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Abstract

Background: Epigenetics could facilitate greater understanding of disparities in the emergence of childhood
obesity. While blood is a common tissue used in human epigenetic studies, saliva is a promising tissue. Our prior
findings in non-obese preschool-aged Hispanic children identified 17 CpG dinucleotides for which differential
methylation in saliva at baseline was associated with maternal obesity status. The current study investigated to
what extent baseline DNA methylation in salivary samples in these 3–5-year-old Hispanic children predicted the
incidence of childhood obesity in a 3-year prospective cohort.

Methods: We examined a subsample (n = 92) of Growing Right Onto Wellness (GROW) trial participants who were
randomly selected at baseline, prior to randomization, based on maternal phenotype (obese or non-obese).
Baseline saliva samples were collected using the Oragene DNA saliva kit. Objective data were collected on child
height and weight at baseline and 36 months later. Methylation arrays were processed using standard protocol.
Associations between child obesity at 36 months and baseline salivary methylation at the previously identified 17
CpG dinucleotides were evaluated using multivariable logistic regression models.

Results: Among the n = 75 children eligible for analysis, baseline methylation of Cg1307483 (NRF1) was significantly
associated with emerging childhood obesity at 36-month follow-up (OR = 2.98, p = 0.04), after adjusting for child
age, gender, child baseline BMI-Z, and adult baseline BMI. This translates to a model-estimated 48% chance of child
obesity at 36-month follow-up for a child at the 75th percentile of NRF1 baseline methylation versus only a 30%
chance of obesity for a similar child at the 25th percentile. Consistent with other studies, a higher baseline child
BMI-Z during the preschool period was associated with the emergence of obesity 3 years later, but baseline
methylation of NRF1 was associated with later obesity even after adjusting for child baseline BMI-Z.

Conclusions: Saliva offers a non-invasive means of DNA collection and epigenetic analysis. Our proof of principle
study provides sound empirical evidence supporting DNA methylation in salivary tissue as a potential predictor of
subsequent childhood obesity for Hispanic children. NFR1 could be a target for further exploration of obesity in this
population.
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Background
The prevalence of pediatric obesity has been increasing
at an alarming rate in the last forty years [1, 2]. Although
pediatric obesity prevalence is a global issue, the United
States is facing epidemic levels of pediatric obesity [3, 4].
The Center for Disease Control and Prevention indicates
that the prevalence of obesity among children aged 2–
19 years old has risen from 13.9% in 2000 to 18.5% in

2016 [5]. However, some ethnic groups have an even
higher obesity prevalence [1, 6]. For example, the 2015–
2016 National Health and Nutrition Examination Survey
(NHANES) reported 25.8% of Hispanic 2–19 year-olds
were obese compared to 14.1% of their non-Hispanic
white counterparts [7]. Identifying what influences dif-
ferent populations is critical to successfully reducing
obesity-related health disparities.
Childhood is a particularly sensitive period for neuro-

logical, endocrine, and metabolic development. For ex-
ample, obesity at a young age contributes to an
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increased risk of diabetes, hypertension, and cardiovas-
cular disease in adulthood [8–10]. Recent literature indi-
cates that susceptibility to obesity within an
“obesogenic” environment differs among individuals [11,
12]. It is not clear what mechanisms are responsible for
obesity variation, but many studies identify a dynamic
interaction of genetic and environmental exposures at
sensitive periods of development [13, 14]. While mono-
genic DNA mutations exist and are associated with
obesity, common forms of childhood obesity have frus-
trated the scientific community with the so-called prob-
lem of missing heritability. It appears that obesity is a
multi-trait, multi-state phenotype. The field of epigenet-
ics, modifications that affect transcriptional plasticity,
might offer insights into the emerging phenotype of
childhood obesity. Epigenetic patterns, often measured
by DNA methylation, change rapidly in response to en-
vironmental factors such as nutrition and physical activ-
ity and are specifically vulnerable to changes during
early childhood development. Moreover, epigenetic pat-
terns vary between ethnic groups and could explain dif-
fering susceptibility to early emerging obesity and its
commonly associated later chronic diseases [15–18].
Epigenetic patterns are tissue-dependent. While blood

