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Abstract: Obesity adversely affects bone health by means of multiple mechanisms, e.g., alterations 
in bone-regulating hormones, inflammation, and oxidative stress. Substantial evidence supports the 
relationship between adiposity and bone disorders in overweight/obese individuals. It is well 
known that the balance between mutually exclusive differentiation of progenitor cells into 
osteoblasts or adipocytes is controlled by different agents, including growth factors, hormones, 
genetic and epigenetic factors. Furthermore, an association between vitamin D deficiency and 
obesity has been reported. On the other hand, regular physical activity plays a key role in weight 
control, in the reduction of obesity-associated risks and promotes osteogenesis. The aim of this 
review is to highlight relevant cellular and molecular aspects for over-weight containment. In this 
context, the modulation of progenitor cells during differentiation as well as the role of epigenetics 
and microbiota in obesity disease will be discussed. Furthermore, lifestyle changes including an 
optimized diet as well as targeted physical activity will be suggested as strategies for the treatment 
of obesity disease 
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1. Introduction 

Obesity is a serious health problem in nearly all European countries as well as in the rest of the 
world, and the percentage of people affected by obesity has been increasing considerably in the last 
four decades. Obesity disease is a complex pathology. Alterations in progenitor cells differentiation, 
epigenetics, genetics and environmental factors as well as lifestyle concur to the pathogenesis of 
obesity. In this review, we will address the role of mesenchymal stem cells (MSCs) differentiation 
and the mechanisms of epigenetic modifications (including microRNAs) promoting adipogenesis in 
order to understand their roles in obesity. In addition, we will discuss the microbiota involvement in 
regulating adipogenesis. Finally, we will discuss the role of physical activity in preventing obesity in 
order to preserve a healthy life. 
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2. Obesity and Mesenchymal Stem Cells 

The differentiation process of mesenchymal stem cells plays a central role among the factors 
involved in obesity-related diseases. The disrupted adipo-osteogenic balance has been associated to 
different pathophysiological processes, such as aging and obesity and osteopenia-related disorders. 
MSCs are self-renewing cells that can undergo multiple alternative differentiation pathways, i.e., 
osteogenic, chondrogenic, adipogenic, myogenic and neurogenic [1]. Therefore, a tightly controlled 
alternative commitment of MSCs plays a critical role in their homeostasis maintenance. Control and 
regulation of MSCs differentiation outcomes have been extensively investigated. 

2.1. Stem Cell Lineage Differentiation towards Osteogenesis or Adipogenesis 

Different signalling pathways are involved in the regulation of adipogenesis and osteogenesis. 
Among signals that define cells fate, Wnt exhibits both pro-osteogenic and antiadipogenic activities. 
Wnt glycoproteins can be secreted to act as signaling molecules via interaction with their specific 
receptors [2]. In fact, Wnt signaling pathways are involved in different cellular processes such as 
proliferation, migration and stem cells self-renewal [3]. Wnt signaling can be activated either by a 
canonical pathway, where β-catenin protein is involved, or a non-canonical pathway, excluding the 
β-catenin protein involvement [2]. Signaling cascades that promote osteogenic or adipogenic 
differentiation of the MSC lineage generally converge on one of two key transcription factors RUNX2 
and PPARγ. PPARγ (peroxisome proliferator-activated receptor gamma) is generally considered the 
master regulator of adipogenesis; its anti-osteoblastogenic effect has also been well described [4]. 
RUNX2 on the other hand, is regarded as the master regulator of osteogenesis [5]. RUNX2 activates 
the expression of COL1A1 (Collagen type I isoform 1) and COL1A2 (collagen type I isoform 2), ALP 
(alkaline phosphatase) and OCN (osteocalcin) genes [6]. It has been demonstrated that RUNX2 
inhibits adipogenesis when overexpressed [7]. 

Previously we have demonstrated that in osteoporotic patients PPARγ expression was higher 
while RUNX2 expression was lower compared to controls [8] In young male mice it has been 
demonstrated that high fat diet (HFD)-induced obesity affects the availability of osteoblastic 
progenitors in bone, to the advantage of adipogenesis [9]. 

