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ABSTRACT
The metabolic syndrome is a constellation of
metabolic risk factors including atherogenic
dyslipidemia (elevated serum triglycerides, reduced
high-density lipoprotein (HDL) cholesterol), elevated
blood pressure, dysglycemia (insulin resistance and
elevated serum glucose), a pro-inflammatory state,
and a prothrombotic state. Most persons with
metabolic syndrome are obese, and usually have
abdominal obesity. Generally, obesity is a reflection
of overnutrition. A current view is that when adipose
tissue fails to store all excess nutrients as
triglyceride, lipid begins to accumulate in various
tissues (eg, muscle, liver, pancreas, and heart).
This accumulation is called ectopic lipid. Various
mechanisms have been proposed whereby ectopic
lipid is detrimental in different tissues; these
derangements induce metabolic risk factors. The
foundation of the metabolic syndrome thus appears
to be overnutrition, that is, more nutrient intake
than can be safely disposed by lipid oxidation.
Excess dietary carbohydrate also induces ectopic
lipid. Of interest, less than half of obese individuals
develop metabolic syndrome. Through various
mechanisms they adapt to overnutrition so as to
minimize lipid overload in tissues, and consequently,
prevent the syndrome.

The metabolic syndrome is a constellation of
metabolic risk factors including atherogenic dys-
lipidemia (elevated serum triglycerides, reduced
high-density lipoprotein (HDL) cholesterol),
elevated blood pressure, dysglycemia (insulin
resistance and elevated serum glucose), a
pro-inflammatory state and a prothrombotic
state.1 2 When present in combination, these
factors essentially double the risk for athero-
sclerotic cardiovascular disease (ASCVD);3–5

they also increase risk for type 2 diabetes about
fivefold.2 Most persons with metabolic syn-
drome are obese. This implies that overnutrition
contributes to the syndrome.6 Still, less than half
of obese individuals manifest multiple metabolic
risk factors.7 Many persons seemingly are able
to adapt to overnutrition so as to prevent the
syndrome. The following discussion examines
potential mechanisms underlying the metabolic
syndrome and considers how the body defends
against overload of nutrient energy.

The most plausible, unifying hypothesis for
the pathogenesis of metabolic syndrome is that
overnutrition drives accumulation of excess
lipid in organs or tissues; this in turn deranges

metabolic processes and predisposes to meta-
bolic risk factors.6 Excess lipid in adipose tissue
is called obesity; in other tissues, it is called
ectopic lipid. In this document, overnutrition
will be defined as the any excess of nutrient
energy that causes ectopic lipid accumulation
outside adipose tissue. The essential pathways
whereby overnutrition drives development of
ectopic lipid are shown in figure 1. Excess
nutrients come from either dietary triglyceride
or carbohydrate. Dietary triglyceride enters the
circulation with chylomicrons. Triglycerides are
hydrolyzed to fatty acids by lipoprotein lipase
(LPL); and most of released fatty acids enter
adipose tissue, where they are re-esterified to
triglyceride. A portion of fatty acids released by
LPL bypasses adipose tissue and enters a variety
of tissues. Adipose tissue releases non-esterified
fatty acids (NEFA), which pass into the circula-
tion and likewise reach many tissues. Glucose
derived from dietary carbohydrate goes directly
into the same tissues. When excess glucose is
consumed, it can be converted to fatty acids
through a process known as lipogenesis. All car-
bohydrates and lipids are ultimately disposed
by oxidation. At constant body weight, oxida-
tion rates of triglyceride and carbohydrate
equal their intakes, and lipid content of adipose
tissue remains unchanged. An imbalance
between intake and oxidation occurs only
during periods of weight gain or loss. These
facts are well known, but often are forgotten
when the mechanisms for ectopic lipid and
metabolic syndrome are discussed.
Whereas tissue overload by lipid predisposes

to metabolic syndrome, and may be necessary
for its development, it seemingly is not suffi-
cient. Other factors, acting in local tissues,
appear necessary for the clinical syndrome to
present. The following briefly discusses the
origins of ectopic lipid, and considers add-
itional factors that bring out the syndrome.

ADIPOSE TISSUE
One emerging view holds that adipose tissue
protects against accumulation of ectopic lipid
and hence prevents metabolic syndrome
through fat storage.8–11 If excess dietary nutri-
ents could be stored fully in adipose tissue,
ectopic lipid should not occur. Thus the meta-
bolic syndrome may reflect insufficient adipose
tissue to store the load of fat imposed upon it
by a high-calorie diet. The best example of this
mechanism is the rare condition called
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lipodystrophy.12 13 This is a condition of severe deficiency
in adipose tissue; hence, consumed lipids cannot be
adequately stored in adipose tissue and other tissues
become overloaded. This precipitates the metabolic syn-
drome. Theoretically, even in the absence of lipodystrophy,
the syndrome could occur if adipose tissue storage capacity
is exceeded, even in the presence of clinical obesity.

