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a b s t r a c t 

Lifestyle dietary interventions are an essential practice in treating obesity, hence neural factors that may assist in 
predicting individual treatment success are of great significance. Here, in a prospective, open-label, three arms 
study, we examined the correlation between brain resting-state functional connectivity measured at baseline and 
weight loss following 6 months of lifestyle intervention in 92 overweight participants. We report a robust sub- 
network composed mainly of sensory and motor cortical regions, whose edges correlated with future weight loss. 
This effect was found regardless of intervention group. Importantly, this main finding was further corroborated 
using a stringent connectivity-based prediction model assessed with cross-validation thus attesting to its robust- 
ness. The engagement of senso-motor regions in this subnetwork is consistent with the over-sensitivity to food 
cues theory of weight regulation. Finally, we tested an additional hypothesis regarding the role of brain-gastric 
interaction in this subnetwork, considering recent findings of a cortical network synchronized with gastric ac- 
tivity. Accordingly, we found a significant spatial overlap with the subnetwork reported in the present study. 
Moreover, power in the gastric basal electric frequency within our reported subnetwork negatively correlated 
with future weight loss. This finding was specific to the weight loss related subnetwork and to the gastric basal 
frequency. These findings should be further corroborated by combining direct recordings of gastric activity in 
future studies. Taken together, these intriguing results may have important implications for our understanding 
of the etiology of obesity and the mechanism of response to dietary intervention. 
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. Introduction 

Over the last decades, obesity rates increased drastically, while
vidence for its negative impact on health has been accumulated
 Mokdad et al., 1999 ; Wang et al., 2008 ). The complex etiology in-
ludes metabolism, cognition, eating behaviors and gut-microbiome
 Proctor et al., 2017 ). Assessing whether and how such different as-
ects can predict treatment success is an ongoing effort ( MacLean et al.,
018 ). Accordingly, there has been a growing interest in the neural and
ognitive factors that may be associated with successful weight regula-
ion. In the current work, we attempted to characterize functional neural
orrelates of future weight loss. We further interpret these results and
xamine whether they support one of the existing prominent neural the-
ries of weight regulation. A recently published review presented such
hree potential neural factors associated with impaired weight regula-
∗ Corresponding author at: Department of Brain and Cognitive Sciences, Ben-Gurio
E-mail address: gidonle@post.bgu.ac.il (G. Levakov). 
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ion ( Stice and Yokum, 2016 ) including: 1. Over-sensitivity to palatable
ood cues; 2. A deficit in inhibitory control and 3. Abnormal reward
rocessing. Our neural findings provide support for the over-sensitivity
o food cues theory and do not obviously relate to the other two fac-
ors listed above. We therefore propose a possible novel account link-
ng brain–gut interactions to functional brain connectivity and weight
oss, although the gastric activity was not recorded in the current work.
elow we lay out the relevant background on resting-state functional
onnectivity, brain–gut interactions and weight regulation. 

.1. Neural attributes related to future weight loss 

The three above-mentioned theories of impaired weight regulation
ain support from recent prospective, longitudinal and randomized in-
erventional imaging studies. While some studies examined brain ac-
n University of the Negev, Beer-Sheva, Israel 
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I  
ivation in response to specific stimuli or tasks, others characterized
rain activity using resting-state functional connectivity (RSFC) anal-
sis. This approach examines coactivation patterns between brain re-
ions in order to assess network connectivity, rather than the signal
n a specific region. Such brain connectivity patterns or ‘connectome’
 Sporns et al., 2005 ), even when measured at rest, exhibit a typical orga-
ization into communities or subnetworks ( Bullmore and Sporns, 2009 ).
oreover, they are reliable across scan sessions and reflect individ-

al differences in different domains such as perception and executive
unctions ( Boly et al., 2007 ; Finn et al., 2015 ; Lerman-Sinkoff et al.,
017 ; Nomi et al., 2017 ). Of the three aforementioned theories, mul-
iple findings converge best with the over-sensitivity theory ( Stice and
urger, 2019 ). According to this theory, increased response to external
ensory cues of food, learned by conditioning, results in overeating and
mpaired weight regulation ability. In line with this notion, visual and
lfactory food cues elicited elevated brain activity in somatosensory,
isual and gustatory cortices, and such signals were positively corre-
ated with immediate energy consumption ( Burger and Stice, 2013 ) and
uture weight gain ( Stice and Yokum, 2018 ). Moreover, RSFC within
he saliency network, previously suggested to underlie increased base-
ine susceptibility to food cues in obesity ( García-García et al., 2013 ),
as found to decrease following meal intake while the magnitude of

his reduction correlated with body fat ( Sewaybricker et al., 2019 ). Un-
ike the over-sensitivity theory, the reward theory relates difficulties
n weight regulation to an innate increased neural reward response to
ood consumption. Accordingly, BOLD activation ( Geha et al., 2013 )
nd neural variability ( Kroemer et al., 2016 ) in response to food intake
redicted future weight loss in the striatum, typically involved in re-
ard processing. Furthermore, RSFC in the striatum was found to cor-

elate with food craving and predicted future weight gain ( Contreras-
odríguez et al., 2017 ). Lastly, the inhibitory control theory pertains im-
aired weight regulation to a deficit in executive function ( Friedman and
iyake, 2017 ) and specifically, in inhibitory control. Deficits in in-

ibitory control are thought to impede attempts to avoid palatable food
r resist previous eating habits when actively attempting to lose weight.
onsistently with this account, studies reported that activation within
he DLPFC during typical ( Lavagnino et al., 2016 ) and food-related
 Han et al., 2018 ) inhibitory control tasks was negativity correlated with
ody-mass index (BMI). Furthermore, regional connectivity within the
LPFC ( Dong et al., 2015 ) and its connectivity to the ventromedial pre-

rontal cortex ( Neseliler et al., 2019 ; Weygandt et al., 2013 ), positiv-
ty correlated with future weight loss. In light of the abundance of be-
avioral evidence supporting the significant role of executive function
n modulating health-related choices and regulation of eating behavior
 Gettens and Gorin, 2017 ), in the current study, executive function be-
avioral measures were assessed at baseline. These measurements are
art of a separate line of work focusing on the correlation of executive
unction behavioral scores with future weight loss ( Kaplan et al., 2019 ,
anuscript in preparation) and are used here only to shed light on the

nhibitory control neural hypothesis. 