is a common tissue used in studies of human epigenetic
changes, saliva is also a promising tissue. Saliva could be
particularly valuable in studying pediatric populations
given the ease of tissue access, cost-efficiency, and the
ability to collect it in multiple settings [19, 20]. Abraham
and colleagues illustrated that when comparing DNA
fragmentation, quality, and genotype concordance, saliva
is comparable to blood samples [21]. When examining
methylation patterns, both saliva and blood reliably as-
sess epigenetic modifications [22]. In comparing the col-
lection of blood and saliva samples, saliva collection is
associated with lower infection rates, decreased cost, in-
creased patient acceptance, and higher participant com-
pliance [23]. Saliva also has the advantage of offering
insight into the gastrointestinal tract, which could be
useful when examining obesity. The ease of saliva collec-
tion coupled with DNA fidelity could allow for a more
practical source of DNA collection for children. Given
that salivary tissue is used less often for epigenetic stud-
ies, this approach is novel.
Recently, Oelsner et al. examined 92 saliva samples

from 3 to 5-year-old Hispanic children who were at risk
for obesity but not yet obese and analyzed 936 genes
previously associated with obesity [24]. The cross-
sectional study identified 17 CpG dinucleotides that
demonstrated an association between baseline differen-
tial child DNA methylation and maternal BMI (obese
versus non-obese). While this analysis was conducted on
baseline saliva samples, these children subsequently par-
ticipated in a three-year longitudinal study where more

than a third of children became obese. The current study
investigates to what extent baseline child salivary DNA
methylation patterns were associated with the emerging
incidence of childhood obesity in this 3-year prospective
cohort of young Hispanic children [25].

Methods
Informed consent
Trained, bilingual study staff administered written
consents to the parent or legal guardian of the child
of interest in the language of their choice (English or
Spanish). The parent or legal guardian provided con-
sent for both themselves and their child. Because this
was a low health literacy population, the consenting
process utilized specific measures to ensure partici-
pant understanding including a “teach-back” method
and protocol visual aids [26]. The study was approved
by Vanderbilt University Review Board (IRB No.
120643).

Sample population study subjects
We examined a subsample (n = 92) of Growing Right
Onto Wellness (GROW) trial participants [24]. They
were randomly selected at baseline, before
randomization, based on maternal phenotype. One
group of children had obese mothers (BMI ≥30 and
waist circumference ≥ 100 cm), and the other had non-
obese mothers (BMI < 30 and waist circumference < 100
cm). The two groups were matched on child age and
gender. The current study examines this subsample as a
prospective cohort, after a 3-year follow-up.
Child participant eligibility criteria in the original

GROW study included: 3–5 years old, no known medical
conditions, and being at risk for obesity (high normal
weight or overweight) but not yet obese (BMI ≥50th
and < 95th percentile). Three children were excluded
due to being obese at baseline. Parent eligibility criteria
included: ≥18 years old, signed written consent to par-
ticipate in a 3-year trial, consistent phone access, spoke
English or Spanish, and no known medical conditions
that would preclude routine physical activity. Families
were recruited from East Nashville and South Nashville.
All parents self-reported that at least one person in their
household was eligible to participate in a program that
qualified them as underserved. The underserved pro-
grams included but were not limited to TennCare (Me-
dicaid), Special Supplemental Nutrition Program for
Women, Infants, and Children (WIC), CoverKids, Food
Stamps, and/or reduced-price school meals [25]. To be
eligible for analysis in the epigenetic study reported here,
child BMI must have been collected at the 36-month
follow-up (n = 75).
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Saliva collection and assay method
Baseline saliva samples from children were collected vol-
untarily from interested participants using a separate
consenting form in the participant’s language of choice.
Saliva was collected from children at baseline using the
Oragene DNA saliva kit. Children were asked to fast for
30 min and rinse their mouths with water immediately
before collection. Two mL of saliva was collected from
children using saliva sponges, inserted between the
cheek and gums in the upper cheek pouch without
swabbing the buccal mucosa. Samples were collected at
home or in community centers. To ensure safety and de-
crease contamination, trained sample collectors wore
gloves and capped the samples as soon as the saliva was
collected. After samples were properly collected and la-
beled, the samples were sent to the Vanderbilt Technol-
ogy for Advanced Genomics (VANTAGE) core at
Vanderbilt University. DNA was then extracted from the
saliva using the PrepIT L2P reagent with guidance from
DNA Genotek’s recommendations and stored at − 80
degrees Centigrade.

