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Single-cell transcriptional networks in
differentiating preadipocytes suggest drivers
associated with tissue heterogeneity
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Mark Crovella 5,6, Yu-Hua Tseng 1, C. Ronald Kahn 1✉ & Simon Kasif 2,6✉

White adipose tissue plays an important role in physiological homeostasis and metabolic

disease. Different fat depots have distinct metabolic and inflammatory profiles and are dif-

ferentially associated with disease risk. It is unclear whether these differences are intrinsic to

the pre-differentiated stage. Using single-cell RNA sequencing, a unique network metho-

dology and a data integration technique, we predict metabolic phenotypes in differentiating

cells. Single-cell RNA-seq profiles of human preadipocytes during adipogenesis in vitro

identifies at least two distinct classes of subcutaneous white adipocytes. These differences in

gene expression are separate from the process of browning and beiging. Using a systems

biology approach, we identify a new network of zinc-finger proteins that are expressed in one

class of preadipocytes and is potentially involved in regulating adipogenesis. Our findings gain

a deeper understanding of both the heterogeneity of white adipocytes and their link to normal

metabolism and disease.
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Adipose tissue is a heterogeneous organ and composed of
several cell types, including mature adipocytes, pre-
adipocytes, stem cells, endothelial cells, and various blood

cells1. At least three distinct developmental types of adipocytes
have been identified: white, brown, and beige adipocytes2. Dif-
ferent adipose depots have distinct physiological functions asso-
ciated with their anatomical location and cell composition.
Accumulation of visceral (intra-abdominal) white adipose tissue
is associated with insulin resistance and metabolic syndrome3,
whereas accumulation of subcutaneous adipose tissue is meta-
bolically benign and may be even associated with increased
insulin sensitivity4. Determining the mechanisms for these phe-
notypic differences could lead to development of therapies for
diabetes, obesity, and their associated morbidities.

The formation of new adipocytes, adipogenesis, is a well-
characterized cellular model of differentiation. The process
depends on several key transcriptional regulators including
PPARγ, CEBPβ, and various Krüppel-like Factors (KLFs)5,6.
Advances in technologies such as high-throughput sequencing
have revealed additional transcriptional regulators ranging from
zinc-finger proteins (ZFPs/ZNFs) to long non-coding RNAs7,8.
Each of the different types of adipocytes also have distinct tran-
scription factors, such as ZFP423 for white adipocytes9 and EBF2
for brown/beige adipocytes10, or developmental markers includ-
ing TBX15 and various homeobox genes11,12.

A central challenging question in research of metabolic disease
is the contributions of genetic, epigenetic and environmental
factors. A variant of this question is whether disease risk is
intrinsic to a subset of fat cells that interact with environmental
stresses in disease pathogenesis. This is especially relevant since
recent studies in mice have suggested developmental hetero-
geneity even among white adipocytes12,13. We attempted to
address this question for human white fat using a synergistic
application of several methodologies: single-cell transcriptional
profiling coupled with clonal expansions in relevant tissues,
network analysis and data integration using gene signatures.

Single-cell RNA sequencing is an ideal technique to profile
gene expression of heterogeneous cell populations obtained from
a single tissue such as blood or brain14,15. However, the
mechanisms driving cellular heterogeneity are not well under-
stood. We aim to develop methods that could lead to a better
understanding of the potential drivers of cellular heterogeneity.
We describe a network algorithm and apply it to single-cell data
in reference16 that we integrated with new RNA seq data in
clonally expanded preadipocyte cell lines generated to obtain
metabolic phenotypes. Such phenotyping is challenging in single-
cell gene expression profiling. The algorithm and additional
analysis reveals a gene network that is predicted to be associated
and potentially drive adipocyte differentiation and heterogeneity.

Results
scRNA-seq reveals at least two distinct cell populations in dif-
ferentiating preadipocytes. Raw data from single-cell RNA
sequencing of white adipocytes undergoing differentiation was
obtained from Soumillon et al.16. For these experiments, primary
human abdominal subcutaneous preadipocytes derived from a
single donor were seeded at 100% or 80% confluency and treated
with an adipogenic cocktail for either 7 days for the confluent
cells or 14 days for the subconfluent cells16. For each day, cell
cultures were trypsinized, sorted as single cells into 384-well
plates by flow cytometry, RNA was extracted and sequenced. A
total of ~2000 cells were analyzed for the 7-day protocol and
~6000 cells for the 14-day protocol. In our analysis, the data was
first subjected to Pathway and Gene Set Overdispersion Analysis
(PAGODA) to identify potential cellular heterogeneity17. For cells