2.2. Stem Cell Lineage Differentiation towards Chondrogenesis or Adipogenesis 

The balance between chondrogenesis and osteogenesis plays as well an important role in obesity 
related disorders. Several studies have demonstrated that a subtle crosstalk occurs between 
chondrogenesis and adipogenesis. The addition of dexamethasone to human synovium-derived stem 
cells during chondrogenic induction promotes also adipogenesis [10]. Adipogenic features, such as 
signet-ring morphology, have been observed in pericytes cultured in chondrogenic medium [11]. 
Furthermore, in murine bone marrow-derived MSCs, deletion of Vav Guanine Nucleotide Exchange 
Factor 1 (Vav1) promotes adipogenesis and inhibits chondrogenesis. Vav1 protein activity may lead 
to cytoskeletal actin transcriptional alterations and rearrangements [12] Accordingly, Vav1 
overexpression increases chondrogenic differentiation and inhibits adipogenic differentiation [13]. 

The transcription factors involved in chondrogenesis and adipogenesis are actually interrelated; 
hence their interactions affect mesenchymal stem cells commitment. Downregulation of the 
chondrogenic transcription factor SOX9 occurs during adipogenesis in order to allow the expression 
of adipogenic transcription factors CCAAT/enhancer-binding protein beta (C/EBPβ) and 
CCAAT/enhancer-binding protein delta (C/EBPδ) [14]. On the contrary, upregulation of SOX9 and 
downstream chondrogenic genes COL2A1 and ACAN leads to the suppression of C/EBPα, C/EBPβ 
and C/EBPδ factors [14]. These findings demonstrated that a negative regulation between C/EBP 
members and SOX9 occurs. However, it must be mentioned that other studies reported how SOX9 
may play a positive role in adipogenic differentiation since it stabilizes C/EBPβ mRNA [15]. In 
addition, C/EBP factors are able to transactivate SOX9 in cultured cell lines; such a complex scenario 
suggests that tangled interactions occur between these transcription factors and deserve further 
investigations [16]. Different molecular factors, e.g., FGFs, IGF1, TGFβ, BMPs and others control the 
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balance between chondrogenic and adipogenic differentiation of mesenchymal stem cells. FGF2 
exerts a positive effect in promoting chondrogenic differentiation when supplemented during cell 
expansion [17]. FGF2 inhibitory effect on adipogenesis has also been observed; this effect has been 
shown to involve the high mobility group A-2 (HMGA2) [18]. Additionally, FGF1 reduces the 
expression of BMP and activin membrane-bound inhibitor homolog (BAMBI) by affecting the PI3K 
pathway promoting adipogenic differentiation [19]. In particular, down-regulation of the Erk1/2 
pathway as well as the association to PI3K pathway are required for IGF1 effectiveness on 
chondrogenesis and adipogenesis [20,21]. Moreover, TGFβ and Hedgehog pathways can induce 
chondrogenesis and impair adipogenesis. Bone morphogenetic proteins signaling can promote either 
chondrogenesis or adipogenesis through the activation of Smad1/5/8 and p38 pathways [22]. 
Importantly, several chemical factors exert various effects on stem cells differentiation by affecting 
different pathways. In fact, dexamethasone induces adipogenesis by means of C/EBPα factors 
whereas it can inhibit adipogenesis by upregulating RUNX2 expression [22]. Also biochemical and 
biophysical factors affect the crosstalk between chondrogenesis and adipogenesis through the 
activation of different signaling pathways. Specifically, these signals act by regulating master 
trascription factors such as SOX9 for chondrogenesis or C/EBPs and PPARγ for adipogenesis [22]. 