.2. Brain-gut communication and control of appetite 

Hunger and satiety signals from the periphery to the brain have
 major influence on eating behavior. They are evident in multiple
outes, mainly direct vagal and spinal innervation and hormonal sig-
aling originating from the gastrointestinal (GI) tract ( Steinert et al.,
012 ). Within the GI tract, appetite-related signals originating from the
tomach are considered the most immediate and salient ( Cummings and
verduin, 2007 ; Park and Camilleri, 2005 ). They include an indication
f the gastric nutritional content ( de Araujo et al., 2008 ), as well as
istention and emptying stage ( Steinert et al., 2012 ). Gastric motility
s achieved by slow-wave contractions that increase in amplitude dur-
ng phase III of the migrating motor complex (MMC), a pattern of me-
hanical and electrical activity that features while fasting ( Sarna, 1985 ).
hase III of the MMC, a short phase of maximal peristaltic activity, was
ound to be related to peaks in hunger sensation ( Tack et al., 2016 ).
hese contractions are initiated and coordinated by electrical activity

n the interstitial cells of Cajal ( Sanders et al., 2006 ) and present a typi-
al 0.05Hz frequency. Recent evidence implies that a network of cortical
egions shows high synchrony with this gastric basal electrical activity
s measured during resting state ( Rebollo et al., 2018 ). In this recent
tudy, subjects’ gastric electrical activity was recorded using cutaneous
lectrodes, while conducting an fMRI resting-state session. The authors
eported that a network of cortical regions, typically related to sensory
nd motor functions, showed delayed synchrony with this electrical ac-
ivity. Importantly, this phase-locking between the stomach electrical
ctivity and the BOLD signal was specific to the gastric basal 0.05 Hz
requency and a previous study ( Richter et al., 2017 ) suggested that it
rises from gastric, rather than cortical activity. 

.3. The present study 

Our goal was to examine whether and how RSFC, as measured with
MRI may predict future weight loss in a lifestyle dietary intervention.

e use of the term prediction here due to the temporal precedence of
he predictive variable, resting-state connectivity, to the predicted vari-
ble, weight loss following intervention that began only after the brain
maging session. However, we would like to make it clear that ’predic-
ion’ does not imply causation in this context, since it is possible that
he future weight loss is merely a reflection of a trait that was already
resent when the brain scan was taken. To the best of our knowledge,
o date, only a single study attempted to characterize whole-brain RS
onnectivity patterns in relation to weight regulation, in contrast to
onnectivity of specific ROIs ( Mokhtari et al., 2018 ). Specifically, in
his study, RS connectivity and machine learning classification were
sed to evaluate weight loss in an 18-month lifestyle weight loss in-
ervention. The authors described multiple subnetworks that are typi-
ally involved in cognitive control, body awareness, and food percep-
ion whose dynamic properties predicted future weight loss. However,
n the current study, we employed a more straightforward methodology
hat allowed us to directly interpret the neural-cognitive predictors of
uture weight loss. Moreover, we recorded a substantially longer RS ses-
ion (14 min) within a large sample size ( n = 92). The current study is
rospective, open-label with three arms and was conducted as part of
 large-scale lifestyle intervention study ( Yaskolka Meir et al., 2019 ).
t baseline, prior to the intervention, both the brain imaging sessions
nd a battery of behavioral executive function tests were conducted. Ex-
cutive function scores were used to examine whether RSFC correlates
f weight loss are related to executive function abilities, in line with
he inhibitory control hypothesis. Weight loss values were measured
fter a 6-month follow up, that is considered a crucial period where
aximum weight loss is typically achieved ( Shai et al., 2008 ). Network

nalysis was carried out by utilizing the Network-Based Statistic pro-
edure (NBS; Zalesky et al., 2010 ), which is a common method for ad-
ressing the multiple comparisons problem in whole-brain connectivity
nalysis. Specifically, this method looks for sets of connected nodes or
ubnetworks whose edges differ across experimental groups or are cor-
elated with specific measured variables (e.g. weight loss). Moreover,
e utilized the Connectome-based Predictive Modeling scheme (CPM;
hen et al., 2017 ) to quantify the extent to which such subnetworks can
ccurately predict future weight loss using cross-validation. Finally, we
ropose a post-hoc hypothesis regarding the importance of brain-gastric
nteractions for successful weight loss. Although the gastric activity was
ot directly recorded in the current work, we provide evidence of a spa-
ial and temporal similarity of the detected subnetwork to the gastric
etwork reported by Rebollo et al. (2018 ). 

. Methods 

.1. Participants 

Two hundred and ninety-four participants enrolled in the Dietary
ntervention RandomizEd Controlled Trial PoLyphenols UnproceSsed
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Table 1 

Baseline characteristics of the functional connectivity sub-study by intervention group. The 
statistical data are presented for subjects who completed the executive function battery, weight 
measurements, fMRI resting-state session and were not excluded due to excessive motion (see 
Section 2.6 .). Weight loss was reported as percent weight loss from baseline to time-point 6 
(see Fig. 1 for details). Table cells present the mean ( ± standard deviation) or case counts. 
F = female, M = male, PA = Physical activity, MED = Mediterranean, BMI = body mass index, 
WC = waist circumference. 

PA PA + MED PA + MED + polyphenols All group 

N 29 29 34 92 

Weight (kg) 90.3 ( ± 12.5) 91.25 ( ± 10.5) 90.3 ( ± 10.0) 90.6 ( ± 10.9) 

Gender F: 4; M: 25 F: 4; M: 25 F: 3; M: 31 F: 11; M: 81 

Height (cm) 172.7 ( ± 7.9) 175.6 ( ± 7.2) 173.8 ( ± 7.4) 174.0 ( ± 7.5) 

BMI (kg/m 

2) 30.2 ( ± 3.3) 29.6 ( ± 3.1) 29.9 ( ± 3.0) 29.9 ( ± 3.1) 

WC (cm) 107.6 ( ± 9.4) 107.6 ( ± 6.5) 106.9 ( ± 7.1) 107.3 ( ± 7.6) 

Age (y) 49.3 ( ± 10.6) 49.0 ( ± 9.8) 49.3 ( ± 10.9) 49.2 ( ± 10.3) 

