation in macro-
phages[45], and this may explain the high concentration
of PUFAs and constant upregulation of PPARβ/δ in
tumour-associated macrophages (TAMs) in ovarian can-
cer ascites[43], which play a pro-tumorigenic role in
tumour microenvironment. This kind of fatty acid accu-
mulated in TAM is now recognized as tumour promotor
[46,47].

Angiogenesis

Milky spots exist along with the vascular network of the
omentum and at sites of active angiogenesis. In general,
angiogenesis in milky spots occurs by vascular endothe-
lial growth factor A (VEGFA) secreted from omental
mesothelial cells and macrophages. In a hypoxic condi-
tion, the omental adipocytes secrete VEGF, vascular
endothelial growth factor receptor (VEGFR) 3, and
CD105 [9,48,49] to induce angiogenesis and thereby
promote cancer survival and chemoresistance [50,51].
Microarray analysis with the Oncomine assay revealed
higher expression levels of VEGFR1, VEGFR2, CD31,
and CD34 in omental metastatic cancer tissues than in
the primary ovarian cancer[52].

BM adipocytes (BMA)

BMA are an important component of the BM with diverse
roles, and the proportion of BMA in the BM fluctuates
under various conditions. The number of adipocytes

tends to increase with age, obesity, malnutrition, and sti-
mulation of drugs or radiation [53–56]. Approximately
70% of the adult BM volume is occupied by BMA[57],
which can be classified into inducible or regulated BMA
(rBMA) and constitutive BMA (cBMA) that differ in terms
of development, lipid saturation, gene expression, and vas-
cular density [58,59]. rBMA are characterized by their
proximal location and red marrow, whereas cBMA are
characterized by their more distal location and yellowmar-
row. BMA originate from BMmesenchymal stem cells that
are bi-potent progenitors, with the ability to differentiate
into adipocytes and/or osteoblasts[60]. BMA show several
typical adipocyte phenotype characteristics. The brown-like
phenotype BMA provide energy to hematopoietic and
mesenchymal components [61] and express uncoupling
protein-1 (UCP-1)[62], whereas white-like phenotype
BMA play roles in the storage and process of triglycerides,
and regulate fatty acid metabolism [61,63,64]. This pheno-
typic difference has been suggested to be based on the
location, with BMA in the long bone and vertebrae corre-
sponding to the white and brown phenotype, respectively
[65]. BMA secrete various adipokines, including hormones,
cytokines, and fatty acids, that affect bone remodelling,
energy regulation, and insulin metabolism [66,67]. The
secretory profile of BMAalso differs from that of adipocytes
from other sites: BMA show lower expression of adiponec-
tin mRNA compared with that of extramedullary adipo-
cytes [68,69] but have higher expression levels of tumour
necrosis factor-alpha (TNF-α) and IL-6 than those in visc-
eral adipocytes[68], accompanied by higher pro-angiogenic
and pro-apoptotic profiles[70]. In bone remodelling, BMA
secrete leptin, adiponectin, and chemerin; leptin and adi-
ponectin induce the osteoblastic differentiation and prolif-
eration of mesenchymal stem cells, while chemerin
suppresses osteogenesis[65]. Moreover, the abundant satu-
rated fatty acids in BMA induce osteoblast dysfunction and
apoptosis, and osteoclastogenesis is facilitated by TNF-α
and receptor activator of nuclear factor kappa-Β ligand
(RANKL) secreted from BMA[65].

Roles of BMA in solid tumour metastasis

The bone is one of the most common metastatic sites of
cancers, especially for prostate, breast, and lung cancers
[71]. The incidence of bone metastasis at autopsy is
75–80% for prostate cancer [71,72], and 65–75% for
breast cancer[73]. In prostate cancer, old age and obesity
are the primary risk factors of metastasis [74–76], which
are factors that increase the numbers of BMA. The main
metastatic sites of prostate cancer are the axial skeleton
and long bone metaphysis, which is a site of active bone
remodelling with high marrow cellularity[77]. Thus,
a metabolically active BM with abundant adipocytes
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may be the preferred site of metastasis. Previous studies
indicated that metastatic cells forming colonies in the
bone were attracted by an adipocyte-rich and metaboli-
cally active red BM [78,79]. Thus, substantial research has
focused on the contribution of the BMA in the bone
metastasis of solid tumours, revealing various mechan-
isms. Here, we focus on the secretion of adipocytokines
and lipid transfer as the representative mechanisms
(Figure 2).