beginning at 100% confluency, the t-SNE plots revealed at least
two distinct clusters of cells at day 0, 3, and 7 of differentiation
(Fig. 1a). While the two clusters tended to merge for pre-
adipocytes at day 0 (black), by day 3 (pink), the differentiating
preadipocytes separated into two distinct clusters, and this
separation remained evident at day 7 (red). The experiment
beginning at 80% confluency and followed over 14 days of dif-
ferentiation showed a similar two-cluster separation, although in
this experiment there was greater separation at the day 0, i.e., pre-
confluent, cells, which then became somewhat mixed at days 1
and 2 before separating again at days 3–14 (Supplementary
Fig. 1A).

PAGODA identified a set of gene signatures associated with the
transcriptional heterogeneity during adipogenesis in the 7-day
(Fig. 1b) and the 14-day experiment (Supplementary Fig. 1B).
The genes within the highest-ranking gene sets reflected the stage
of differentiation (Supplementary Fig. 1A–E). The t-SNE plots,
however, showed cell clustering within each stage of differentia-
tion. In order to determine the genes associated with clusters
observed on the t-SNE plots, we performed differential gene
expression between the left and right cluster for each day of
analysis. First, the 7-day experiment beginning at 100% con-
fluency in the preadipocytes (day 0), differential expression
analysis between the two cell clusters produced genes primarily
related to protein synthesis (Supplementary Fig. 3A). At day 3,
the separation was primarily driven by genes involved in remo-
deling the extracellular matrix (Supplementary Fig. 3B). Finally,
at day 7, in addition to the previous differences in gene expres-
sion, differential expression of genes related to metabolism
appeared. These include gene sets related to oxygen consumption
and protein metabolism (Fig. 1c). Genes in each of these meta-
bolic gene sets were higher in the right cluster compared to the
left, suggesting that the cells in the cluster were more metaboli-
cally active.

Whereas some differences between the 7-day and 14-day
experiments were evident due to the differences in experimental
design (Supplementary Fig. 4A–C), both showed a similar pattern
with early differences in the two clusters being mainly in growth-
related genes and late differences mainly in metabolic genes.
Independently, markers of adipocytes or preadipocyte differ-
entiation, such as FABP4 and PDGFRα (Fig. 1d), were not dif-
ferentially expressed between the clusters. The left cluster, as
compared to the right cluster, also showed higher expression of
TBX15, a mesodermal developmental gene, which has previously
been shown to be a marker of glycolytic adipocytes in mice11.
There was no differential expression or no detection of markers of
beige or brown adipocytes, including TMEM26 or UCP1, between
clusters, indicating that this heterogeneity was not due to a
mixture of white and beige preadipocytes.

Integrative analysis predicts differences in glucose uptake and
extracellular acidification. To corroborate these gene expression
differences and their predictive association with metabolic phe-
notypes, we sought to determine whether white preadipocytes
from a single adipose depot clustered by metabolic phenotypes. A
total of 35 clonally expanded white preadipocytes from human
neck white subcutaneous tissue were generated as previously
described18. Gene expression profiles were obtained by RNA-seq
and analyzed with PAGODA. Principal component analysis
revealed at least two clusters with the 35 clonally expanded cell
lines (Fig. 2a). The gene sets capturing significant aspects of
heterogeneity reflected differences in cell adhesion (GO:0034330),
response to type I interferon (GO:0071357), and RNA processing
(GO:0006396) (Fig. 2b). Some genes within these aspects linked
to heterogeneity of white adipocytes in mature fat19,20, such as

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-16019-9

2 NATURE COMMUNICATIONS |         (2020) 11:2117 | https://doi.org/10.1038/s41467-020-16019-9 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


Cadherin-6 (CDH6) and Nucleophosmin (NPM1), showed dif-
ferent levels of expression in cells within the same clusters, sug-
gesting subclusters within both clusters A and B (Fig. 2b).

Phenotypic profiling was performed on each clonal cell lines
before or after differentiation to obtain profiles in extracellular
acidification (ECAR), oxygen consumption (OCR), glucose
uptake, and adipogenic capacity (PPARG expression after
differentiation) (Fig. 2b). The correlation analysis was performed
with phenotype profiles and the five significant gene sets
identified between Cluster A and B, and showed that
GO:0071357 was correlated with glucose uptake, whereas the
other gene sets were not correlated to any of the measured

phenotypes (Supplementary Fig. 9). When compared to the
differentially expressed genes from the day 0 clusters (Fig. 1a), we
observed approximately 100 genes shared (Fig. 2c). Comparing
the seven most extreme clones in the gene expression of cluster A
against the seven most extreme clones of cluster B showed a
difference in glucose uptake and PPARG expression (i.e., the
capacity of differentiation into adipocytes) (Fig. 2d).