2.3. Obesity and Osteoporosis Appear as Partenering Traits. 

It has been demonstrated that obesity associated factors such as alteration of bone-regulating 
hormones, inflammation or oxidative stress, do affect bone health [23–28]. Lifestyle changes, 
including a healthier diet as well as regular physical activity, are recommended for obesity treatment. 
Since bone marrow MSCs in adults give rise to both osteoblasts and adipocytes in bone, it has been 
considered that limiting adipocytes output from MSCs should benefit the osteoblasts pool, thereby 
alleviating osteoporosis [29]. In addition, white adipose tissue (WAT) and brown adipose tissue 
(BAT) play crucial roles in storing versus wasting energy, respectively. WAT functions as the body 
energy storage and supply center; it predominantly consists of white adipocytes and a small fraction 
of immune and stromal cells [30]. In adults, mature and well differentiated adipocytes are present; 
stored lipids define their size. Preadipocytes and adipocite progenitors also reside in WAT, along 
with vascular tissue. Under conditions of increased energy inflow, when adipocytes reach their 
highest reserve capability, preadipocytes maturation is triggered in order to host new incoming 
energy. [31]. BAT is densely packed with mitochondria and produces heat through an inner 
mitochondrial membrane-associated protein called uncoupling protein-1 (UCP1). It decouples 
mitochondrial oxidative phosphorylation from ATP production and dissipates chemical energy as 
heat, which significantly increases energy expenditure [32]. Such activity represents an adaptive 
thermogenesis and it appears very useful. A recent positron emission tomography (PET-CT) study 
demonstrated metabolically active BAT in healthy adults, while in people with obesity and aged 
subjects BAT mass and activity are reduced [33]. These findings have revived the suggestion of 
increasing BAT amount and/or activity in order to waste energy and thus treat obesity. 

3. Epigenetics and Adipogenesis 

The importance of epigenetics in modifying gene expression is nowadays getting increasing 
consideration. Epigenetic regulations can occur through DNA methylation, histone modifications, 
non-coding RNAs driven gene silencing [34]. 

DNA methylation, affecting especially the cytosines in CpG islands, induces epigenetic 
modifications resulting in gene expression regulation [35]. In fact, addition of methyl groups to the 
CG sites is associated with gene silencing, while hypomethylation promotes transcription [36] 

DNA methylation can be influenced by nutritional factors and it plays an important role during 
development, in particular during the embryonic and fetal life as well as during the early phase of 
postnatal development [37]. Nutritional factors can affect epigenetically the expression of genes 
regulating fat progenitor cells and adipocytes number [38] or the expression of genes involved in 
food intake regulation [39]. 
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It has been demonstrated that among the micronutrients vitamin A, and in particular its 
bioactive form retinoic acid (RA), modulates the methylation of genes involved in development and 
metabolism [40]. Arreguin et al. demonstrated that rats, supplemented with retinyl ester or β-
carotene during the suckling period, showed inWAT altered methylation profiles of CpG islands of 
PPARG (a gene involved in adipogenic differentiation), ZFP423 (a gene involved in adipogenic 
determination), PCNA (a gene involved in proliferation), and RBP4 (a gene involved in retinol 
transport). In particular, in retinyl ester-treated rats hypermethylation of RBP4 and PPARG2 
promoters was observed, along with hypomethylation of PCNA promoter. Conversely, in β-carotene-
treated rats hypomethylation of RBP4 and hypermethylation of PCNA promoters at distinct CpGs 
were found, while the expression of PPARG2 was not affected. Finally, in both treated groups, 
ZFP423 promoter was found to be hypomethylated, with a consequently increased gene expression 
[40]. 

It has been demonstrated that HFD modulates DNA methylation and that the dietary intake of 
triacylglycerols produces metabolically active free fatty acids (FFA) [41]. Recently, it has been 
observed that oleic acid, a fatty acid, affects the methylation of control regions for genes involved in 
adipogenesis such as PPARG and C/EPBα, promoting increased gene expression [42]. 

Histones may undergo post-translational modifications such as acetylation, phosphorylation 
methylation, as well as ubiquitination. These modifications modulate chromatin arrangement and 
transcriptional activity. Recently, it has been suggested that beige adipocytes commitment is 
regulated by several histone methyl-modifying enzymes, in particular by lysine demethylase 6B, 
euchromatic histone-lysine N-methyltransferase 1, Jumonji domain containing 1A and histone lysine 
demethylase 1 [43]. 

