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A hallmark of all forms of diabetes, including type 2, is
abnormal insulin release by pancreatic islets. This occurs
either through impaired B-cell function and/or a reduc-
tion in B-cell number resulting from apoptosis or dedif-
ferentiation (1). Currently available drugs only temporally
ameliorate these processes, and many patients need in-
sulin injections to reduce hyperglycemia 10-15 years after
diagnosis (2). Mass transplantation of islets is not feasible
due to the low availability of donor islets and side effects
caused by immunosuppression. Further, although notable
progress in targeted differentiation of stem cells into
functional B-cells has been made (3), this approach has
not yet advanced into routine clinical practice. An obvious
therapeutic approach to improve islet transplantation would
be to pharmacologically stimulate the proliferation of B-cells
(Fig. 1) (4). These pharmacological agents could be used
either to treat human islets before transplantation or to
supplement protocols that transform stem cells into trans-
plantable human islets. Alternatively, they could be used as
oral medication to enhance 3-cell proliferation once safety
concerns are fully addressed.

B-Cell proliferation is rare in both adults who are
healthy and adults who have diabetes, and the molecular
underpinnings of the natural resistance of B-cells to un-
dergo mitosis are complex (5), difficult to study (6), and
species dependent (7). Nonetheless, several small molecules
have been reported to induce human (-cell proliferation
(8-10), among them the adenosine kinase inhibitor 5-iodotu-
bercidin (5-IT) (11). The latter compound was previously
identified to promote B-cell and 8-cell proliferation in
murine (and porcine) islets (12).

In this issue of Diabetes, Dirice et al. (8) convincingly
demonstrate that 5-IT also stimulates human B-cell pro-
liferation in vitro, as well as upon transplantation of hu-
man islets into mice in vivo. Notably, the authors report
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that this effect appears to be specific to endocrine pan-
creatic cells, in particular the B3-cells (Fig. 1), and they did
not find any increase in cell proliferation in several non-
pancreatic tissues (8). Of significance, long-term treat-
ment of islets with 5-IT improved glucose-stimulated
insulin secretion (8). The authors also present gene expres-
sion analyses showing that 5-IT enhanced expression of
genes involved in proliferation (such as cyclins necessary
for mitosis) and secretory function (such as glucose trans-
porter 2) (8).

When the authors tested another adenosine kinase
inhibitor, they surprisingly failed to observe increased
proliferation rates (8). As most chemical compounds, es-
pecially kinase inhibitors, never exhibit exclusive specific-
ity for only one target (13), the authors reasoned that
5-IT targets another enzyme to induce 3-cell proliferation
in the human setting. They consequently screened
for kinases affected by 5-IT treatment and found that
this treatment inhibited the dual-specificity tyrosine
phosphorylation-regulated kinase DYRK1A and several other
related kinases with high affinity (8). This is a crucial find-
ing, as recent, independent reports demonstrated that the
inhibition of DYRK1A by structurally unrelated compounds,
including the plant-derived alkaloid harmine (9), switches on
NFATc (nuclear factor of activated T-cells, cytoplasmic), a
Ca**-dependent transcription factor, in order to trigger hu-
man B-cell proliferation (8-10). The crucial role of NFATc in
B-cell proliferation and insulin secretion has been previously
established (14). Dirice et al. (8) went on to show that the
effect of 5-IT on PB-cell proliferation can be inhibited by
concomitantly blocking NFATc activation.

Previous studies using genetically modified mice showed
that partial ablation of DYRKIA inhibits (3-cell growth and
causes diabetes (15). In turn, genetic overexpression is
beneficial in the context of diabetes (16). However, these
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Figure 1—Pancreatic islets are composed of different endocrine cells, in particular insulin-secreting B-cells (shown in pink). These cells
secrete insulin into a dense microvascular network for distribution to peripheral tissues. Several structurally unrelated inhibitors of DYRK1A
(e.g., 5-IT, harmine, and GNF4877) have been recently identified to promote NFATc-dependent B-cell proliferation in human pancreatic
islets (8—10). Notably, these inhibitors promote cell cycle progression and expression of genes required for 3-cell function. Green, factors
stimulating B-cell proliferation; red, factors inhibiting B-cell proliferation.

findings are opposed to the effects observed when DYRK1A
is pharmacologically inhibited (8-10). It is noteworthy that
in genetic loss- and gain-of-function experiments (15,16),
DYRKI1A expression is apparently altered in all tissues
from early embryonic development to adulthood. A dis-
tinctive role of DYRK1A in embryonic tissues (vs. adult)
might thus explain these opposing results. Furthermore,
gene deletion has full penetrance in the entire organism,
whereas the compounds used to target DYRK1A might
not reach all tissues relevant to glucose homeostasis.
Finally, inconsistencies between mouse and human B-cell
proliferation might further contribute to the contradictory
results (7).

Multiple other kinases related to DYRK1A exist, which
are also inhibited by 5-IT as described by Dirice et al. (8).
It will be interesting to investigate if these related kinases
are expressed at the protein level in B-cells and if they are
involved in the observed mitogenic effects of 5-IT. Fur-
ther, DYRK1A has been linked to numerous other biolog-
ical functions, including neurological processes, especially
in the context of Down syndrome (17). Of relevance, a
recent report using conditional ablation of DYRK1A in
mice showed that DYRK1A controls lymphocyte differen-
tiation (18). For application as an antidiabetes drug, the
compound requires further optimization followed by
studies to comprehensively address drug safety. However,
the current findings already warrant testing DYRK1A in-
hibitors in islet transplant-based diabetes therapies. For
example, 5-IT could be applied in vitro to human islets to
stimulate B-cell proliferation and improve functionality
imminently after their transplantation. These inhibitors
could also be added to increase [B-cell density and func-
tionality in islets derived from stem cells with the ulti-
mate goal of improving the success of subsequent islet
transplantations.

In conclusion, Dirice et al. (8) used advanced molecular
tools to demonstrate that 5-IT inhibits DYRK1A with high
affinity and induces B-cell proliferation in human islets in
vitro and in vivo after transplantation. This study also prompts
additional research on how DYRKIA activity is endogenously

inhibited to facilitate B-cell proliferation (for example,
during pregnancy and obesity) to help prevent diabetes.
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