We then sought to associate heterogeneous populations
identified in single-cell RNA seq with quantitative measurements
in clonally expanded cell lines. Using the clonal gene expression
data, phenotype-gene correlation vectors were created between
every gene and each measured phenotype (Fig. 2e). These gene-
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Fig. 1 PAGODA and t-SNE reveals at least two clusters in differentiating preadipocytes. a Single-cell RNA seq was performed on differentiating
preadipocytes beginning at 80% confluency and differentiated for 7 days. PAGODA was used to determine the optimal cell clustering based on the genes
driving the heterogeneity. The result was plotted by t-SNE. A total of 2092 are shown. b Single-cell expression profiles in were analyzed to determine the
genes and pathways driving the heterogeneity. PAGODA was used to perform weighted principle component analysis on pre-defined (e.g., Gene Ontology
terms) and de novo gene sets. The gene sets were scored on their significance. Correlated gene sets were coalesced in order to reduce redundancy. The
heatmap of the significance gene sets shows a few de novo gene sets captured major aspects (i.e., non-redundant principal components) of heterogeneity.
c Differential gene expression was performed between the left and right clusters for each day of differentiation in differentiating preadipocytes beginning at
100% confluency. Gene set enrichment analysis was performed on the differentially expressed genes and the top 10 up- and down-regulated pathways
sorted by z-score are shown for day 7. d Differential gene expression was performed between the left and right clusters of day 7 adipocytes. The genes
shown are previously-studied adipocyte markers for lineage or differentiation stage. For each gene, the maximum likelihood estimate and 95% confidence
interval of the log2 expression ratio (right cluster over left cluster) is shown. The brown adipocyte markers MYF5 and UCP1 were not detected in any cells.
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phenotype correlations were projected to the single-cell data to
determine whether any gene signatures would preferentially mark
the heterogeneous populations of single cells. The results
indicated that the clusters showed differences in the expression
of genes correlated to extracellular acidification and glucose
uptake across multiple days (Fig. 2f, Supplementary Fig. 5A–H).

We then proceeded to develop a network approach to identify
the potential drivers of heterogeneity in single-cell populations
that revealed a network of zinc-finger proteins associated with
adipogenesis-resistant cells. Combining clustering gene expres-
sion with network analysis is routinely applied to identify
biological processes associated with disease-related phenotypes
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in different cells types21–23. We developed an algorithm to detect
a network of highly-activated genes that potentially code for
protein complexes (protein–protein interaction (PPI) networks)
in single-cell data (Fig. 3a). Our method identified at least three
distinct protein networks: (1) the ubiquitin-proteasome complex
(residual error= 2583), (2) the ribosome (residual error= 2587),
and (3) an uncharacterized protein network (residual error=
2593). As the two higher-ranking networks captured known
biology in adipogenesis, we focused on the module consisting of
30 connected genes in the PPI (Fig. 3b)24. These genes were
enriched for proteins containing KRAB domains and C2H2 zinc-
finger regions (Fig. 3c).

This module had a small tightly-connected subnetwork
consisting of largely-uncharacterized zinc-finger proteins (ZNFs).
Although the target genes of these ZNFs are not known, one of
the highest-scoring motifs in the promoters of these genes was
Interferon Regulator Factor 1 (IRF1) (Supplementary Fig. 7), a
transcription factor which has been previously identified as a
negative regulator of adipogenesis25. Analysis of the top 100 cells
with the detected module over the time-course of adipogenesis
revealed that expression of several of these ZNFs (ZNF264,
ZNF490, ZNF587, and ZNF714) decreased as the level of
expression of FABP4, a marker of adipocyte differentiation,
increased (Fig. 3d). Interestingly, the ZNF cluster did not
significantly vary in the gene expression profiles of preadipocyte
cultures across the time course of preadipocyte differentiation
into adipocytes (Fig. 3e). This ZNF module is only detected at the
single-cell level and not at the multi-cellular population level,
suggesting the module is found in a subpopulation of pre-
adipocytes and not in progenitor cells of other mesodermal fates
(Supplementary Fig. 8A–C).