Weight loss (%) 2.47 ( ± 4.0) 7.25 ( ± 5.8) 5.86 ( ± 5.8) 5.2 ( ± 5.6) 
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DIRECT-PLUS), testing the influence of Mediterranean (MED), and
olyphenol-enriched MED diet on participants’ health. Subjects were all
ecruited from an isolated workplace with a monitored provided lunch
Nuclear Research Center Negev, Dimona, Israel). Reflecting the study’s
orkplace profile, only 12% of participants were female. Inclusion cri-

eria were based on large waist circumference (WC; men > 102 cm,
omen > 88 cm) or dyslipidemia (TG > 150 mg/dl and HDL-c < 40 mg/dL

or men and < 50 mg/dL for women) and age ( > 30). Exclusion criteria
ncluded individuals who were unable to adhere to a physical activity
PA) program due to medical reasons or serum creatinine ≥ 2 mg/dL,
isturbed liver function, pregnancy, active cancer patients, those who
nderwent chemotherapy in the last 3 y, a major illness that might re-
uire hospitalization and those with a pacemaker or platinum implant,
iven the use of MRI. We note that usage of central acting medica-
ions was not considered an exclusion criterion but nevertheless, sub-
ects were asked to report this information as part of the study. All par-
icipants provided informed consent and the study was approved by the
uman Subject Committee of Soroka Medical Center. This trial was reg-

stered at clinicaltrials.gov as NCT03020186. Of the 294 subjects that
tarted the intervention 212 completed an executive function battery
see Section 2.10 ) at baseline. The functional connectivity sub-study de-
cribed in the present paper includes 132 subjects who completed both
he executive function battery and two baseline rsfMRI scans acquired
onsecutively during the same session. Of these 132 subjects, 40 were
xcluded due to excessive motion (see Section 2.6 ). Hence, data from
2 subjects was used for all the functional connectivity analyses. Only
.2% of these subjects reported using central acting medications (2 out
f 92), thus excluding this factor as a potential confound that might
ffect functional connectivity measures. Table 1 provides the baseline
haracteristics of all 92 participants. 

.2. Study design 

This sub-study is prospective, open-label with three arms, conducted
s part of a large randomized controlled intervention trial that was ini-
iated in May 2017 and lasted for 18 months. First, in a period of 5
onths, baseline measurements that included brain imaging and be-
avioral executive function scores were taken for all participants. After
aseline measurements, participants were assigned to one of three inter-
ention groups: PA; PA + Mediterranean (MED) diet; PA + polyphenol-
nriched MED diet and their initial weight was taken. Group assign-
ent was done randomly within strata of age. Following 6 months of

ifestyle intervention, which are considered a rapid weight loss phase,
eight measurements were taken again and percent weight loss relative

o baseline was computed for each subject as the main outcome of in-
erest in the current study. See Fig. 1 for a graphical description of the
tudy design and timeline. 
.3. Intervention 

PA - All groups received free gym memberships and moderate-
ntensity, ~80% aerobic PA classes within their workplace. PA + MED

In addition to the PA component common to all groups, partici-
ants in this group were instructed to follow calorie-restricted tradi-
ional Mediterranean diet as described in previous work (DIRECT study;
hai et al., 2008 ). PA + polyphenol-enriched MED diet – participants in
his group received a diet that was lower in processed and red meat
han the MED diet and richer in plants and polyphenols. Polyphenols
re large organic molecules typically found in fruits, vegetables, green
ea, coffee and red wine ( D’Archivio et al., 2010 ) and were previously
uggested to have a positive effect on cardiovascular health ( Pang et al.,
016 ). Further elaboration on the intervention procedure is provided in
 separate study ( Yaskolka Meir et al., 2019 ). 

.4. Weight loss 

Weight was measured at baseline, and after 6 months of intervention,
hat is considered a rapid weight loss phase in which maximum weight
oss is achieved ( Shai et al., 2008 ). Following 6 months of intervention,
he 92 participants of the brain functional connectivity sub-study lost
.47% ( ± 4.0), 7.25% ( ± 5.8), and 5.86% ( ± 5.8) of their initial weight
or the PA, PA + MED and polyphenol-enriched MED diet groups respec-
ively. To assess participants’ weight loss independently of the specific
ietary intervention they received, weight loss is reported as the per-
ent of the weight a participant decreased from their initial weight after
ontrolling for the effect of the specific intervention group. 

.5. MRI scanning procedure 

MRI scans were conducted at the Soroka University Medical Center
SUMC), Beer Sheva, Israel. Participants were scanned in a 3T Philips
ngenia scanner (Amsterdam, The Netherlands) equipped with a stan-
ard head coil. All subjects were instructed to refrain from food and
on-water beverages two hours prior to the MRI sessions. Each ses-
ion included 2 RS-fMRI runs of 7 min each, and a 3D T1-weighted
natomical scan to allow registration of the functional data. Before
ach RS session, subjects were instructed to remain awake with their
yes open and lie still. Both resting-state scans were acquired back-to-
ack with a few seconds apart during which the researchers communi-
ated with the participants and reminded them to stay awake and lie
till. fMRI BOLD contrast was acquired using the gradient-echo echo-
lanner imaging sequence with parallel acquisition (SENSE: factor 2.2).
pecific scanning parameters were as follows: whole-brain coverage 41
lices (3 × 3 × 3 mm 

3 ), transverse orientation, 3 mm thickness, no gap,
R = 2200 ms, TE = 30 ms, flip angle = 90°, FOV = 200 × 222 (RL × AP)
nd matrix size 68 × 71 (RL × AP). High-resolution anatomical volumes

https://clinicaltrials.gov/ct2/show/NCT03020186
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Fig. 1. Study design and timeline. For a period of 5 months, baseline measurements including brain imaging and behavioral executive function scores were taken 
for all subjects. Next, participants were assigned to one of three intervention groups: PA; PA + Mediterranean (MED) diet; PA + polyphenol-enriched MED diet and 
their initial weight was measured. Each group underwent eighteen months of lifestyle intervention, of which, the initial 6 months were considered the rapid weight 
loss phase ( Shai et al., 2008 ). In time point 6, 6 months after intervention onset, weight measurements were taken again, and percent weight loss relative to the 
initial weight was computed for each subject as the main outcome of interest. T0 = intervention onset, T6 = 6 month after intervention onset. ∗ = see Yaskolka Meir 
et al. (2019) for further elaboration on the baseline measurements. 
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ere acquired with a T1-weighted 3D pulse sequence (1 × 1 × 1 mm 

3 ,
50 slices). 