Anthropometric data
Objective height and weight for parent-child pairs were
collected and used to calculate BMI (kg/m2) at baseline
and 36months. Trained research staff collected weight
and height of participants using standard anthropomet-
ric procedures, and participants wore only light clothing
and no shoes. Height was measured to the nearest 0.1
cm using a stadiometer (Perspective Enterprise, Portage,
MI), and weight was measured to the nearest 0.1 kg
using a calibrated scale. BMI measurements were col-
lected using the trial protocol [27]. BMI-Z was calcu-
lated based on each child’s BMI, gender, and age, and
BMI categories were defined using CDC guidelines: nor-
mal weight (<85th percentile); overweight (≥85th and <
95th percentile); and obese (≥95th percentile).

Statistical analysis
Categorical variables were summarized using frequencies
and percentages, and Pearson’s chi-squared test was
used to evaluate baseline differences. Continuous vari-
ables were summarized using means and standard devia-
tions, and the Wilcoxon rank-sum test was used to
evaluate baseline differences.
Genome-wide DNA methylation was conducted on

the 92 saliva samples using the Infinium Illumina
HumanMethylation 450 K BeadChip (Illumina, San
Diego, CA, USA). Methylation arrays were processed
using a standard protocol [24, 28] and quality control
was done using the Methylation module (V1.9.0). Sam-
ples with a call rate lower than 98% were excluded,
resulting in the removal of one sample (total baseline eli-
gible sample n = 91). The Background Subtraction

method [29] was used for methylation array
normalization. In this method, the average signals of
built-in negative controls represent background noise
and are subtracted from all probe signals to make unex-
pressed targets equal to zero. Outliers were removed
using the median absolute deviation method. Lastly, the
normalized values were log-transformed and multiplied
by 10 to put degree of methylation on a continuous scale
from 0 to 10 for statistical analysis.
Associations between child obesity at 36 months and

baseline methylation levels were evaluated using multi-
variable logistic regression models. Other variables were
included in the models as covariates, including child age,
child baseline BMI-Z, child gender, and parent baseline
BMI. Statistical significance was defined as p < 0.05. All
analyses were performed using R software (www.r-pro-
ject.org) version 3.5.0.

Results
Of the original 92 participants in the baseline subsample,
75 met quality control and eligibility requirements and
were included for analysis. The mean age was 4.3 years
(SD = 0.8), and the mean baseline BMI was 16.7 (SD =
0.8). Within the analytic sample, at baseline, 64.0% (n =
48) were normal weight, and 36.0% (n = 27) were over-
weight, and 73.3% (n = 55) were Hispanic-Mexican.
Among parents, 48.0% (n = 36) were obese (stratified by
design for this subsample). Refer to Table 1 for further
baseline demographic descriptions of the sample. At the
study’s conclusion, 37% (n = 28) of children were obese.
Comparing children who were non-obese at 36 months

(n = 47) to those who were obese at 36 months (n = 28),
there were no statistically significant differences in base-
line child characteristics, although, descriptively, baseline
weight-related characteristics appeared to be lower in
children who were not obese at follow-up. Parents did
not have any significantly different baseline characteris-
tics between the two groups, although mean age was de-
scriptively slightly younger in parents of children who
became obese at 36 months (33.0 vs. 30.4) (Table 2).
Table 3 describes the associations between children’s

continuous degree of baseline methylation at each CpG
dinucleotide and childhood obesity at 36 months for the
75 children with follow-up data. The multivariable logis-
tic regression model was adjusted for child gender, base-
line age, baseline BMI-Z, and adult baseline BMI. After
accounting for these covariates, higher baseline methyla-
tion of cg01307483 (NRF1) was significantly associated
with a higher probability of childhood obesity at 36
months (odds ratio = 2.98, 95% CI = [1.06, 8.38], p =
0.04). PPARGC1B methylation was potentially associated
with decreased obesity at 36 months but was not statisti-
cally significant. SORCS2 methylation was not statisti-
cally significant for cg03218460 or cg18431297 [30, 31].
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In the logistic regression model analyzing the NRF1 di-
nucleotide, child gender, child baseline age, and baseline
parent BMI, were not significant predictors of childhood
obesity at 36 months (Table 4). However, in this model,
child baseline BMI-Z and baseline differential methyla-
tion of NRF1 were significant predictors of childhood
obesity at 36 months. Figure 1 displays the model-
predicted probability of child obesity at 36-month
follow-up as a function of increasing NRF1 methylation.
Child baseline BMI-Z was a significant predictor in all
but two CpG dinucleotide models (odds ratio = 3.09–
4.08, p < 0.05). Median degree of baseline methylation at
each CpG dinucleotide examined in this study is shown
in Additional file 1: Table S1.