Discussion
Understanding the heterogeneity of white adipocytes is an
important question in adipocyte biology since it is known that
different patterns of fat distribution are linked to insulin resis-
tance, different metabolic states, and the risk of diseases like type
2 diabetes and metabolic syndrome3,26. However, this type of
analysis has been hindered by technological challenges (e.g.,
sorting of large and fragile adipocytes) and reliance on predefined
markers, and is especially difficult to apply to human fat tissue.
Here, we have addressed the question by unbiased analysis of
single-cell RNA-seq of human subcutaneous preadipocytes
undergoing differentiation into white adipocytes. The results
show the presence of at least two distinct clusters of cells in both
the preadipocyte and adipocyte stages. Differential gene expres-
sion reveals that the early differentiation differences are due to

genes related to cell cycle, protein synthesis, and growth-
associated pathways. Late-stage differences are primarily due to
genes related to glycolytic metabolism, which was also confirmed
by phenotypic profiling in clonally-derived white preadipocyte
cell lines. Lastly, a subset of cells within one of the clusters is
marked by the activation of a set of zinc-finger proteins, alluding
to additional potential subsets of preadipocytes including a pool
of adipocyte precursors resistant to adipogenesis.

Previous research in mouse models have identified sub-
populations of preadipocytes marked by the expression of certain
genes such as Sca1 and Myf5 (refs 13,27). It was also shown that
different fat depots had different proportions of these Sca1+ or
Myf5+ subpopulations. For example, preadipocytes derived from
a Myf5+ lineage comprised 9% of perigonadal white adipose
tissue and as much as 50% of anterior subcutaneous white adi-
pose tissue28. Additional studies found that knocking out PTEN
in Myf5+ cells resulted in lipodystrophy29, suggesting that these
different preadipocyte populations have a functional importance
and could serve as important therapeutic targets. Historically,
research into human white adipose heterogeneity was limited to
stromal vascular cells sorted by pre-defined markers30,31.
Recently, there have been several efforts to utilize single-cell
sequencing to determine the cell types in human white adipose
tissue32–35. For example, Schwalie et al.32 identified a group of
anti-adipogenic stromal cells, marked by CD142 expression,
which they termed Aregs. Consistent with this, our data suggest
CD142 (gene F3) may be differentially expressed between the day
0 clusters in the two separate differentiation experiments (FDR
~0.44 and ~0.20). It is worth noting that these studies, as well as
ours, have thus far been limited to preadipocytes and adipose
tissue derived from healthy humans. The single-cell heterogeneity
of adipose in diseased states, such as diabetes and metabolic
syndrome, could reveal new mechanistic insights.

In adipose tissue, one of the primary challenges is to determine
the transcriptional programs that give rise to different cells,
potentially controlled by uncharacterized transcription factors
such as zinc-finger proteins. Zinc-finger proteins are one of the
largest families of DNA-binding proteins36. The zinc-finger
proteins ZNF264 and ZNF490 have been shown to be DNA-
binding37, and ZFP423 has been shown to be a marker of pre-
adipocytes in the mouse38. In addition, the expression of ZNF714
is higher in visceral adipose tissue from insulin-resistant obese
populations compared to insulin-sensitive obese populations39.
In the context of developmental biology, transcriptional and
cellular heterogeneity have been shown to increase tissue
robustness as a response mechanism to different perturba-
tions40–42. In adipose tissue, the robustness is needed to maintain