Adipose tissue is the major site of uptake for lipid
released during lipolysis of triglyceride-rich lipoproteins
(TGRLP). These lipoproteins consist of chylomicrons,
derived from dietary fat, and of very low-density lipopro-
teins (VLDL), produced by the liver. Fatty acids freed
during lipolysis of TGRLP are taken up by adipose tissue
and are re-esterified as triglycerides. In turn, adipose-tissue
triglyceride undergoes lipolysis and releases NEFA into the
circulation. During weight gain, fat storage is positive; at
constant weight, no net storage of triglyceride occurs.
NEFA release occurs mainly, but not exclusively, in the
fasting state. Its release is regulated mainly by insulin.
During fasting, when insulin levels are low, NEFA release is
high; conversely, in the postprandial state, when insulin
levels are high, NEFA release is suppressed. Thus, when
excess calories are consumed, increased quantities of fatty
acids cycle through adipose tissue.

Increased release of NEFA from adipose tissue in obese
persons is commonly believed to be a cause of metabolic
syndrome. Of course, high NEFA levels are the result of
increased uptake of fatty acids by adipose tissue in response
to overnutrition; elevated plasma NEFA therefore cannot
be blamed on abnormalities in adipose tissue. For example,
with caloric restriction, plasma NEFA levels rapidly decline
despite persistent obesity.14 Indeed, fasting NEFA concen-
trations correlate relatively poorly with body-fat content.15

This finding likely reflects variability in caloric intake
among individuals.

There are three adipose-tissue compartments that have
been linked in various ways to metabolic syndrome. These
are upper-body subcutaneous adipose tissue (UBSQ-AT),
lower-body subcutaneous adipose tissue (LBSQ-AT) (glu-
teofemoral fat), and visceral adipose tissue (VAT).16 17

Upper-body fat, sometimes referred to as abdominal
fat, actually includes all truncal fat, and represents the com-
bination of UBSQ-AT and VAT compartments. Each

adipose-tissue compartment can be discussed briefly relative
to metabolic syndrome. Figure 2 shows apparent magni-
tudes of flow of fatty acids through these compartments.

Truncal adipose tissue correlates better with metabolic
syndrome than does lower body adipose tissue.18–20

UBSQ-AT is the largest component of truncal adipose
tissue.21–23 It predominates in release of NEFA into the sys-
temic and splanchnic circulations;21–23 thus UBSQ-AT
could be a major source of ectopic lipid. Compared to
LBSQ-AT, UBSQ-AT appears to be more insulin resist-
ant;24–26 this means that UBSQ-AT more readily releases its
fatty acids into the circulation, that is, it has higher turn-
over rates of fatty acids.27 Although UBSQ obesity is often
implicated in causation of ectopic lipid, more likely, it just
acts as a conduit for transfer of excess nutrient fatty acids
to the circulation, as suggested in figure 1.

A high VAT likewise has been strongly associated with
metabolic syndrome.28–34 It is particularly correlated with
hepatic ectopic lipid.35 Fatty acids entering the splanchnic
circulation are destined for the liver. These can come from
UBSQ-AT or directly from splanchnic lipolysis of TGRLP.36

Presumably, visceral obesity is a response to a greater flux
of NEFA through the splanchnic bed.

Compared to upper body compartments, LBSQ-AT
seems to possess a lower rate of turnover of fatty acids.
Individuals with predominant lower body obesity have rela-
tively normal plasma levels and turnover rates for NEFA.27

Lower body obesity has been postulated to be protective
against the metabolic syndrome.37 More likely, it is rela-
tively neutral, rather than being protective, because of its
relatively low turnover rate for fatty acids.27

When obesity is present, adipose tissue becomes
inflamed. This inflammation results from invasion by
macrophages secondary to adipose-tissue dysfunction.38

Consequently, the adipose-tissue bed releases inflammatory
cytokines and prothrombotic factors into the systemic cir-
culation. Release of excess cytokines may induce a general-
ized proinflammatory state, which could contribute to both
ASCVD39 and diabetes.40 Release of prothrombotic factors
may likewise predispose to acute ASCVD events. A host of
other ‘adipokines’ has been identified.41 Whether these

Figure 1 Major pathways for triglyceride (TG) and carbohydrate
(CHO), in the form of glucose, derived from the diet. These
pathways are described in detail in the text. NEFA, non-esterified
fatty acids.