.6. fMRI data analysis 

fMRI preprocessing was performed using the Configurable Pipeline
or the Analysis of Connectomes (C-PAC; Cameron et al., 2013 ) and
ncluded: slice time correction, motion correction, skull stripping, nui-
ance regression of the first 5 principal components (PCs) of signal from
hite matter and CSF ( Behzadi et al., 2007 ), 6 motion parameters and

inear and quadratic trends, followed by temporal filtering between 0.1
nd 0.01 Hz and global signal regression. Finally, a scrubbing threshold
f 0.5 mm frame-wise displacement ( Power et al., 2014 ; removal of 1 TR
efore and 2 TR after excessive movement) was applied. All the results
ere reproduced without the scrubbing procedure (see Supplementary
ection 2). The resting-state sessions exhibit relatively high between-
un reliability for both the scrubbed (cross-run correlation: M = 0.699,
D = 0.072; root-mean-square deviation: M = 0.201, SD = 0.023) and
n-scrubbed data (cross-run correlation: M = 0.715, SD = 0.066; root-
ean-square deviation: M = 0.197, SD = 0.021) that is also consistent
ith previous reports ( Birn et al., 2013 ) and thus were concatenated for
ll following analysis. Exclusion criterion for excessive movements was
etermined a priori to less than 7 min (50%) of the resting-state session
fter the scrubbing procedure (30% omitted; 92 subjects left). For the
urpose of structural brain delineation, anatomical scans were analyzed
sing FreeSurfer version 6 ( Fischl et al., 1999 , 2004 ). The integration of
he different tools was done using Nipype ( Gorgolewski et al., 2011 ). 

.7. Subnetwork definition 

Vertices were defined using the Lausanne 128 nodes (114 corti-
al + 14 subcortical) parcellation ( Hagmann et al., 2008 ) created with
onnectome Mapper ( Daducci et al., 2012 ). Importantly the results were
lso reproducible using a finer 462 node resolution (see Supplementary
ection 3). For most subjects ( > 95%), the field of view did not capture
he entire cerebellum and brainstem and hence we did not include these
egions of interest (ROIs) in the analyses for the entire group. Func-
ional connectivity was defined using Pearson correlation coefficients
etween each pair of vertices following a Fisher r-to-z’-transformation.
ubnetworks were defined based on the 7 networks cortical parcellation
efined by Yeo et al. (2011 , Fig. 2 ). 
.8. Network-based statistic (NBS) 

To estimate whole-brain functional connectivity characteristics that
an predict subsequent weight loss, we used the Network-Based Statistic
rocedure (NBS; Zalesky et al., 2010 ). NBS is a common method used
o detect connected components or subnetworks whose edges’ strength
iffer across experimental groups or are correlated with a measured vari-
ble (i.e. weight loss in the current study). NBS controls for family-wise
rror rate (FWER) by comparing the size of the largest connected com-
onent to a distribution yielded by a permutation procedure. Briefly,
he strength of each edge was correlated with the weight loss mea-
urement, followed by a Fisher r-to-z’-transformation. Then, a thresh-
ld was applied to the subsequent correlation matrix, and the size of
he largest connected component was retained. A connected compo-
ent is a subnetwork in which any pair of nodes are connected with
 path composed of above-threshold edges. The same procedure was
epeated 10,000 times with the weight loss values permutated. The
 -value of the subnetwork indicated the percent of times that a ran-
om component was larger than the empirical component. The applied
hreshold is the only free parameter in this model, thus it is essential
o make sure the results are robust to a wide range of this parameter
 Zalesky et al., 2010 ). Accordingly, starting from a value of z ’ = 0.27
 p = 0.01), we tested the effect of an increase or decrease of this value
 ± 0.02) and reported the range in which the detected subnetwork was
ound significant ( p < 0.05). Our NBS implementation is available on-
ine ( https://github.com/GidLev/NBS-correlation ), and it is based on
he brain connectivity toolbox (BCT; Rubinov and Sporns, 2010 ) and
he BCTPY ( https://github.com/aestrivex/bctpy ) code. 

.9. Connectome-based Predictive Modeling (CPM) 

Using idiosyncratic sample-based prediction as opposed to group dif-
erences statistical hypothesis testing, we adopted the Connectome-based

redictive Modeling CPM protocol ( Shen et al., 2017 ). Applying a Leave-
ne-Out cross-validation approach, within the train set we correlated
ach edge in the connectivity matrix with weight loss measurement for
ach subject. We then selected the edges whose correlation with weight
oss passed a predetermined threshold. To validate the robustness of the
esults the procedure was reproduced for a wide range of thresholds
0.25 < r < 0.35). Next, the values of the selected edges were summed
or each subject, resulting in a single scalar that was used to fit a lin-

https://github.com/GidLev/NBS-correlation
https://github.com/aestrivex/bctpy


G. Levakov, A. Kaplan, A. Yaskolka Meir et al. NeuroImage 224 (2021) 117403 

Fig. 2. Mean correlation matrix. The matrix represents all per-wise correlations among nodes’ time series following Fisher r -to- z ’-transformation, averaged across 
all participants. Nodes are grouped according to the Yeo-7 networks parcellation (separated by black lines; Yeo et al., 2011 ), such that the squares along the main 
diagonal represent within network connectivity. Networks order: unaffiliated (subcortical regions), visual, somatomotor, dorsal attention, ventral attention, limbic, 
frontoparietal, default. Nodes within each network are grouped by hemisphere. 
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ar model predicting weight loss within the training set. The model was
hen applied to the remaining test subject. It is crucial that edge selection
nd the linear regression model fitting is done only on the training set
nd then tested on the untouched, leave-one-out subject, as done here.
ince the purpose of this study was to detect a connected component,
ather than a sparse, unconnected set of edges, the summation of nodes
as conducted only on edges that passed the threshold and formed the

argest connected component, as in the NBS analysis (see Section 2.8 ). 

.10. Evaluation of executive function 

Executive functions were measured using the Brief Executive Func-
ion Battery (BEF; Gordon et al., 2018 ) composed of the following mea-
urements: Working memory was evaluated using accuracy differences
etween choice reaction time with 6 novel rules and a similar task with 2
racticed rules. Switching ability was quantified using accuracy differ-
nces between task-switching conditions (3 tasks, each involving two
racticed rules) to the 2-practiced rules condition. Inhibition was as-
essed with the accuracy in the Anti-saccade task. General executive
unction was quantified as the 1st un-rotated PC of these three measure-
ents. Subjects with an accuracy performance of less than 2 standard
eviations from the mean in one of the tasks were excluded (14.1% omit-
ed; 182 left). Executive function scores were analyzed, excluding when
hey were used as covariates for the RSFC measures, for all remaining
ubjects ( n = 182). A more in-depth analysis of the measures of the ex-
cutive function battery in relation to weight-loss is outside the scope
f the present study ( Kaplan et al., 2019 , Manuscript in preparation). 
.11. Relation between weight loss, connectivity patterns and performance 

n executive function tasks 

To compare behavioral executive function scores and RSFC as predic-
ors of future weight loss, the explained variance of both was compared.
xplained variance was computed as follows: 

𝑉 ( 𝑦, 𝑦̂ ) = 1 − 

𝑉 𝑎𝑟 { 𝑦 − 𝑦̂ } 
𝑉 𝑎𝑟 { 𝑦 } 

EV = explained variance, y = true percent weight loss value, y

at = predicted percent weight loss value, Var = variance, i.e. the square
oot of the standard deviation. 