Fig. 2 Clonal preadipocyte cell lines cluster into distinct metabolic signatures. RNA seq was performed on 35 (9 clones each from 4 subjects; 1 library
failed QC) clonally expanded immortalized human neck white subcutaneous preadipocytes and analyzed with PAGODA. a Principal Component Analysis of
subject-corrected gene expression profiles. b Top gene sets capturing significant aspects of transcriptional heterogeneity among the 36 clones. Each of
these aspects had several genes marking potential subpopulations of clones within the clusters. Basal oxygen consumption (OCR) and basal extracellular
acidification rate (ECAR) were measured in preadipocytes via the Seahorse XF Analyzer. Glucose uptake was measured with radiolabeled 2-deoxy-glucose
in preadipocytes. The levels of PPARG were measured after 18–21 days of differentiation. c Venn diagram of the differentially expressed genes between
clusters A and B in the clonal cell line data versus the clusters in day 0 cell in the single-cell data (see Fig. 1A). d The seven most extreme clones of cluster
A compared against the seven most extreme clones of cluster B show differences in glucose uptake (FWER ~ 0.059) and differentiation capacity (FWER ~
0.095). Asterisks indicate FWER < 0.1 as assessed by a one-way ANOVA followed by a Bonferroni correction (N= 7 clonal cells lines). Bars indicate mean
± s.e.m. e The four phenotypes were correlated (Spearman) to every gene in the clones to generate phenotype correlation vectors. The top ten genes for
each phenotype are shown in a heatmap. f The four phenotype correlation vectors (oxygen consumption, extracellular acidification, glucose uptake, and
PPARG expression after differentiation) were then correlated (Spearman) to the single-cell gene expression profiles for each cluster. The distribution of
correlation coefficients was compared between the left and right cluster for each day. Boxplots are centered on the median, the interquartile range (IQR)
spans the 25–75% percentile, and the whiskers extend to 1.5 times the IQR above the 75% percentile (maximum) and below the 25% percentile
(minimum). Points indicate correlation coefficients of individual cells. Asterisks indicate FWER < 0.05 as assessed by an ANOVA followed by a Bonferroni
correction.
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energy homeostasis in response to perturbations such as diet,
frequency of eating, and many other factors. Earlier studies have
made observations consistent with at least two types of pre-
adipocytes defined by several differences including adipogenic
capacity, replicative capacity, and apoptosis susceptibility13,43,44.
Thus, these ZNFs may be involved in the transcriptional reg-
ulation of white adipocyte differentiation contributing to tissue
heterogeneity and robustness.

Previous work in systems biology developed numerous meth-
ods to model a biological system as a linear system45,46. In the
context of gene expression, this framework intuitively implies that
each gene in a system is a gate whose output can be modeled as
linear combination of outputs of other gates with some error.
While solving such systems is relatively tractable, the noise,
complexity and lack of linearity in biological systems makes these
efforts challenging. Here, we introduce a useful technical insight
to integrate biological intuitions with computational modeling.
Instead of assuming the entire system is linear, we assume the
system can be decomposed into connected network modules
where the system can be approximated by a low dimensional

linear factorization of the union of these network modules. The
possibility of such factorization without the constraint of con-
nected PPI modules has been previously suggested in other bio-
logical systems47. The network constraint adds significant
technical challenge to obtaining such a model. The advent of
modern omics, single-cell technologies and machine learning
opens the door to methods utilizing integrative algebraic network
decompositions with numerous applications in systems biology.

Our work provides preliminary support for the hypothesis that
heterogeneity might be coded for early in adipogenesis. Since
heterogeneity of mature adipocytes has been associated with
metabolic disease risk, we can speculatively hypothesize that
metabolic disease might be intricately tied to early and specific
differentiation trajectories. These developmental trajectories
might be affected by genetics. Alternatively, pre-metabolic disease
states via yet to be fully understood signaling or communication
mechanisms may modify transcriptional control in preadipocytes,
driving increase in cell populations with higher disease risk. Thus,
this research direction may lead to therapeutic directions repro-
gramming specific differentiation paths.
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In summary, we have demonstrated a synergistic combination
of three systems biology frameworks (single-cell transcriptional
profiling, integration and joint analysis with clonal gene expres-
sion data and network modeling). We have provided evidence of
the presence of at least two types of human white subcutaneous
adipocytes. These adipocytes show large differences in metabolic
gene sets and are not accounted for by differences in brown or
beige fat. We have also shown that a subset of preadipocytes are
marked by the expression of a ZNF network, which may be
involved in regulating white adipocyte differentiation. Changes in
the balance of these types of white adipocytes may have impor-
tant physiological consequences in adipose tissue and whole-body
metabolism. Dissecting intrinsic cellular heterogeneity in white
pre-adipocytes and adipose tissue may significantly impact our
understanding of the role of differentiation programs, genetics
and environment in metabolic disease risk.

Methods
Base-level analysis of single-cell RNA-seq. Single-cell RNA seq profiles of
abdominal subcutaneous human preadipocytes undergoing adipogenesis were
obtained as previously described16. In these data, the primary human preadipocytes
were taken from commercially-available lipoaspirates (single donor; Life Tech-
nologies) sorted by fluorescence-activated cell sorting (FACS) based on the positive
selection (i.e., express the proteins) for CD29, CD44, CD73, CD90, CD105, CD16,
and negative selection (i.e., do not express) against CD14, CD31, CD45, Lin1. The
cells were maintained in 2% reduced serum growth media for up to 3 passages
(MesnPro, Life Technologies). For differentiation, cells were grown to either 80%
or 100% confluency and then incubated with differentiation media (StemPro
adipogenesis differentiation media, Life Technologies) for 7 or 14 days in two
separate experiments as described16. For single-cell sorting, culture plates were
treated with trypsin, and the released cells pelleted by centrifugation at 1000 rpm
for 5 min. Pellets were resuspended with Dulbecco’s phosphate-buffered saline
(DPBS), stained with Hoeschst 33342, and individual cells FACS sorted using the
above markers into prepared 384-well plates. Library generation and RNA-
sequencing was performed as described16.