Adipocytokines secreted by BMA

BMA secrete various adipocytokines such as leptin, adi-
ponectin, IL-1β, IL-6, vascular cell adhesion molecule 1
(VCAM-1), TNF-α, and VEGF, [80] which influence
cancer cell biology. Leptin indirectly affects prostate can-
cer cell growth via promoting bone resorption, [81,82]
and increased expression of IL-1β drives cancer cell colo-
nization of BMA in breast cancer[83]. Leptin is also
important for BMA generation. Leptin binds to the leptin
receptor on BM stem cells, and activates the Janus kinase
2 (JAK2)/STAT3 pathway to trigger adipogenesis [84,85].
Leptin secreted into BMA binds leptin receptor on the
tumour cells, which induces tumour progression [86–88].
Indeed, tumour patients show greater amounts of adipo-
nectin secreted by BMA[55]. Although adiponectin gen-
erally acts as a tumour suppressor[89], some studies
showed that adiponectin enhanced tumour growth and
migration [90,91]. This dual effect may be derived from
the difference of adiponectin receptor isoforms[90]. BMA
secrete abundant IL-6[92], which induces the epithelial-
mesenchymal transition in tumour cells via the JAK2/
STAT3 pathway[93], and strengthens the metastatic
potential of tumour cells via PI3K/AKT[94]. Peculiarly,
IL-6 can be activated by an extracellular soluble form of
IL-6 receptor (IL-6R), without a receptor of tumour cells
[95]. Therefore, if the soluble form IL-6R along with IL-6
are secreted by BMA, they would have a strong effect on
the metastatic process. (C–X–C motif) ligand (CXCL)1
and CXCL2, chemokines produced by BMA, enhance
osteoclastogenesis in metastatic prostate cancer and pro-
long tumour cell survival[96]. Upregulated expression of
IL-6 in malignant melanoma cells increased osteoclasto-
genesis, which could induce the proliferation of tumour
cells[97]. CXCL1 and CXCL2 also participate in immune
modulation, acting as chemoattractants for macrophages,
neutrophils, and CD11b+Gr1+ cells [98,99]. These
immune cells have CXCL2 receptors and suppress the
anti-tumour immune response[100]. Furthermore, the
cyclooxygenase-2 (COX-2)/prostaglandin E2 (PGE2) sig-
nalling axis induces inflammation and immune suppres-
sion, facilitating tumour evasion of the host immune
response[101]. Overexpression of COX-2 and PGE2 is

the main cause of tumour-related bone degradation in
bone metastasis [102,103]. In a breast cancer mouse
model, an increase of the COX-2 level increased tumour
colonization and osteoclastogenesis, and induced lytic
bone metastasis[104]. Adipokines also participate in
angiogenesis. When prostate cancer cells were exposed
to BMA, VEGF expression increased[105], and CCL2
secreted by adipocytes was found to promote breast can-
cer progression by inducing angiogenesis[106].

Lipid transfer and characteristic lipid components

BMA provide the lipid source required for the prolifera-
tion, migration, and invasion of solid cancer cells
[83,105]. In a cell line study, prostate cancer cells co-
cultured with BMA were found to be surrounded by
lipid droplets and showed increased expression levels of
the lipid transfer-associatedmolecules FABP4, CD36, and
perilipin 2[105]. Microarray analysis with Oncomine data
also revealed increased expression levels of FABP4 and
CD36 in metastatic prostate cancer compared to those of
the primary cancer[52]. In addition, CD36 expression was
increased in breast cancer and prostate cancer cells co-
cultured with BMA[105]. An in vivo study also supported
the lipid transfer from BMA to tumour cells: in the early
phase of bone metastasis, the number of BMA increased
by adipogenesis, but the number of BMA with abundant
lipid droplets decreased during tumour progression[107].
Bone metastasis is more frequent in the rBMA-
enriched region than in the cBMA-enriched region.
rBMA can respond flexibly during metabolic interactions
with tumour cells, as they readily adapt to their environ-
ment. BMA also influence the metabolic phenotype of
metastatic prostate cancer cells. Previous study on pros-
tate cancer showed that BMA induced Warburg-type
metabolism in cancer cells in paracrine manner, along
with decreased mitochondrial oxidative phosphorylation
[108]. Glycolytic enzymes, ENO2, LDHa, PDK1, HK2,
and GLUT1 were upregulated in prostate cancer cells
that were co-cultured with adipocytes[108]. Exposure of
prostate cancer cells to BMA induced hypoxia-inducible
factor 1-alpha signalling and persisted Warburg-type
metabolism[108].