Weight loss prediction with both measures was done using a univari-
te regression model with the 1st PC of the executive function scores and
he sum of the suprathreshold edges in the CPM model. Importantly, for
oth weight loss predictors, explained variance was computed using a
eave-One-Out cross-validation. To examine the possible effect of ex-
cutive function on RSFC, we employed an additional CPM model, in
hich prior to model fitting, the 1st PC of all three executive function

cores was regressed out from each edge in the connectivity matrix. 

.12. Spatial comparison between the subnetwork detected in the present 

tudy to Rebollo et al. (2018) gastric network 

To quantify the spatial similarity between the set of regions found
sing NBS in the current study and the set of significant regions in
he gastric network reported in Rebollo et al. ( 2018 ; available online
ttps://neurovault.org/images/51888/ ), we examined the percentage

https://neurovault.org/images/51888/
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Table 2 

NBS results for different Pearson coefficient thresholds. In the NBS 
method, the strength of each edge is correlated with the weight loss 
values. Then, a threshold is applied to the subsequent correlation ma- 
trix, and the size of the largest connected component is retained. Each 
row in the table describes the applied threshold, the number of edges 
found in the largest connected component and the corresponding p- 
value indicating the percentage of times that a random component was 
larger than the empirical component. The weight loss related subnet- 
work was found significant across a wide range of thresholds ( z ’ = 0.25, 
0.29 ≤ z ’ ≤ 0.45; all p ’s < 0.05). 

Threshold ( k = 10,000) Edge count in the largest component P 

0.25 137 0.039 

0.27 66 0.076 

0.29 49 0.031 

0.31 40 0.014 

0.33 27 0.011 

0.35 23 0.003 

0.37 17 0.003 

0.39 12 0.002 

0.41 7 0.002 

0.43 4 0.006 

0.45 2 0.012 
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f voxels in the gastric network that overlapped with the voxels in
he subnetwork we reported. Both maps were compared in MNI space.
efining the nodes for the Lausanne 2008 atlas ( Hagmann et al., 2008 )

n MNI space was done by applying the parcellation scheme to the
NI template. Similarly, the same number of nodes were repeatedly

 k = 10,000), randomly sampled and their overlap was again tested to
etermine a null reference distribution. 

.13. Temporal comparison between the subnetwork detected in the present

tudy to Rebollo et al. (2018) gastric network 

To quantify the temporal power spectrum from the BOLD signal time
eries we applied the multi-taper method ( Thomson, 1982 ) to the pre-
rocessed non-scrubbed fMRI signal. Multi-taper is a spectral estimation
ethod that reduces the noise of the periodogram by averaging the spec-

rum over several windows ( Thomson, 1982 ), and is considered less sus-
eptible to noise compared to Naïve Fast Fourier Transform ( Ghil et al.,
002 ). This was done on each resting-state run separately and was then
veraged across the two runs. The analysis was performed using NiTime
 Rokem et al., 2009 ), a Python open-source package for time-series anal-
sis for neuroimaging data. The temporal analyses were conducted on
he un-scrubbed data since one of the assumptions of the multi-taper
ethod is that the data represent an uncensored continuous sample. 

. Results 

.1. Alterations in functional connectivity related to weight loss 

First, we set to examine whether a subnetwork or a set of connected
egions exists such that its within connectivity correlates with future
eight loss. This was done by correlating each edge in the functional

onnectivity matrix with weight loss values across all subjects. As this
nalysis is conducted by examining whole-brain connectivity, it is criti-
al to control for multiple comparisons. Hence, we utilized the Network-
ased Statistic paradigm (NBS; Zalesky et al., 2010 ), that controls the
WER according to the detected subnetwork size. Using this approach,
e found a significant subnetwork who’s edges positively correlated
ith future weight loss. This subnetwork was evident across a wide

ange of thresholds indicating the robustness of this result ( z ’ = 0.25,
.29 ≤ z ’ ≤ 0.45; all p ’s < 0.05; see Table 2 ). To exclude the specificity
f these results to a particular preprocessing step, we reproduced this
nalysis and all the subsequent results with an alternative parcellation
nd time points censoring procedure (see Supplementary Sections 2 and
). Weight loss was not correlated with age ( r (90) = 0.10, p = 0.32),
nitial weight ( r (90) = − 0.04, p = 0.72) or BMI measured at baseline
 r (90) = 0.02, p = 0.86). Additionally, the reported set of edges did not
orrelate with baseline BMI (mean correlation within the subnetwork; r
 0.005 for all thresholds). To provide a descriptive summary of the sub-
etwork composition, we examined the proportion of connections in the
ubnetwork to each of the 7 canonical resting-state networks reported by
eo et al. (2011) . The majority of this subnetwork ( z ’ threshold = 0.25)
as composed of connections to visual (32%) and somato-motor (24%)

egions, along with connections to areas of the default (16%), ventral
ttention (11%) and limbic (8%) networks ( Fig. 3 ; see Supplementary
ection 1 for a detailed matrix). Interestingly, the bilateral pericalcarine
as found as the node with the largest degree in this subnetwork across
ll threshold (0.25 < z ’ < 0.43). Thus, connectivity patterns of basic sen-
ory and motor regions, rather than higher, multimodal regions, predict
eight loss success following the intervention. 

Controlling for potential confounds – movement and wakefulness state 

Having documented the relation between functional connectivity
nd weight loss, it is critical to assess the possibility that these results
ight be accounted for by potential artifacts that are related to par-

icipants’ movement or wakefulness state. Specifically, it could be that
articipants with higher self-control tended to move less or were more
ble to stay awake in the scanner as instructed, thus resulting in a differ-
nt connectivity pattern ( Tagliazucchi and Laufs, 2014 ; Van Dijk et al.,
012 ). Moreover, these participants may also better adhere to the di-
tary plan. Hence, we first examined the correlation between partici-
ants’ in-scanner movement parameters and their weight loss values.
mportantly, weight loss was not correlated with the mean absolute
ranslation ( x, y, z ) or rotation (pitch, yaw, roll) in any of the 6 axes
all r (90) < 0.08, all p -values > 0.28). Next, although wakefulness levels
ere not directly measured, we used a previously suggested marker of
arly sleep stage to assess in-scanner wakefulness. Specifically, several
tudies reported a dramatic increase in whole-brain connectivity dur-
ng light sleep ( Spoormaker et al., 2010 ; Tagliazucchi and Laufs, 2014 ).
ence, we examined the mean connectivity across all ROIs and found no
orrelation with future weight loss ( r (90) = 0.04, p = 0.71). Moreover,
he absence of correlation between in-scanner head motion, previously
ssociated with sleep ( Curtis et al., 2016 ; Spoormaker et al., 2010 ), and
eight loss further precludes vigilance levels as a possible confounding

actor. 