Non-coding RNAs, including miRNAs, have increasingly been receiving consideration as 
important modulators of gene expression, which can therefore affect cell physiology. Non-coding 
RNAs seem to play an important role in individual susceptibility to obesity. Studies based on 
microarray approaches have shown differential expression of many miRNAs in human adipose 
tissue, by comparing normal to obese individuals. However, the functional role of most single 
miRNAs has not been defined. MiR-103, miR-107, and miR-143, have been found to regulate adipose 
tissue homeostasis [44]. MiRNAs such as miR-17-5p, miR-132 and miR-21 result to be differentially 
regulated in white adipose tissue of obese subjects compared to lean subjects. [45,46]. MiRNAs 
modulation has also been correlated with anthropometric parameters (e.g., BMI, glycaemia, insulin 
levels) [47]; it has also been found that specific miRNAs are downregulated in WAT of obese patients 
[48]. So far it has not been possible to define a specific miRNA pattern to be responsible for promoting 
obesity, yet miRNAs may represent good biomarkers for clinical use [49]. Circulating miRNA levels 
can be correlated with biochemical/metabolic/anthropometric parameters; their potential role as 
biomarkers for diabetes has been proposed [50]. MiRNAs can be found not only in body fluids but 
also in extracellular vesicles such as exosomes, released by all cell types, including adipocytes. 
Exosomes represent relevant tools for cell-cell communications, which may influence tissue functions 
[51]. Experiments in animal models demonstrated how treatment with exosomes isolated from obese 
mice, induced glucose intolerance and insulin resistance in lean mice. Obesity-associated exosomal 
miRNAs were then identified [52]. 

Other non-coding RNAs, such as long (> 200 nt) non-coding RNAs, (lncRNAs) have been 
investigated as important actors in cell biology. Some of them may exert regulatory functions in 
adipogenesis. Lnc-BATE1 role, in particular, has been highlighted in the control of brown adipocytes 
development [53]. 

Finally, non-coding RNAs, in particular miRNAs, are regarded as potential therapeutic 
agents/targets. In fact, altered miRNA patterns associated with pathological conditions, may be 
restored by means of miRNA agonists (mimics) and antagonists (inhibitors). Similarly, abnormal 
expression of lncRNAs can also be knocked down. At present no specific miRNA therapies aiming at 
reducing fat mass in obese subjects are available, but research is this field is very active [54,55]. 
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Therefore, it seems clear that the epigenetic regulation and control of adipogenesis play an 
important role in obesity disease; certainly further studies are required to clarify in depth the 
pathogenetic mechanisms. 

4. Vitamin D and Obesity 

Vitamin D, a lipophilic hormone involved in bone metabolism, acts by binding its receptor 
(VDR) which is present within the cells of most human tissues. Bone is the main reservoir of calcium 
and phosphorus. Vitamin D regulates calcium and phosphorus homeostasis by targeting intestine 
(stimulation of calcium and phosphorus absorption), kidney (induction of calcium and phosphorus 
resorption together with PTH) and bone (where vitamin D stimulates the stored skeletal calcium 
mobilization) [56]. 

Besides affecting bone homeostasis, Vitamin D plays an important role in the immune system 
development, brain development; it is also an important regulator of lungs growth. Vitamin D role 
is also fundamental in the prevention or treatment of degenerative diseases often associated to 
obesity such as insulin resistance and type 2 diabetes, cardiovascular diseases and cancer [57]. 

Exposure to sunlight and diet are the only sources of inactive vitamin D [58]. Its activation 
involves complex processes such as the conversion by hepatic vitamin D-25-hydroxylase to 25-
hydroxyvitamin D [25(OH)D], which in turn undergoes an hydroxylation process to become the 
biologically active form 1,25-dihydroxyvitamin D [1,25(OH)D] in the kidneys [58]. 