Discussion
To our knowledge, this is the first prospective cohort
study that investigates DNA methylation collected via
salivary samples as a predictor of childhood emerging
obesity among 3–5-year-old Hispanic children. Although

other studies have investigated DNA methylation pat-
terns in children who are already obese, our prospective
study investigated how these patterns might be used to
predict the future emergence of obesity in non-obese
preschool-aged children above and beyond what is pro-
vided by their age, gender, baseline BMI-Z, and their
mother’s BMI. After adjusting for these covariates, base-
line methylation of Cg1307483 (NRF1) was significantly
associated with emerging childhood obesity at 36-month
follow-up with a significant positive odds ratio (OR =
2.98, p = 0.04). To place this odds ratio finding into con-
text and enhance interpretation, the model estimated a

Table 1 Demographics of Sample Populationa

Child Characteristics Total (n = 75)

Gender

Male 35 (46.7%)

Female 40 (53.3%)

Age at anthropometry collection (years) 4.3 (0.8)

Age category (years)

3 34 (45.3%)

4 26 (34.7%)

5 15 (20.0%)

BMI (kg/m2) 16.7 (0.8)

BMI-Z 0.9 (0.5)

BMI category

Normal weight 48 (64.0%)

Overweight 27 (36.0%)

Waist circumference (cm) 53.4 (3.0)

Race/Ethnicity

Hispanic Mexican 55 (73.3%)

Hispanic non-Mexican 20 (26.7%)

Parent Characteristics

Age (years) 32.0 (5.7)

BMI (kg/m2) 29.4 (7.3)

BMI category

Normal weight 28 (37.3%)

Overweight 11 (14.7%)

Obese 36 (48.0%)

Waist circumference (cm) 97.9 (16.1)

Abbreviations: BMI body mass index, BMI-Z BMI z-score
a Values are mean (SD) or frequency (percent)

Table 2 Baseline Participant Characteristics by Child Obesity
Status at 36 monthsa

Child Characteristics Child not obese at
36 months (n = 47)

Child obese at 36
months (n = 28)

P
valueb

Gender 0.32

Male 24 (51.1%) 11 (39.3%)

Female 23 (48.9%) 17 (60.7%)

Age at
anthropometry
collection (years)

4.3 (0.8) 4.3 (0.8) 0.90

Age category (years) 0.93

3 21 (44.7%) 13 (46.4%)

4 17 (36.2%) 9 (32.1%)

5 9 (19.1%) 6 (21.4%)

BMI (kg/m2) 16.6 (0.7) 16.9 (0.8) 0.06

BMI-Z 0.8 (0.5) 1.0 (0.4) 0.06

BMI category 0.05

Normal weight 34 (72.3%) 14 (50.0%)

Overweight 13 (27.7%) 14 (50.0%)

Waist circumference
(cm)

52.9 (2.6) 54.3 (3.6) 0.13

Race/Ethnicity 0.41

Hispanic Mexican 36 (76.6%) 19 (67.9%)

Hispanic non-
Mexican

11 (23.4%) 9 (32.1%)

Parent Characteristics

Age (years) 33.0 (5.2) 30.4 (6.0) 0.06

BMI (kg/m2) 29.2 (7.4) 29.7 (7.3) 0.88

BMI category 0.67

Normal weight 18 (38.3%) 10 (35.7%)

Overweight 8 (17.0%) 3 (10.7%)

Obese 21 (44.7%) 15 (53.6%)

Waist
circumference
(cm)

97.0 (16.2) 99.3 (16.1) 0.47

Abbreviations: BMI body mass index, BMI-Z BMI z-score
a Values are mean (SD) or frequency (percent)
b Wilcoxon rank-sum test used for continuous variables, and Pearson’s chi-
squared used for categorical variables
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48% chance of child obesity at 36-month follow-up for a
child at the 75th percentile of NRF1 methylation versus
only a 30% chance of obesity for a similar child at the
25th percentile.
Consistent with other studies, a higher baseline child