The lipid droplets of BMA are composed of large-
sized saturated and unsaturated fatty acids, particularly
oleic, palmitic, and omega-6 PUFAs, and AA[109].
Some of the fatty acids derived from BMA could impact
bone metastasis. For example, AA transferred from
BMA to prostate cancer cells activated the PI3K/AKT
and nuclear factor-kappa B (NF-κB) signalling path-
ways, and promoted cancer cell proliferation and infil-
tration [110,111]. Moreover, AA is also related to the
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expression of COX-2 and PGE2, thus playing a role in
the COX-2/PGE2 signalling axis [110,112].

Roles of BMA in hematologic neoplasms

The studies reviewed above clearly demonstrate the roles of
interactions between solid tumours and BMA in bone
metastasis. However, hematologic neoplasms such as mul-
tiple myeloma (MM) and leukaemia are primarily derived
from the BM, which could be the primary niche of these
neoplasms. In solid tumours, elevated leptin level is asso-
ciated with cancer risk[113]. Also, in hematologic neo-
plasms, such as MM, leptin was revealed to have pro-
tumour effect[80]. Moreover, previous study showed that
adipocytes protected acute lymphoblastic leukaemia (ALL)
cells from vincristine, a chemotherapeutic agent, by seques-
tering lipophilic vincristine, as well as upregulating anti-
apoptotic proteins, Pim-2 and Bcl-2[114]. In MM patients,
myeloma cells induced adipogenesis from osteoblast pro-
genitor cells, and increased the number of BMA, which
contributed to MM progression[115]. In acute myeloid
leukaemia (AML) patients, BM mesenchymal stem cells
tended to differentiate into adipocytes[116], which implies
that tumour microenvironment favours adipocyte-rich
state. So far, BMA have been considered as negative reg-
ulators in BMmicroenvironment and hematopoiesis[117].
Preferred differentiation to adipocytes of BMmesenchymal
stem cells may lead to the depletion of hematopoietic stem
cell niche, and also facilitate tumour growth. Size reduction
of BMA surrounding AML cell line is caused by lipolysis of
adipocytes by leukemic cells, which leads to increase of free
fatty acid utilized by leukemic cells. Growth differentiation
factor 15 (GDF15) level, secreted from AML cells, induces
morphological remodelling of BMA [118] and lipolytic
pathway to generate fatty acid for tumour proliferation
[119] (Figure 2).

Adipokines

An epidemiologic study showed that low adiponectin and
high leptin levels are associated with an increased tumour
risk inmultiple myeloma[113]. In vitro, myeloma cells co-
cultured with adipocytes showed enhanced proliferation
and migration, and leptin was found to clearly play a role
in this process[120]. Leptin activates the AKT/STAT3
pathway, increases Bcl-2 levels, and suppresses caspase-3
and in turn apoptosis, which collectively contribute to the
development of chemo-resistance in myeloma[121].
Autophagy, which is also activated by leptin, inhibits
chemotherapy-induced apoptosis[122]. Adiponectin acti-
vates the AMP-activated protein kinase (AMPK) and
mitogen-activated protein kinase (MAPK) pathways in
myeloma cells, and reduces the rate of tumour cell

proliferation while promoting apoptosis[123]. Decreased
adiponectin levels promote the progression to myeloma
from the pre-myeloma stage, because a low adiponectin
level is not sufficient to properly inhibit acetyl-CoA-
carboxylase, a key enzyme of lipid synthesis in tumour
cells[124]. Adipsin secreted from adipocytes inhibits che-
motherapy-induced apoptosis in myeloma cells by
increasing autophagy[108]. Vistafin, a visceral fat-
derived protein, has been shown to be related to multiple
myeloma progression[125]. IL-6 promotes myeloma cell
proliferation both in vitro and in vivo[126], and the IL-6
level is correlated withmyeloma progression[127]. TNF-α
independently promoted the proliferation of myeloma
cells[128], and induced the expression of CCL2 in mye-
loma cells together with IL-6[129]. CCL2 leads to the
macrophage recruitment that supports myeloma cell sur-
vival, drug resistance, and angiogenesis[130].