Vitamin D deficiency has been observed in individuals with obesity [59]. Different factors or 
mechanisms have been proposed to contribute to vitamin D deficiency in obesity. Limited outdoor 
activity together with a poor dietary vitamin D intake have been suggested as causes [58]. However, 
studies in humans and in animal models have suggested fat deposits to induce vitamin D abduction 
in individuals with obesity [60,61]. Reduced vitamin D levels might be also a consequence of its 
volumetric dilution in the adipose tissue stores [62]. 

MSCs committed to the adipocytic lineage express VDR; in vitro experiments have 
demonstrated that the receptor knock-down inhibits adipogenesis [63]. Recently, it has been 
demonstrated that VDR affects adipose tissue remodeling by regulating energy metabolism [64]. The 
authors found that mice overexpressing VDR have higher levels of serum triglyceride and cholesterol 
compared to normal mice. In addition, VDR overexpression negatively modulates the expression of 
UCP1, a protein influencing the thermogenic capacity of BAT [65]. 

In a study involving 22 patients we observed that their waist circumference (WC) correlated 
with the relationship between vitamin D absorption and fat mass [66]. In particular, we suggested 
that adipose tissue decrease, evaluated by waist circumference measurement, can drive mesenchymal 
stem cells differentiation towards osteogenesis. It is noteworthy that we found an association 
between a surrogate measurement of visceral adiposity (i.e., waist) and vitamin D. Specific attention 
should be paid when body weight, BMI, and WC increase over time in patients with obesity with 
deficient 25(OH)D serum concentration, regardless of dietary vitamin D intake [67]. Moschonis and 
colleagues have recently found a significant association of vitamin D insufficiency with insulin 
resistance, possibly independent of obesity [68]. However, despite the above assumptions, further 
studies are required to assess the relationship between hypovitaminosis D and obesity. 

5. Physical Exercise and Changes in Gut Microbiota in Obese Individuals 

Body composition is affected not only by the dietary regimen, but also by physical activity. 
Several studies underline the role of exercise effects on mesenchymal stem cells fate [69–72]. The 
World Health Organization (WHO) has highlighted how sedentary life, in addition to hypertension, 
tobacco use and hyperglycaemia, contributes to overall mortality [73]. On the contrary, regular 
physical activity counteracts degenerative diseases such as cardiovascular diseases, diabetes and 
cancer [74]. Regular physical exercise may control body weight and ultimately contributes to obesity 
prevention. In most cases fatness and fitness can be considered antithetical terms [75–77]: fatness 
hampers fitness since it is very difficult, for an obese person to do the same amount of exercise as a 
normal-weight person. Effective weight loss may be reached by combining physical activity and 
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restrained food intake. Notably, the onset of chronic diseases such as obesity and type II diabetes is 
matched with perturbations (dysbiosis) in gut microbiota [78]. Human gut microbiota is composed 
by trillions of symbiotic microorganisms which play important roles in maintaining intestinal 
homeostasis and modulating the immune system. Physical exercise can restore intestinal health 
favoring beneficial modifications of gut microbiota [79,80]. It has been shown that exercise 
contributes to increase microbial diversity in the presence of HFD, reduces inflammation and 
increases antioxidant enzymes [81]. Exercise-induced weight loss in turn is also responsible for 
changes in gut microbiota: remarkable divergences can be found in obese compared to non-obese 
individuals [82]. 

Gut microbiota is involved in the modulation of host energy metabolism. In fact, it promotes the 
production of short chain fatty acids which represent an alternative energy substrate for 
gluconeogenesis occurring in the liver [83], and it affects the hepatic production of triglycerides as 
well as the metabolism of lipids and carbohydrates [84] 