For data analysis, we filtered out cells containing less than 1000 detected
genes. On average, each cell contained ~1600 detected genes. We used
PAGODA17 to analyze the expression profiles in experiment ‘D1’ (differentiation
beginning at 80% confluency, 2092 cells after QC) and experiment ‘D3’
(differentiation beginning at 100% confluency, 4319 cells after QC) (GSE53638).
PAGODA finds non-redundant genes sets who first principal components (i.e.,
aspects) are overdispersed. Significant aspects were chosen by FDR <= 0.05.
Single-cell differential gene expression was performed with the package SCDE48.
As the t-SNE plots revealed two distinct clusters, we performed differential gene
expression between the left and right cluster in each day and in each separate
experiment.

Cell culture and adipogenesis. No specific human studies approval was needed
for the current study as the human cell lines used in this study were existing
biobank specimens that had been collected under an approved human studies
protocol for the research previously published in18. Human preadipocyte cell lines
were obtained from superficial fat depots in the neck of patients undergoing cer-
vical spine surgery and immortalized with stable transfection of human telomerase
(TERT) as previously described18,49. Cells were passaged at 80% confluency and
maintained in growth media (DMEM-H, 10% FBS, 1% penicillin-streptomycin).
For differentiation, cells were grown to 100% confluency and incubated with pre-
induction media (DMEM-H, 2% FBS, 1% Pen-Strep, 0.2% normocin, 500 nM
insulin, 2 nM T3, 1 μM rosiglitazone) for 6 days, followed by the induction media
(DMEM-H, 2% FBS, 1% Pen-Strep, 0.2% normocin, 500 nM insulin, 500 μM
IBMX, 2 nM T3, 1 μM rosiglitazone, 33 μM biotin, 17 μM pantothenate, 100 nM
dexamethasone, and 30 μM indomethacin) for 7–14 days.

Total RNA isolation and RNA-seq of clonal preadipocytes. Clonal human neck-
derived subcutaneous preadipocyte cell lines were maintained in culture and grown
to 100% confluency before RNA harvest. Total RNA was harvested and purified
with Trizol reagent. RNA quality was measured on the Agilent 2100 Bioanalyzer to
ensure RIN values were greater than 8.0. To construct libraries for sequencing, we
used the NEBNext Ultra Directional Library Prep Kit and Poly-A selection kit
(New England Biolabs). Library enrichment and multiplexing was performed using
the NEBNext High-Fidelty PCR Master Mix (14 cycles of PCR) and NEBNext
Multiplex Oligos. The cDNA libraries were multiplexed on the Illumina HiSeq
2000 and 2500 to generate raw reads and deposited on GEO (GSE128253). Raw 50
bp paired-end reads were aligned with STAR (v2.3.0e)50 to the human genome
build hg19 and annotation file gencode v19. Raw counts were extracted using HT-
seq (v0.5.4). Analyses were carried out in R and various packages including DESeq2
(ref. 51) and SCDE48. Subject-specific gene expression profiles were normalized

with SCDE. To estimate the number of clusters in the subjected-corrected
expression profiles, we performed k-medoids clustering and selected the k that
maximized the average silhouette width (k= 2–10). To examine potential
phenotypically-distinct subclusters within these two large clusters defined by gene
expression, we performed hierarchical clustering and cut the tree to yield five
clusters with average cluster size of 7 cell lines.