.2. Predicting future weight loss using Connectome-based Predictive 

odeling (CPM) and Leave-One-Out cross-validation 

A connectivity-based prediction model can allow us to assess the
xtent to which brain connectivity patterns at baseline can predict
uture weight loss, as opposed to reporting mere significant differ-
nces in connectivity. Importantly, using cross-validation we can gain
n empirical estimation of such a model to generalize its prediction
o a novel set of subjects. Accordingly, we utilized the CPM proto-
ol ( Shen et al., 2017 ; see Section 2.9 .) to test the extent to which
eight loss can be predicted from the functional connectivity matrix.
sing Leave-One-Out cross-validation (LOO-CV), across a wide range of

hresholds (0.25, 0.26,…,0.35) 4.31–10.60% of the weight loss variabil-
ty (mean = 8.14%; Fig. 4 ) could be accounted for by the model. To test
or a possible effect of intervention group we correlated percent weight
oss with the mean edge value within the weight loss related network ( z ’
 0.25) for all three intervention groups. This effect was similar across
ll three groups ( r (26) = 0.54, r (26) = 0.63, r (32) = 0.61; all p ’s < 0.003;
or groups PA,PA + MED and PA + MED + polyphenol respectively; Supple-
entary Fig. 12). This further highlights the robustness of resting-state

onnectivity as a future weight loss predictor. 
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Fig. 3. The subnetwork detected with the NBS procedure which identifies a set of connected edges whose strength correlates with future weight loss. Coronal, sagittal 
and axial projected graph representation depicting the nodes and edges of the weight loss related subnetwork. In the NBS procedure, a subnetwork is comprised of 
edges whose correlation with a given value (i.e., weight loss) is higher than a certain threshold. Accordingly, the subnetwork is presented for a correlation threshold 
of z ’ > 0.25 (A) and z ’ > 0.31 (C). Node degree (i.e. the number of existing connections for a given node) is represented by the node size. The correlation magnitude 
of each edge with weight loss is represented by the edge color. Edges’ color scale bar is shown on the left. (B) and (D) shows a list of nodes with the highest degree 
for the z ’ > 0.25 (B) and z ’ > 0.31 (D) thresholds. Nodes degree is specified in brackets and the number next to the node’s name indicates its sub-parcellation in the 
Lausanne 2008 atlas ( Hagmann et al., 2008 ). Nodes’ color represents their affiliation to one of the 7 canonical resting-state networks according to Yeo’s et al. (2011) . 
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.3. The relation between behavioral measurements of executive function 

nd subsequent weight loss 

In line with the inhibitory control hypothesis of weight regulation,
e wanted to test the role of executive functions in RSFC correlates of

uture weight loss. A basic analysis of the executive functions data was
onducted for a hundred and eighty-two subjects (see Section 2.10 for
xclusion criteria). A further, detailed analysis of the executive func-
ion behavioral data is the focus of a separate study from the same
esearch group and hence reported here only in relation to the func-
ional connectivity analysis ( Kaplan et al. , Manuscript in preparation).

e found a modest, but significant correlation between the general ex-
cutive functions score and weight loss ( r (180) = 0.21, P = 0.005). As
xpected ( Wasylyshyn et al., 2011 ) all executive function measurements
ere negatively correlated with age ( r (180) = − 0.41, − 0.16, − 0.38 all
 ’s < 0.05; for inhibition, switching and working memory respectively).
herefore, we additionally examined the correlation between the gen-
ral executive function scores and weight loss after regressing out sub-
ects’ age and found that the significant correlation was maintained
 r (180) = 0.25, P < 0.001). Given the well-documented correlation of
xecutive functions with age ( Salthouse, 2005 ; Verhaeghen, 2011 ), it is
oteworthy that executive function variability that is independent of age
redicts future weight loss. In subsequent analyses, we decided to focus
n this component of executive function variability, hence the follow-
ng analyses were conducted on the age-controlled executive function
cores. Next, we tested the relation of each of the three executive func-
ion measures to future weight loss. We found a significant correlation
ith the inhibition and switching measures ( r (180) = 0.23, p = 0.002;
 (180) = 0.21, p = 0.005; respectively), but not with the working mem-
ry measure ( r (180) = 0.13, p = 0.09), although these differences do not
llow us to conclude which exact executive function factor underlies the
ffect. Given the correlation of behavioral executive function measures
ith weight loss, in the following paragraph we test whether the de-

ected subnetwork relates to executive function abilities and compare
hese measures’ ability to predict future weight loss. 

.4. Relation between weight loss, connectivity patterns and performance 

n executive function tasks 

Next, to similarly assess the predictive value of executive func-
ion as a subsequent weight loss predictor, we used a linear regres-
ion model evaluated with leave-one-out cross-validation (LOO-CV). Ex-
lained variance of general executive function, inhibition, switching,
nd working memory was 2.15%, 3.02%, 2.05% and − 0.02% respec-
ively ( Fig. 4 ). Explained variance across all connectivity-based model
hresholds was higher than the best behavioral predictor, although this
omparison should be taken with caution due to the different measures,
tatistical procedures and available sample size. Next, we wanted to ex-
mine whether executive function may underlie the observed resting-
tate connectivity correlates of future weight loss. To do so, we re-
eated the CPM procedure after regressing out general executive func-
ion scores from each edge in the connectivity matrix. Importantly, af-
er controlling for executive function, the connectivity-based model ex-
lained a larger portion of the weight loss variance (0.25, 0.26,…,0.35;
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Fig. 4. Explained variance of different weight loss predictors, as evaluated with a leave one out cross-validation procedure. In the connectivity-based models’ 
predictions (2 leftmost columns on the graph), each point indicates a different threshold level (0.25, 0.26,…,0.35), and the vertical lines represent the mean over all 
thresholds. 
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.72–12.56%; mean = 10.21%; Fig. 4 ). Therefore, high executive func-
ion abilities did not account for the relation of connectivity patterns
ithin the subnetwork to future weight loss. 

.5. Comparing the subnetwork detected with NBS to Rebollo et al. 