In the gut several bacteria synthesize vitamins such as vitamin K, folic acid or thiamine [80]. 
Recently, we found that exercise increased the levels of two metabolites of vitamin B6 salvage 
pathway (pyridoxal 5′-phosphate, pyridoxamine 5′-phosphate) [85]. As vitamin B6 cannot be 
produced by mammals, it may be introduced in the intestine only through the diet or by symbiotic 
bacteria [86]. Therefore, we have suggested that increased levels of vitamin B6 might be due to the 
physical performance [85]. This finding is intriguing in consideration of vitamin B6 role in diabetes, 
a disease frequently associated to obesity. In fact, it has been suggested that vitamin B6 can affect 
insulin resistance by regulating adipogenesis-associated genes [87]. However, it has also been 
proposed that reduced levels of vitamin B6 may induce insulin resistance by increasing homocysteine 
levels in consequence of the disrupted activity of cystathionine-β-synthase (CBS) and cystathionine-
γ-lyase (CGL), enzymes requiring vitamin B6 as coenzyme [88]. 

Different guidelines suggest types and frequency of exercise [89,90–93]. It has also been 
suggested that even low intensity activities promote health benefits [94]. Regular training can repress 
specific pathways involved in adipogenesis and bone resorption [95]. It has been observed that 
resistance exercise interferes with adipogenesis in oestrogen-deficient rats [96]. Mechanical loading 
signals can induce osteogenic and chondrogenic genes expression to the detriment of adipogenesis 
by activating the Wnt–β-catenin pathway [97]. Recently, we demonstrated that physical activity 
promotes the expression of important molecules such as the osteogenic determinant RUNX2 and of 
chondrogenic determinant SOX9 in circulating progenitors of male runners after a half marathon 
[98]. We also observed a reduced expression of the adipogenic determinant PPARG2 in these 
circulating progenitors after the half marathon [98]. However, many other genes have been suggested 
to influence adipogenic differentiation. Recently, it has been demonstrated that the overexpression 
of GNPDA2, SEMA3G, HSPA12A, increases adipogenesis; overexpression of SIRT1 and SIRT2, on the 
contrary, downregulates it [99]. 

In muscle physical exercise induces the expression of PGC1α, a transcriptional coactivator 
involved in mitochondrial biogenesis as well as in oxidative metabolism, which in turn stimulates 
the expression and regulates Fndc5 gene [100]. Fndc5 gene expression produces a type I membrane 
protein that, after an enzymatic proteolysis, can be released in peripheral blood and is called irisin. 
Li and coworkers demonstrated that irisin impairs adipogenesis in favor of osteogenesis in visceral 
fat tissue [101]. In particular, the authors demonstrated that irisin enhances mitochondrial energy 
metabolism in visceral adipocytes. In addition, irisin induces, in subcutaneous white adipose tissue, 
the expression of transcriptional regulators related to beige adipocytes such as UCP-1, PRDM16, 
TMEM26, CD137 and also PGC1α. All these factors produce an increased energy expenditure and 
counteract obesity–associated insulin resistance [101]. Moreover, by adding irisin to osteoblasts 
during in vitro differentiation, the authors observed the upregulation of RUNX2, OSTERIX, 
OSTEOPONTIN and enhanced mineralization. 

MiRNAs play an important role in the differentiation of mesenchymal stem cells [102]. Recently, 
by analyzing the effects of male runners’ sera addition to cultured MSCs, we observed an increased 
expression of osteo-miRNAs miR21, miR129-5p, miR378 [103]. Furthermore, we found that miR188-
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5p expression was instead downregulated during the differentiation process of MSCs treated with 
runners’ sera [103]. Most likely miR188-5p takes an action in promoting the adipogenesis switch 
against osteogenesis [104]. 

6. Body Composition Alterations and Socio-economic Impact 

The postnatal onset of obesity is highly associated with the excessive consumption of a high-
caloric, high-fat diet (HFD) and reduced physical exercise. Knowledge of body composition is 
relevant to many disciplines. Assessment of nutritional status, tracking the course of the disease, 
individuals growth and aging, work conditions, are a few paradigms for which evaluation of body 
composition may contribute to the understanding physiological processes and may help in the 
treatment of a complex disease such as obesity [105]. Significant physical changes occur during the 
years spanning infancy through adulthood, both externally and internally. Clinicians and researchers 
have long reported that individuals of the same age, height, and weight [thus, same Body Mass Index 
(BMI)], can have different body shapes, body proportion and body composition, energy 
requirements, and metabolic profiles [106] 