Extracellular flux profiling. Oxygen consumption rate (OCR) and extracellular
acidification rate (ECAR) were measured using a Seahorse XF24 (Seahorse
Bioscience). Cells were counted with a Cellometer® Vision (Nexcelom Bioscience)
and seeded in 24-well Seahorse Cell Culture Microplates (60,000 cells/well). Each
clonal cell line was seeded in duplicate or triplicate (one 24-well plate per subject).
1.5 h after the seeding in 100 µl medium (4.5 g/L glucose DMEM, 10% FBS, 1%
penicillin/streptomycin), an additional 150 µl medium were added to ensure
optimal distribution of cells. The metabolic profiles of the cells were analyzed by
Seahorse either 24 h later or after a 21-day differentiation protocol as described
above. 2 h prior to measurements, 150 µl of culture medium was removed from
each well. The cells were washed once with 900 µl of XF Assay Medium (1 g/L
glucose, 2 mM L-glutamine, 2 mM Na pyruvate), followed by the addition of XF
Assay Medium to a final volume of 500 µl and incubation at 37 °C with no CO2.
Basal oxygen consumption and extracellular acidification were measured for
30 min. DNA was extracted by washing cells with PBS, incubating in 100 µl 50 mM
NaOH for 30 min, heating at 96 °C for 5 min, and adding 25 µl 1 M Tris pH 6.5.
DNA concentrations were measured by NanoDrop. The OCR and ECAR values of
preadipocytes were normalized to the DNA contents in the corresponding well.
OCR and ECAR in fully differentiated adipocytes were normalized to intracellular
Oil Red O. Data were processed and exported with Seahorse Wave (2.3).

Basal glucose uptake was measured by intracellular incorporation of
radioactive-labeled 3H-deoxy glucose. Cells were seeded in 12-well plates
(50,000 cells/well, duplicates) and cultured in DMEM containing 4.5 g/L
glucose, 10% FBS and 1% penicillin/streptomycin for 48 h, before washing cells
twice with PBS and changing to 1 g/L glucose DMEM with 5% FBS for 16 h.
Cells were then washed once with PBS and once with KRH buffer (7.4 pH,
10 mM HEPES, 25 mM Glucose, 1 mM MgCl2, 1.8 mM CaCl2, 4 mM KCl,
116 mM NaCl) supplemented with 2.5 mM pyruvate and 0.5% fatty acid-free
BSA, before incubation at 37 °C for about 3 h in 1 ml of the glucose-free KRH.
The cells were washed twice with PBS, incubated in 0.5 ml KRH/BSA containing
100 µM 2-deoxy-glucose and 0.5 µCi for 2 min, and placed on ice to terminate
glucose uptake. 400 µl of each sample were transferred to scintillation tubes and
4 ml CytoScint scintillation fluid were added before rigorous shaking and
measurement in a Beckman LS6500 scintillation counter. Disintegrations per
minute (DPM) were normalized to protein contents of each well measured by
BCA Protein Assay Kit (Pierce).

QPCR analysis. For qPCR analysis, cDNA was synthesized from 500 ng RNA
using the High Capacity Reverse Transcription Kit (Applied Biosystems). In 20 µl
reactions, 2 µl RT-buffer, 0.8 µl dNTP mix, 2 µl random primers, and 1 µl Multi-
Scribe RT were mixed together with RNA and nuclease-free water. The samples
were incubated at 25 °C for 10 min, 37 °C for 2 h and 85 °C for 5 min. The cDNA
was diluted 1:20 in nuclease-free water. qPCR was performed using the CFX384
Real-Time System (BioRad). A master mix was prepared containing 5 µl 2X SYBR
Green, 0.1 µl forward primer, 0.1 µl reverse primer, and 2.3 µl nuclease-free water
per sample to which 2.5 µl cDNA template was added in a 384-well plate. The
reaction was run by the following program: 95 °C for 3 min, then 40 cycles of 95 °C
for 10 s and 60 °C for 45 s. Melting curve analysis (increments of 0.5 °C from 60 °C
to 95 °C) confirmed specificity of the primers. Mean target mRNA levels based on
technical triplicates were calculated by the ΔΔCT method and normalized to the
mRNA level of HPRT. Primers for PPARG (Forward: 5′- GAA AGC GAT TCC
TTC ACT GAT-3′; Reverse: 5′-TCA AAG GAG TGG GAG TGG TC-3’) and
HPRT (Forward 5’- TGA AAA GGA CCC CAC GAA G-3′; reverse: 5′- AAG CAG
ATG GCC ACA GAA CTA G-3′) were ordered from IDT.

Subnetwork detection by integrating the protein–protein interactome and
module detection. In this paper, we deploy a network algorithm to analyze single-
cell RNA seq data in differentiating preadipocytes. We believe that the integration
of network analysis and single-cell RNA seq is a very promising direction for
understanding both modularity and heterogeneity of gene expression in complex
biological processes. Our hypothesis is that the gene expression state of the cell is,
in part, influenced by an underlying biological network defined by the interactivity
between proteins. This hypothesis is consistent with a number of publications in
system biology21,22,52. This framework is different from using a regulatory network
that captures protein-DNA interactions53,54. Our underlying network is a wiring
diagram where the nodes are proteins and the edges are literature-reported
experimentally-observed interactions. It should be noted that we assume these
literature-reported interactions would be present in all cells expressing the proteins,
i.e., they are tissue independent24.