2018) gastric network 

Rebollo et al. (2018) recently reported that a set of regions, mainly
rimary and secondary sensory cortices, were significantly correlated
ith gastric slow-wave electrical activity (0.05 Hz). Interestingly, the
eight loss related subnetwork we report here, show some spatial,
natomical overlap with the gastric network reported by Rebollo et al.
2018) ( Fig. 5 ). Given these findings, we wanted to quantify the spa-
ial similarity of the subnetwork we report here which is related to
eight-loss and the gastric network directly measured by Robollo and

olleagues (Robollo et al., 2018). Furthermore, we wanted to examine
hether cortical oscillations in the gastric electrical rhythm (0.05 Hz),
reviously reported in the literature, are related to future weight loss.
he NBS procedure does not test the significance of individual edges, but
ather, the significance of the network as a whole. Hence, we should as-
ume that certain edges in the network are false positive. For this reason,
n the following analysis, we spatially restricted our weight loss related
ubnetwork only to nodes with high degree (Q1, degree ≥ 4) using the
owest NBS threshold ( z ’ > 0.25). 
.5.1. Quantifying the similarity at the spatial domain between the 

ubnetwork detected in the present study to Rebollo et al. (2018) gastric 

etwork 

The subnetwork found in the present study and the gastric network
escribed in Rebollo et al. (2018) , differ in many ways, such as the def-
nition of the two networks, the different methodological approaches
y which they were defined, their respective populations and the spa-
ial definition methods (voxel-wise/anatomical pre-defined ROIs). Yet,
e wanted to examine the extent of the similarity between these two
etworks ( Fig. 5 ). Specifically, we measured the percent of voxels in
ebollo et al. (2018) network that overlapped with the weight loss re-

ated subnetwork. To evaluate the statistical significance of the results,
e compared them to a null distribution of randomly selected sets of re-
ions from the same parcellation (see Section 2.12 .). The percent over-
ap was higher than any randomly selected set of regions ( k = 10,000,
mpirical percent overlap = 18.7%, p < 0.0001; see Fig. 6 ). 

.5.2. Quantifying the similarity at the temporal domain between the 

ubnetwork detected in the present study to Rebollo et al. (2018) gastric 

etwork 

We tested whether power in the stomach basal electrical rhythm
0.05 Hz) within the subnetwork we found, would be correlated with
eight loss. Critically, we found a modest, yet significant negative corre-

ation between power in 0.05 Hz and future weight loss ( r (90) = − 0.27,
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Fig. 5. Projection of the two networks on an in- 
flated cortical surface of the right and left hemi- 
spheres. The surface is presented in lateral (A) and 
medial (B) views. Blue indicates the weight loss re- 
lated subnetwork (half transparent), and orange in- 
dicates Rebollo et al. (2018) gastric network. The 
annotations, defined using the labels of the 128 
nodes Lausanne 2008 atlas ( Hagmann et al., 2008 ), 
indicate anatomical overlapping areas. 

Fig. 6. Distribution of the spatial overlap to Rebollo’s et al. (2018) gastric network of random network permutations ( k = 10,000). Spatial overlap was measured as 
percent coverage of the gastric network. The vertical black dotted line represents the empirical overlap of the weight loss related network we reported to the gastric 
network, this value was higher than for any network permutation. 
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 = 0.008; Fig. 7 ). The correlation was specific to the weight loss related
ubnetwork when tested against a set of random networks with the same
umber of nodes with a matched size ( k = 10,000; p = 0.012). Impor-
antly, testing the correlation of power and weight loss values across
he frequencies of the resting-state relevant spectrum (0.1–0.01 Hz) re-
ealed a peak in 0.0475 Hz ( Fig. 8 ), implying the specificity of this find-
ng to the stomach basal electrical rhythm. Hence, the correlation of the
easured power and future weight loss is specific to both our detected

ubnetwork and the gastric frequency. 
. Discussion 

.1. The weight loss related subnetwork 

In the current work, we examined the potential correlation between
esting-state functional connectivity patterns and successful weight loss
ollowing a lifestyle intervention. Resting-state functional connectivity
nd weight of 92 participants were measured at baseline and their subse-
uent weight loss was assessed after 6 months of a lifestyle intervention.
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Fig. 7. Regression plot of future weight loss compared to the mean calculated 
power in the stomach basal electrical frequency (0.05 Hz) within the weight loss 
related subnetwork. Weight loss is the percent weight loss value after regressing 
out the effect of the intervention group. The weight loss values are centered 
around zero due to regressing out of the group effect. The Pearson correlation 
coefficient and the p -value are indicated on the top right side of the plot. The 
top and right panels of the figure depict histograms and kernel density plots of 
the distribution of the weight loss and the mean 0.05 Hz power (respectively). 

Fig. 8. Correlation between future weight loss (standardized values) and the 
mean calculated power within the weight loss related subnetwork across the 
resting-state relevant spectrum (0.1–0.01 Hz). The vertical orange line indicates 
the stomach basal electrical activity (0.05 Hz). As is evident, the peak of the 
distribution of the power of the subnetwork reported here overlaps with the 
basal electrical activity as reported in the literature. 
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n line with previous studies demonstrating the significance of execu-
ive function abilities to success in a dietary weight loss intervention
 Gettens and Gorin, 2017 ), subjects were also administered an execu-
ive function assessment battery ( Gordon et al., 2018 ). Using the NBS
rocedure, we identified a robust functional subnetwork that was com-
osed of edges positively correlated with future weight loss. Next, us-
ng the connectivity-based prediction model method (CPM; Shen et al.,
017 ), we quantified the extent to which a simple univariate model,
ased on connectivity patterns within this subnetwork, could predict fu-
ure weight loss. Thus, demonstrating that these findings are also repli-
able using cross-validation. While edges in this subnetwork correlated
ith weight loss, they surprisingly did not correlate with baseline BMI.
his may be due to range restriction since all participants were initially
verweight or obese. Importantly, weight loss was not correlated with
n-scanner movement parameters or with global connectivity, which is
onsidered a within scanner sleep biomarker ( Spoormaker et al., 2010 ;
agliazucchi and Laufs, 2014 ). 