Body composition in aging is characterized by an increase in fat mass and decrease in lean 
tissues, including skeletal muscle mass which in elderly adults is related to reduced muscle strength 
and functional capability, as well as greater morbidity and mortality [107]. Increased fat mass and 
body fat distribution are considered important contributors to obesity-related health risks, including 
type 2 diabetes, cardiovascular disease, morbidity and mortality [108]. Hyperglycaemia during 
pregnancy can increase an offspring birth weight as well as the risk of obesity in the phase of the 
childhood. However, influences of maternal body composition on offspring fat mass and fat-free 
mass (FFM) are still unclear, with some studies finding a positive association with fat mass and others 
with FFM [109]. 

A rapid rise in obesity and being overweight due to nutrition alteration (e.g., fast food) and 
sedentary lifestyle have been affecting people’s health in a rapid and unprecedented way. Obesity is 
a very complex and multi-factorial trait. Body weight can be influenced by environmental conditions, 
genetic and epigenetic factors, excessive food intake not balanced by energy consumption [110]. 
Environmental factors can modify the relationship between obesity and adiposity genetic risk; the 
association strength of obesity-related genes with BMI increases in obesogenic environments. 

6.1. Prenatal and Post-Natal Changes 

Maternal pre-pregnancy BMI and gestational weight gain have been both found to be positively 
and independently associated with neonatal and infant adiposity [111]. Such association appears not 
only pre-pregnancy, but also during the postnatal stages. Lawlor and colleagues showed, in a cohort 
of 146,894 participants, that maternal weight gain was positively associated with offspring BMI at 
age 18 in siblings from women with overweight and obesity ([112]. 

Gene variants associated with obesity may be responsible for excessive adiposity in children. 
Breastfeeding, formula feeding, rapid infant growth, macronutrient intake during infancy, 
complementary feeding, sleep duration, screen activities all are related with obesity risk [113]. 
Substantial increases in prevalence developed countries have been recorded [114]. 

6.2. Adulthood Changes 

Considering that the first 1,000 days of life represent the most important period for preventing 
non-communicable diseases [115], adulthood is associated with an increase in white adipose 
abdominal tissue (AT) which significantly enhances insulin resistance [116]. High levels of sedentary 
behavior are associated with a 112% increase in the hazard ratio of diabetes, 147% increase in the risk 
of cardiovascular disease, 90% increase in the risk of cardiovascular mortality and 49% increase in 
the risk of all-cause mortality [117]. 
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6.3. Senility Changes 

Changes in the elderly’s lifestyle, at the time of retirement, can cause a state of chronic positive 
energy balance, leading to excessive accumulation of adipose tissue, a condition that accelerates the 
development of age-related diseases. It is becoming apparent that the obese state leads to reduced 
life span and body health consequences, which are similar to those found in advanced ageing. Since 
fat is usually the largest organ in humans, age-related changes in adipose tissue function may result 
in profound systemic changes. It is increasingly evident that obesity leads to health complications 
and reduced lifespan [118]. 

6.4. Socioeconomic Impact of Obesity 

Values of BMI between 30 to 35, BMI between 35 to 40 and BMI > 40 have been associated with 
25%, 50% and 100%, respectively, higher medical expenses than normal weight respectively. Sharifi 
and colleagues recently pointed out that among subjects in the 6-12 years age range, over 10 years the 
intervention would reach two million children with obesity and would cost $239 million or $119 per 
child reached and $237 per unit change in BMI [119]. Looking at the European perspective, a recent 
report showed that, due to obesity, life is becoming five to ten years shorter. Recently Konnopka et 
al. conducted a systematic review of illness costs studies for overweight and adiposity in Germany 
[120]. The pooled relative cost-differences for studies conducted won adults were +22% for the 
difference between normal weight and overweight and +53% for the difference between normal 
weight and subjects with obesity. Extrapolation of relative pooled costs-differences from bottom-up 
studies in the German population yielded direct and indirect costs of 22.2 billion Euros for 
overweight and 23.0 billion Euros for obesity [120]. Obesity can be realistically considered a public 
health crisis since it severely impairs people’s health and quality of life and burdens considerably 
national health-care budgets [121]. 