BMI-Z during the preschool period was associated with
the emergence of obesity 3 years later, but baseline
methylation of NRF1 was associated with later obesity
even after adjusting for baseline BMI-Z. NRF1 is associ-
ated with the innate immune response governing adipo-
cyte inflammation and cytokine expression, as well as
brown adipose tissue thermogenic adaption. It also plays
a role in insulin resistance [34–36]. The current results
build on the existing literature by demonstrating that
DNA methylation of a critical CpG dinucleotide within
the NRF1 gene in 3–5-year-old non-obese children is

associated with the emergence of obesity 3 years later.
This provides a potential target of further investigation
and suggests that adipocyte inflammation might already
be affected before the phenotypic emergence of child-
hood obesity in Hispanic children. Other studies demon-
strate that early life exposures can affect later health and
disease outcomes. This life-course understanding of
emerging phenotypes might contribute to health
disparities.
It is important to note that prior studies implicated

NRF1 associated with existing obesity and young His-
panic children using blood and skeletal muscle samples
as well [36]. Comuzzie and colleagues investigated
chromosome 7q in Hispanic children and found unique
loci contributing to pediatric obesity [33]. As in our
study, the genes significantly associated with obesity

Table 3 Association of Baseline Methylationa at Each CpG Dinucleotide With Child Obesity Status at 36-Month Follow-Up

Unique CpG
Dinucleotide

Associated
Gene

Odds
Ratio

95% CI p-
value

Biological Relevance

cg21790991 FSTL1 1.35 [0.88,
2.06]

0.16 Regulate endothelial cell function and vascular remodeling in response to hypoxic ischemia
[30, 40]

cg03218460 SORCS2 2.08 [0.83,
5.21]

0.12 Functions to regulate fasting insulin levels and secretion of insulin, diabetes susceptibility
[41, 42]

cg23241637 ZNF804A 1.47 [0.61,
3.49]

0.39 Schizophrenia [43, 44]

cg04798490 SHANK2 1.51 [0.6,
3.8]

0.38 Autism [45, 46]

cg01307483 NRF1 2.98 [1.06,
8.38]

0.04* Innate immune response governing adipocyte inflammation, cytokine expression,
and insulin resistance [34–36]

cg19312314 CBS 0.75 [0.27,
2.13]

0.59 Catalyzes the conversion of homocysteine to cystathionine, associated with homocystinuria
and hydrogen sulfide production [47]

cg14321859 DLC1 1.82 [0.69,
4.81]

0.23 Regulates Rho GTP-binding proteins, cytoskeletal signaling, tumor suppressor, adipocyte dif-
ferentiation [48, 49]

cg03067613 ATP8B3 1.24 [0.4,
3.8]

0.71 Reproduction [37]

cg11296553 CEP72 0.99 [0.03,
32.38]

0.99 Ulcerative colitis [38]

cg16509445 CRYL1 1.04 [0.23,
4.63]

0.96 Heptocellular carcinoma [50]

cg16344026 PPARGC1B 0.27 [0.04,
2.04]

0.21 Fat oxidation, non-oxidative glucose metabolism, and energy regulation, ubiquitous in duo-
denum and small intestines [51, 52]

cg15354625 ODZ4 0.78 [0.12,
4.94]

0.79 Bipolar disorder [53]

cg23836542 CHN2 1.13 [0.14,
9.07]

0.91 Encodes GTP-metabolizing protein that regulates cell proliferation and migration, insulin re-
sistance [54, 55]

cg07511564 NXPH1 1.02 [0.34,
3.03]

0.97 Forms a tight complex with alpha neurexins, promoting adhesion between dendrites and
axons, diabetic neuropathy [56, 57]

cg18799510 GRIN3A 1.02 [0.32,
3.28]

0.98 Schizophrenia [31, 58]

cg14996807 UNC13A 3.17 [0.64,
15.76]

0.16 ALS [59, 60]

cg18431297 SORCS2 1.01 [0.51,
1.99]

0.98 Neuropeptide receptor activity, strongly expressed in the central nervous system, acts with
IGF1 in the setting of cardiovascular disease [42, 61]

a Degree of methylation was a continuous variable calculated by log-transforming the normalized values and multiplying by 10 to put it on a scale from 0 to 10
(see Methods section)
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suggest a strong inflammatory influence. While our
study does not confirm this hypothesis, it does provide
supplemental data supporting this theory. Because NRF1
is a major transcription factor in metabolic regulation
and stimulates the expression of PPARGC1B, these look
like promising targets for further research and interven-
tion approaches. Although direct comparisons between
saliva and blood cannot be made in the current study,
the fact that we noted the same association in saliva as
found in blood and skeletal muscle further bolsters sup-
port for the use of saliva as a useful tissue for epigenetic
inquiry.