Figure 2 Pathways for fatty acids released by hydrolysis of
triglyceride in triglyceride-rich lipoproteins (TGRLP). See text for
details. Three major adipose tissue compartments are shown:
upper body subcutaneous (UBSQ), lower body subcutaneous
(LBSQ), and visceral (VAT). The size of the arrows reflects the
magnitude of the flux through each pathway.
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participate in the relationship between obesity and meta-
bolic syndrome remains to be determined.

MUSCLE
Overnutrition increases lean body mass as well as adipose-
tissue triglyceride.42 A greater lean body mass occurs in
many tissues, but especially muscle. This results in greater
energy expenditure, which should buffer against
ectopic-lipid accumulation. When overnutrition induces
high NEFA levels, muscle uptake of NEFA is enhanced. A
greater muscle mass (and mitochondrial number), second-
ary to greater energy intake, defends against ectopic lipid.
But imbalance between NEFA uptake and oxidation by
muscle results in ectopic lipid and contributes to insulin
resistance.43 The latter, of course, predisposes to hypergly-
cemia, an important metabolic risk factor.

LIVER
A high caloric intake increases the nutrient load on the
liver. Like in muscle, high levels of fasting NEFA derived
from adipose tissue raise hepatic uptake of fatty acids. As
well, the liver has other sources of fatty acids. Among these
are fatty acids released by lipolysis of TGRLP in the
splanchnic circulation44 and hepatic uptake of chylomicron
remnants. Further, when muscle is insulin resistant, more
glucose is routed to the liver, which stimulates de novo syn-
thesis of fatty acids.45 Thus, hepatic ectopic lipid in one
way or another represents a product of overnutrition.

Ectopic lipid in the liver is synonymous with non-
alcoholic fatty liver (NAFL). The latter in turn predisposes
to non-alcoholic steatohepatitis, which can sometimes
produce cirrhosis or liver cancer. NAFL occurs almost
exclusively in obese persons;46 hence overnutrition is an
underlying cause. But many obese individuals are able to
avoid NAFL,46 presumably by incorporating excess lipid
into VLDL or by enhancing fatty acid oxidation.
Conversely, in some individuals, these two pathways are
sluggish and trap fat in the liver.47

An increased load of fatty acids on the liver typically
causes overproduction of VLDL particles.48

Overproduction raises plasma triglycerides, provided they
are not rapidly removed by enhanced lipolysis.48 An eleva-
tion in VLDL triglyceride is one important metabolic risk
factor. Increased production of VLDL particles can further
raise the plasma apolipoprotein B—another lipoprotein
risk factor. Finally, hepatic lipid overload stimulates the
synthesis of hepatic lipase,49 an enzyme that degrades HDL
particles and lowers HDL-cholesterol concentrations. Thus,
an increased lipid load in the liver, which results from over-
nutrition, is the underlying cause of atherogenic
dyslipidemia.

KIDNEY
Elevated blood pressure commonly occurs with the meta-
bolic syndrome. Hyperinsulinemia is one factor implicated
in causation of hypertension.50 Another contributor may
be accumulation of ectopic lipid in the renal sinus and peri-
nephric region.51 Renal sinus fat may compress venules and
lymphatics in the kidney and thus impair blood pressure
regulation. Moreover, excess lipid in the perinephric region
may compress the kidneys, induce ischemia and cause
hypertension.52

PANCREAS
Fatty acids as well as glucose stimulates insulin secretion.53–56

With overnutrition, excess fatty acids entering pancreatic
β-cells likely are one cause of increased insulin secretion and
hyperinsulinemia found in obese individuals. In accord,
ectopic lipid has been observed in β-cells of obese, prediabetic
animal models.57 Over time, ectopic lipid may destroy β-cells
through overstimulation of insulin secretion and lipotoxiciy.58

The latter effect could account for the apparent ‘insulin
exhaustion’ commonly observed in patients with type 2 dia-
betes. Of interest, MR spectroscopy shows that the pancreas
contains ectopic lipid when diabetes is present, whereas it
generally is absent when diabetes is not present.59

HEART
In many obese persons, ectopic lipid accumulation is found
to occur in and around the heart.60 Several investigations
suggest that lipid accumulation is detrimental to cardiac
function (for a detailed review see reference).61