7. Conclusions 

Increased fat mass and body fat distribution are considered important contributors to obesity-
related health risks, including type 2 diabetes, cardiovascular disease, and mortality. In addition, the 
socio-economic impact of obesity is considerable in our era. Various lifestyle factors as well as genetic 
and metabolic alterations contribute to obesity (Figure 1). 
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Figure 1. Different factors such as junk food and sedentary lifestyle together with factors promoting 
adipogenic differentiation of progenitor cells contribute to obesity. 

In fact, behavioral and environmental factors inducing cellular and molecular perturbations 
related to adipogenesis play an important role in the pathogenesis of obesity in children and 
adolescents and during ageing. Adipocytes originate from multipotent MSCs; strategies addressing 
MSCs differentiation towards alternative cell lineages may represent a promising therapeutic 
challenge. Different studies have identified the molecular pathways involved in MSCs’ fate choice 
(Table 1); it seems therefore possible to control their commitment with the goal of maintaining tissue 
homeostasis. Further research in this challenging field is needed. In conclusion, along with a healthy 
lifestyle, further research efforts should be made in order to identify proper molecular targets for 
counteracting, obesity associated morbidity and mortality. 

Table 1. Summary of the discussed topics concerning MSCs and adipogenesis. 

Author Topic Reference 

Lefterova et al. PPARgamma and adipogenesis (2014) [4] 

Valenti et al.  Ox-PAPCs and Differentiation of MSCs (2011) [8] 

Qu  et al.  Vav1 and MSCs (2016) [13] 

Stockl et al.  SOX 9 and MSC (2013) [15] 

Boney et al.  Shc  and preadipocytes (2000) [20] 

Zhou et al.  Chondrogenesis versus adipogenesis (2019) [22] 

Liang et al.  Maternal HFD and Brown tissue (2016) [122] 

Maredziak et al. Physical activity and adipogenesis (2015) [71] 

Liang et al.  Maternal obesity and epigenetics (2016) [38] 
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Endnote 

We term exercise a specific form of physical activity. In particular, any movement inducing 
muscle contraction can be considered physical activity. However, planned physical activity aimed to 
improve fitness or health benefits can be defined exercise. 
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revised the paper. All the authors critically revised the paper. All authors have read and agreed to the published 
version of the manuscript. 
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Abbreviation 

ALP Alkaline Phosphatase  
AT Adipose Tissue  
BAT Brown Adipose Tissue  
BMI Body Mass Index  
BMPs Bone Morphogenic Proteins 
COL1A2 Collagen type I isoform 2 
D [25(OH)D 25-hydroxyvitamin DErk Extracellular signal-regulated kinase 
FFM Fat-free mass  
FGFs Fibroblast Growth Factors 
GNPDA2 Glucosamine-6-Phosphate Deaminase 2 
HFD High-Fat Diet 
HSPA12A Heat Shock Protein Family A member 12A 
IGF1 Insulin like growth factor 1 
MSCs Mesenchymal Stem Cells  
OCN =  OsteocalcinPET-CT positron emission tomography 
PI3K PhosphatidylInositol 3-Kinase 
PCNA Proliferating Cell Nuclear Antigen 
PPARγ Peroxisome Proliferator-Activated Receptor gamma 
PTH Parathyroid Hormone 
RBP4 Retinol-Binding Protein 
SEMA3G Semaphorin-3G 
SIRT Sirtuin 
SMAD Small Mother Against Decapentaplegic 
TGFβ Transforming Growth Factor-β 
UCP1 Uncoupling Protein-1  
VDR Vitamin D Receptor 
ZFP423 Zinc Finger Protein 423 
WAT White Adipose Tissue 
WC Waist Circumference  
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