Other genes could also play an important role in both
predicting later obesity and understanding the pathways
that lead to obesity. For example, PPARGC1B methyla-
tion had a potentially strong association with decreased
obesity at 36 months but was not statistically significant.
PPARGC1B is associated with fat oxidation, non-
oxidative glucose metabolism, and energy regulation [37,
38]. Similarly, SORCS2 methylation, which functions to
regulate fasting insulin levels and secretion of insulin,
was potentially associated with increased obesity at 36
months but was not statistically significant in this rela-
tively small sample [31, 39]. Repeating this work in a lar-
ger sample is necessary for further understanding these
and other epigenetic contributions to the early emer-
gence of obesity in populations who experience higher
health disparities associated with obesity. Moreover,
while the small analytic sample size precluded moder-
ation analysis in the current study, it would be interest-
ing for future research to explore whether the potential
relationships between methylation and subsequent obes-
ity status depend on initial BMI status or other potential
moderators of interest (e.g., gender, ethnicity, income,
etc.).
To-date, many epigenetic studies have focused on the

exploration of molecular pathways. While it is not yet
known if these DNA methylation patterns can be used
as biomarkers, our study provides a proof-of-principle
demonstrating that even in non-obese Hispanic children,

Fig. 1 Model Predicted Probability of Child Obesity at 36-month Follow-up as a Function of NRF1 Methylation. Figure 1 displays the logistic
regression model-predicted probability of child obesity at 36 months as a function of the degree of methylation of cg01307483 (NRF1). The solid
line indicates the predicted probability, and the gray shaded region represents the 95% confidence interval. As the degree of methylation of
NRF1 increases, the probability of child obesity at 36 months increases significantly

Table 4 Association of baseline differential DNA methylationa

with obesity at 36 months, adjusted for co-variates

Odds Ratio 95% CI P Value

Child

Baseline BMI-Z 3.25 [1.00, 10.50] 0.049

Baseline age 1.50 [0.76, 2.94] 0.24

Gender (male) 0.59 [0.21, 1.63] 0.31

Parent

Baseline BMI 0.99 [0.92, 1.07] 0.86

CpG Baseline Methylation

Cg10307483 (NRF1) 2.98 [1.06, 8.38] 0.04
a Degree of methylation was a continuous variable calculated by log-
transforming the normalized values and multiplying by 10 to put it on a scale
from 0 to 10 (see Methods section)
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some differential methylation patterns are associated
with the later emergence of obesity. While it is clear that
susceptibility to obesity within an “obesogenic” environ-
ment varies among individuals, it is not clear why. This
line of epigenetic inquiry using saliva as an accessible tis-
sue for pediatric study holds promise for guiding further
exploration in both understanding and intervening be-
fore the emergence of childhood obesity.
Although NFR1 was significantly related to child obes-

ity at 36-month follow-up, the relatively small sample
size analyzed in this study might have contributed to a
failure to detect important relationships for the other
CpG dinucleotides. Expanding the current analysis to in-
clude larger sample sizes would help to confirm and val-
idate the findings. While there was a strict collection
protocol for saliva collection, contamination and human
collection error are possible when collecting salivary
DNA. Although previous literature indicates DNA
methylation in saliva and blood samples are similar, the
current study only investigated methylation patterns in
saliva and cannot be used to make direct comparisons to
blood. Furthermore, although this sample yields insight
into Hispanic 3–5-year-olds, DNA methylation patterns
should be studied in children of various ages and race/
ethnicities.

Conclusions
Saliva offers a non-invasive means of DNA collection
and epigenetic analysis. This proof of principle study
provides empirical evidence supporting the idea that
DNA methylation assessed using salivary tissue collected
in non-obese children could be used as an important
predictor of childhood obesity 3 years later. NFR1 could
be a target for further exploration of obesity in Hispanic
children.
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