Given our hypothesis, each gene expression profile of a single-cell defines a
network snapshot. Previous publications using a regulatory network framework for
modeling gene expression54,55 attempt to recover the causal regulators of gene
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expression56–58. In contrast, we aim to produce a relatively simple representation
capturing the activity of protein complexes, transcriptional modules or signaling
pathways in different cells. In the simplest case, the goal is to explain the system
behavior by predicting up-regulated and down-regulated modules and their activity
in heterogeneous cell populations during adipogenesis.

The input to our algorithm is:

(a) A matrix containing the single-cell expression profiles in experiment ‘D1’
was first transformed to log scale (log2(UMI+ 1) and then transformed to
z-scores.

(b) The input protein–protein interaction network was the union of all
interactions in the network database Pathway Commons v5 (network
named ‘Pathway Commons.5.All.EXTENDED_BINARY_SIF’)24.

Integrating the two data sources, we can interpret the N single-cell gene
expression profiles as a set of N network snapshots in different time points of
adipocyte differentiation. Each node (protein in the network) is associated with a
score that corresponds to the differences in gene expression of the corresponding
gene in this cell as compared to distribution of all values of this gene in the data. In
this analysis, the edges are unweighted, although the method can be generalized to
edges associated with confidences as describe in STRING and related
databases59,60.

The single-cell network snapshots can be described as a matrix of row vectors
Y1, Y2, …, YN where each Yi corresponds to a gene expression profile of a single
cell. This yields a matrix where the columns are nodes in the network and the rows
are network snapshots (gene expression profiles of cells). The goal of the algorithm
is to represent the behavior of the network during differentiation as the activity
profiles of relatively small connected components of the network. Within each
network component, the activity is captured by a relatively simple explanation. For
example, the activity of the network could be explained by a connected component
in which the expression of the genes is relatively high on average, which could
define a module associated or driving a state of differentiation. Alternatively, we
may be able to identify a protein complex that consists of subunits of the same
protein, such as the ribosome (a protein complex) and its many subunits (the
proteins RPS2, RPS3, etc).

Unlike standard statistical analysis that relies on methods such as piecewise
multiple linear regression or clustering we add two relevant biological constraints:

(a) The genes in each component are connected in the PPI network (module).
(b) The activity of each genes across the cells can be mathematically described

as a linear function of multiple connected networks that the gene appears in.
For example, a single gene can be controlled by two or more networks: one
or more of which could be activating and the other(s) repressing.

This approach extends the class of complex systems we can explain relatively
succinctly with connected modules using matrix algebra. Pathway enrichment of
the resulting networks was performed with DAVID61. Further detail is provided in
Supplementary Methods and code is available at https://github.com/mcrovella/CG-
Demo.

Analysis of ZNF expression in a single-cell RNA seq dataset of adipogenesis,
chondrogenesis, and osteogenesis. We analyzed a single-cell RNA seq data set
containing profiles of the differentiation of fibroblasts into adipocytes, chon-
drocytes, and osteocytes (GSE37521)62. The normalized, pre-processed RNA-seq
data were downloaded from GEO and analyzed in R via the packages GEOquery63,
Limma64, and Biobase65. For comparing the ZNF expression to FABP4, a marker
of adipogenesis, for each cell, the max of ZNF264, ZNF490, ZNF587, or ZNF714
was used.

Motif analysis. Motif analysis of the genes was performed with the R package
motifmatchr66. The promoter region was defined as the region between 2000 bp of
the transcription start site in the human genome build hg19. A significant match
was set to p < 1e−5. The transcription factor database was from JASPAR via the R
package JASPAR2018.

Statistical analyses. Statistical tests were performed as indicated in the figure
captions. Briefly, single-cell differential gene expression was performed as described
in the R package SCDE48. Statistical significance was assessed by an unpaired, two-
tailed t-test or an ANOVA followed by Bonferroni correction. All statistical ana-
lyses were performed in R.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The RNA-seq data on clonally expanded human neck-derived white preadipocytes are
available at GSE128253. The single-cell RNA-seq data of white preadipocytes during
in vitro differentiation are available at GSE53638. The single-cell RNA-seq data of
adipose-derived stem cells during differentiation into three different mesenchymal
lineages are available at GSE37521.

Code availability
The code to run CG decomposition is available at https://github.com/mcrovella/CG-
Demo.
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