CARBOHYDRATE OVERNUTRITION
Most evidence supports the concept that fatty acids repre-
sent the final common pathway to tissue nutrient overload.
Less attention has been given to the possible untoward
effects of excessive intake of carbohydrate. For example,
high-carbohydrate intakes enhance postprandial glycemia,
which itself may be detrimental over the long run.
Postprandial hyperglycemia may cause oxidative stress or
otherwise be glucotoxic in a variety of tissues.62 63 Chronic
overstimulation of insulin secretion induced by dietary
carbohydrate could have at least two untoward effects.
First, β-cell function may be impaired by chronic glucotoxi-
city;63–65 and second, carbohydrate-induced hyperinsuline-
mia may suppress muscle insulin sensitivity.66–68

Hyperinsulinemia associated with excess dietary carbohy-
drate may be secondary to fatty acids produced by lipogen-
esis in β-cells. Moreover, high-carbohydrate intakes can
induce lipogenesis in the liver;69 70 fatty acids produced in
this way can feed into the final common pathway of
ectopic lipid accumulation (figure 1). Thus the role of
carbohydrate overnutrition in the development of meta-
bolic syndrome should not be overlooked. It is worthy of
more investigation.

OVERFEEDING STUDIES
One approach to understanding the effects of overnutrition
on the metabolic profile is through overfeeding studies.
Many such studies have been carried out.71–76 They indi-
cate that overnutrition produces a deterioration of meta-
bolic status, although there is considerable individual
variability in response. Such investigations are potentially
useful for identifying those who are particularly susceptible
the development of metabolic risk factors.

GENETIC FACTORS
The host of genetic factors likely act at tissue levels to influ-
ence the response to nutrient excess. Several genome-wide
association studies have been carried out to search for
genes contributing to the metabolic syndrome.77–80 These
studies suggest that multiple different genes act simultan-
eously to modify metabolic risk factors. But occasionally,
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monogenic or oligogenic factors can predominate. In some
cases, genetic abnormalities appear to predispose to ectopic
lipid accumulation; in others, defects may elicit metabolic
risk factors in those who already have ectopic lipid.

THERAPEUTIC IMPLICATIONS
Energy intake
In obese individuals, caloric restriction is followed by loss
of adipose-tissue triglyceride and diminished proinflamma-
tory cytokines, prothrombotic factors and plasma
NEFA.14 81 82 With reduced calorie intake, muscle insulin
resistance declines; hepatic steatosis diminishes; dyslipide-
mia frequently disappears; and blood pressure falls. As
shown with bariatric surgery, all of these favorable changes
occur long before substantial weight reduction takes
place.83 84 These findings confirm that metabolic syndrome
is driven largely by a high intake of nutrient energy. In the
future, management of the metabolic syndrome should put
priority on curbing caloric intake.

In the pharmacological arena, more emphasis needs to
be placed on developing new agents that will safely reduce
energy intake. This is because decreasing energy intake will
treat all the metabolic risk factors at once. Research on the
role of the hypothalamus in regulating energy appetite may
uncover new avenues of therapy.85 But equally important is
the need for public health measures to dampen overcon-
sumption of nutrient energy. This can be better achieved
through public education combined with edification of
individuals at risk.

Energy expenditure
Ectopic fat results from an imbalance between energy
intake and expenditure. A high caloric intake expands lean
body mass and promotes energy expenditure; the latter
helps to buffer ectopic lipid deposition. Nonetheless, in
many people, expansion of lean body mass is insufficient to
prevent ectopic lipid. The most obvious way to enhance
energy expenditure is through greater physical activity. The
ability of physical fitness and physical activity to reduce
metabolic risk factors is well established.86 Some investiga-
tors speculate that tissue utilization of energy could be
increased through pharmacological agents. To date this pos-
sibility has not been realized, but remains on the list of
potential therapies for metabolic syndrome. Agents that
could enhance nutrient oxidation should be particularly
attractive.

Management of individual metabolic risk factors
Multiple cardiovascular risk factors can be treated individu-
ally with various drugs.87 Among these are drugs that
favorably modify lipid levels, control blood pressure and
reduce hyperglycemia. Antiplatelet drugs should decrease a
prothrombotic state; aspirin for example is known to
reduce cardiovascular events. Currently, anti-inflammatory
drugs are being tested for efficacy to prevent atherosclerotic
events. At present, in patients with metabolic syndrome, we
must depend on polypharmacy for treatment of individual
metabolic risk factors.87 Hopefully, the future will bring
more effective interventions to modify caloric imbalance,
which is the major driver of the syndrome.
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