Cytokines and chemokines secreted by BMA induce
proliferation of AML cells. Leptin increases survival of
leukemic cells [131,132], and induces proliferation of
AML cell lines and blasts [133,134]. In acute promyelo-
cytic leukaemia (APL), leptin from adipocytes suppresses
APL cell apoptosis via STAT3 and MAPK pathway[135].
In ALL, stromal cell-derived factor-1 alpha (SDF-1α)
secreted by adipocytes binds to CXCR receptor, which
induces cytoskeletal remodelling and makes leukemic
cells migrate to adipose tissue[136]. Finally, CXCL2
secreted from adipocytes was shown to induce drug resis-
tance in a leukaemia mouse model[137]. These above-
mentioned adipokines are released by all different depos-
its of adipose tissue and are found in the circulation.

Lipid metabolism and lipid metabolites

Blast cells ofAML induce the phosphorylation of hormone-
sensitive lipase in BMA, and activate lipolysis, resulting in
the increased production of fatty acids. The fatty acids are
transferred to AML blasts via FABP4, which help to pro-
mote tumour cell proliferation[138]. BMA also promotes
fatty acid β-oxidation as well as the expression of the
PPARɣ, FABP4, CD36, and BCL2 genes, which collectively
inhibit the apoptosis of acute monocytic leukaemia cells
[139]. Thus, adipocytes serve as energy source of AMLhave
reduced size, and small BMA size is known as poor prog-
nostic factor in AML[140]. Furthermore, BMA in AML
transfer free fatty acids (FFA) to hematopoietic stem cells
that make survival and growth of AML blasts[141]. When
ALL cell line was co-cultured with adipocytes, FFA pro-
duced from adipocyte lipolysis was used by ALL cell, for
tumour cell proliferation[142]. Fatty acids have various
effects onmyeloma: LA and oleic acid induce the prolifera-
tion of myeloma cells [143,144], whereas unsaturated fatty
acids such as alpha-LA and eicosapentaenoic acid caused
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myeloma cell death in vitro[145], and PUFAs induced the
apoptosis of human leukemic cells[146].

Therapeutic targets of omental and BM
adipocytes for tumour treatment

Given the evident roles of omental and BM adipocytes
in the various pathways of tumour biology, targeting
the interaction between tumour cells and adipocytes
could be an effective new cancer treatment strategy
(Figure 3).

Adipokine modulators

Adipokine modulators have shown promising tumour-
suppressive effects. Leptin has pro-tumorigenic effects as
well as induces in chemoresistance via NF-κB and TGF-β
signalling pathways [147,148]. Leptin antagonists include
leptin mutant proteins[149], leptin peptide antagonist
[149], leptin peptide receptor antagonist (LPrA)
[150,151], and Allo-aca and D-ser [152,153]. Among
these, leptin peptide antagonist, LDFI, inhibited leptin-
induced proliferation of breast cancer cells in vivo and
in vitro[154]. LPrA2 prevented breast cancer in mouse

Figure 2. The role of bone marrow adipocytes in solid tumour metastasis and hematologic tumour development.
Bone marrow adipocytes are involved in solid tumour metastasis via the secretion of various adipokines. Leptin enhances cancer cell colonization
and adipogenesis, which induces tumour progression. Adiponectin promotes tumour growth and migration. IL-6 increases tumour cell survival.
The CXCL1/CXCL2 axis increases osteoclastogenesis, and suppresses the anti-tumour immune response. The COX-2/PGE2 axis represses the
immune response, and induces tumour-related bone degradation. Adipocytokines are also involved in hematologic tumour development and
progression. Leptin suppresses apoptosis and activates autophagy, which induces chemo-resistance. Reduction of adiponectin secretion promotes
the progression ofMGUS tomyeloma. Adipsin and CXCL12 participate in drug resistance. IL-6 and visfatin are involved inmyeloma cell progression.
Tumour cells of solid tumours and hematologic tumours receive fatty acids transferred from the adipocytes. In solid tumours, AA activates the PI3K/
AKT and NF-κB pathways that induce cancer cell proliferation and invasion. AA also activates COX-2 and PGE2 that repress the immune response
and induce tumour-related bone degradation. In hematologic tumours, linoleic acid and oleic acid increase the proliferation of myeloma cells.
CXCL, (C–X–C motif) ligand; COX-2, cyclooxygenase-2; PGE2, prostaglandin E2; MGUS, monoclonal gammopathy of undetermined significance; IL,
interleukin; PI3K/AKT, phosphoinositide 3-kinase/protein kinase B; NF-κB, nuclear factor-kappa B.
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model, associated with reduction of levels of leptin-
induced molecules[155]. Allo-aca and its analogue pep-
tide D-ser inhibited leptin-induced proliferation of cancer
cells in in vitro: breast cancer cell line,MDA-MB231[152],
leptin-receptor positive breast and colon cancer cells
[153]. AMD3100, a CXCR4 inhibitor, was found to
increase the sensitivity to therapy in multiple myeloma
cells[156]. NOX-A12, a CXCL12 inhibitor, also increased
the sensitivity of chronic lymphocytic leukaemia cells to
chemotherapy[157]. Carlumab, monoclonal antibody to
CCL2 inhibits CCL2 binding to the CCR2 receptor[158].
Also known as CNTO888, carlumab showed promising
antitumor effect in pre-clinical study[159]. Although car-
lumab was well tolerated in solid tumour patients with
lesser adverse effect, unlikely to in vitro study, carlumab
expected to have lesser binding affinity in human further
study and review are required [160,161]. L-4F, an apoli-
poprotein mimetic, increased the adiponectin level and
displayed a chemotherapeutic effect on myeloma[123],
breast cancer[162], and ovarian cancer[163]. APO866,
a visfatin inhibitor, induced the apoptosis of myeloma

cells, and repressed the rate of tumour cell prolifera-
tion[125].

Lipid metabolism inhibitors

Given the metabolic interactions between adipocytes
and tumour cells, targeting of metabolic pathways has
been explored as a treatment target. Fatty acids released
during lipolysis are transferred to tumour cells and
used for energy production via mitochondrial β-
oxidation, which enhances tumour progression.
Hence, fatty acid oxidation in cancer cells is
a promising therapeutic target. A malonyl-CoA decar-
boxylase (MCD) inhibitor inhibits fatty acid oxidation
by increasing the malonyl-CoA level, which is a key
inhibitory enzyme of fatty acid uptake in mitochondria,
and in turn could reduce the proliferation of human
breast cancer cells[164]. In addition, the transportation
of fatty acids from adipocytes to tumour cells has been
explored as a potential treatment target. BMS 309403,
an inhibitor of FABP4, decreased cancer cell

Figure 3. Possible treatment targets for the interaction between cancer cells and adipocytes in the omentum and bone marrow.
CCL2/CCR2 axis inhibitors are modulators of adipokines. Calruman and MLN1202 are monoclonal antibodies against CCL2 and CCR2, respectively.
CXCR4/CXCL12 axis inhibitors include AMD3100 and NOX-A12, which are inhibitors for CXCR4 and CXCL12, respectively. L-4F, an apolipoprotein
mimetic, increases the adiponectin level and has an anti-tumour effect. APO866 is a visfatin inhibitor. Lipid metabolic interactions between tumour
cells and adipocytes are potential therapeutic targets. Trimetazidine and malonyl-CoA decarboxylase (MCD) inhibitors are inhibitors of fatty acid β-
oxidation in tumour cells. BMS 309403 inhibits FABP4, a fatty acid transporter, and CD36 blocking antibody blocks CD36, a transmembrane protein for
fatty acid uptake. CCL2, C-C motif chemokine ligand 2; CCR2, C-C motif chemokine receptor 2; CXCL, (C–X–C motif) ligand; CXCR, (C–X–C motif)
receptor; FABP4, fatty acid binding protein 4.
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proliferation[30], and a CD36 blocking antibody that
blocks the acid uptake of CD36 decreased breast cancer
cell metastasis and ovarian cancer cell growth [34,165].

Conclusion and prospects

The omentum and BM are highly enriched in adipo-
cytes and are the main sites of metastasis for various
types of solid tumours. The BM is also a primary site of
hematologic tumour development. Adipocytes are
a component of the TME that dictates tumour devel-
opment, survival, and progression; thus, targeting adi-
pocytes can be an important strategy for suppressing
tumour development, cancer cell survival, and progres-
sion. Adipocytes of omentum and BM differ in their
origin and location, but both serve as endocrine organs
secreting adipokines and are involved in tumour biol-
ogy. Adipocytes of the omentum and BM secrete var-
ious adipokines with pro-tumour effects on growth
signalling, angiogenesis, and immune modulation.
Furthermore, they transfer lipids to adjacent tumour
cells to influence tumour metabolism, and enhance
tumour proliferation and survival. Thus, targeting the
interaction between tumour cells and adipocytes of the
omentum and BM could be an effective tumour treat-
ment. In this regard, IL-6, TNF-α, CXCL12, and CCL2
are therapeutically targetable adipokines, while FABP4
and CD36 are potential targets regarding the metabolic
interaction. Further study is required to uncover the
detailed relationships between adipocytes of the omen-
tum and BM and their influence on tumour biology,
and to identify and validate new potential treatment
targets.
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