.2. Resting-state connectivity correlates of future weight loss and neural 

heories of weight regulation 

As noted in the Introduction, there are three prominent neural
heories that may underlie impaired weight regulation ( Stice and
okum, 2016 ). These include: 1. Over-sensitivity to palatable food cues;
. A deficit in inhibitory control and 3. Abnormal reward processing. Of
hese, the abnormal reward theory suggests that increased reward re-
ponse to food consumption subsequently leads to over-eating. In line
ith this theory, we expected baseline connectivity in reward-related
rain regions to account for future weight loss. In contrast, most of
he cortical connections in our reported weight loss related subnet-
ork were to nodes of visual or somato-motor resting-state networks
 Yeo et al., 2011 ). Notably, the bilateral pericalcarine, the anatomical
ocation of the primary visual cortex, was the node with the highest
egree within this subnetwork. Similarly, these findings do not easily
onverge with the impaired inhibitory control theory, which highlights
he role of cortical areas related to executive functions (e.g. DLPFC)
n successful weight reduction ( Dong et al., 2015 ). Moreover, regress-
ng out general executive function behavioral scores from each edge in
he connectivity matrix, thus eliminating the contribution of executive
unctions from the connectivity variance, actually improved the ability
f the network-based model to account for future weight loss. Interest-
ngly, executive function behavioral measures had a moderate correla-
ion with future weight loss. This may imply that despite the apparent
ole of executive function in successful weight loss, this relation could
ot be easily captured using RSFC. The significant role of sensory cor-
ical regions within this subnetwork might coincide with the theory of
ver-sensitivity for palatable food cues. Indeed, similar findings were
bserved in perceptual experiments while participants were presented
ith visual or olfactory stimuli of food ( Stice and Burger, 2019 ). De-

pite the absence of food-related stimuli in the present study, we sug-
est that the observed involvement of sensory areas may also be due
o contextual influence of the awareness to the planned dietary inter-
ention or the mandatory fasting before the examination (2 h). How-
ver, previous RSFC studies related increased connectivity within the
aliency network, rather than sensory or motor networks, to impaired
eight regulation. Increased connectivity within the saliency network

upposedly underlies increased baseline susceptibility to food cues in
besity ( García-García et al., 2013 ; Sewaybricker et al., 2019 ). Hence,
n the following paragraph, we consider and test an additional post-hoc
ypothesis regarding a role of brain-gastric interaction to account for
hese neural findings. 

.3. Possible role of stomach-brain connectivity in the weight loss related 

ubnetwork 

As an attempt to account for our unexpected findings, we conducted
n additional, post-hoc analysis. This analysis stemmed from recent
tudies which implicated that a network of cortical regions, mainly in-
luding somatosensory, motor and visual areas, that was measured using
esting-state fMRI, show synchrony with the stomach slow-wave electri-
al activity ( Rebollo et al., 2018 ; Richter et al., 2017 ). This electrical ac-
ivity, peaking at 0.05 Hz, is generated by the intestine cells of Cajal, and
oordinates waves of muscle contractions that travel the stomach and
romote both digestion and emptying of the gastric content ( Grundy and
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rookes, 2011 ). Notably, gastric motility is considered an important me-
iator of hunger and satiety and hence, we hypothesized that this factor
ight also be related to weight loss ( Janssen et al., 2011 ). To explore

his hypothesis, we examined the spatial and temporal similarity be-
ween the weight loss subnetwork we discovered in the present study
nd the gastric network reported by Rebollo et al. (2018) . We found
 modest, yet significant spatial overlap between the two networks,
ven though they were obtained using very different methodological ap-
roaches, populations, and node definition schemes. Furthermore, fre-
uency analysis revealed that the 0.05 Hz power, which is the gastric
asal frequency, was negatively correlated with future weight loss in
he nodes of the subnetwork obtained in the present study. Importantly,
his correlation of the frequency of hemodynamic fluctuations, and fu-
ure weight loss success was specific to the weight loss subnetwork and
o the specific 0.05 Hz basal electrical gastric frequency. Establishing
he prominence of brain-gastric communication in successful weight re-
uction would require direct recording of the gastric activity in a simi-
ar study. Nevertheless, in this work, we provided preliminary evidence
or the plausibility of the involvement of this subnetwork in successful
eight loss. 

.4. Gastric signaling to the cortex 

The hypothesis regarding the involvement of brain-gastric commu-
ication in the subnetwork we discovered in the present study must be
upported by known anatomical pathways. Respectively, several stud-
es have reported the existence of indirect anatomical connections from
he stomach to these sensory regions and their reactivity to gastric stim-
lation. For example, the primary and secondary somato-sensory cor-
ices and the insula are known to receive gastric inputs mostly via the
agus nerve ( Grundy, 2002 ; Grundy and Brookes, 2011 ). Vagal affer-
nts typically relay mechanical information regarding stretch or dis-
ension of the stomach ( Ozaki et al., 1999 ), an indicator of the stom-
ch volume. Vagal afferents originated from the stomach project to
he nucleus of the solitary tract (NTS), which innervates mostly the
arabrachial nucleus (PBN). Among others, the PBN sends projections to
entro-posterior thalamus that in turn, projects to cortical regions such
s the primary and secondary somato-sensory cortices and the insula
 Mayer et al., 2006 ). Consistently with this pattern of anatomical con-
ections, the insula, somatosensory and motor regions, that we found
n the present study as part of the weight loss related subnetwork, are
ssociated in the literature with gastric stimulation, as seen for exam-
le in fMRI brain activation following gastric distention ( Wang et al.,
008 ). Moreover, areas such as the pericalcarine, cuneus and lateral
ccipital cortex, that are typically associated with visual function, also
espond to gastric stimulation as evident in multiple imaging studies
 Cao et al., 2019 ; Pigarev et al., 2006 ; Rebollo et al., 2018 ; Van Ouden-
ove et al., 2009 ). These findings may explain the prominence of vi-
ual regions in our detected subnetwork. Similarly, the fusiform gyrus
nd the cuneus were found to respond to the stomach nutrient content
nd suggested to be involved in evaluating reward aspects of these sig-
als ( DiFeliceantonio et al., 2018 ; Little et al., 2014 ). This could be ac-
ounted for by evidence indicating the existence of major afferent in-
uts from the PBN to the lateral geniculate nucleus (LGN), even though
he latter is considered a visual thalamic relay nucleus ( Guillery and
herman, 2002 ). Relatedly, single-cell recordings in sleeping cats docu-
ented that simple and complex V1 cells respond to gastric stimulation

 Pigarev, 1994 ). Finally, differences in cortical reactivity to gastric dis-
ention were found among obese subjects ( Tomasi et al., 2009 ), thus
ndicating the possible relevance of gastric-brain interaction for body
eight regulation. 

.5. Limitations 

It is important to consider the limitations of the study. First, the gen-
er distribution (F: 11, M: 81; F:12%, M: 88%), reflecting the workplace
rofile from which participants were recruited, misrepresents the pro-
ortion of obese women within the general population (F: 51%, M: 49%;
DC, 2018 ). The low number of female participants does not allow to
odel gender effect on functional connectivity and weight loss relations.
hus, inference from the current work to the general population should
e done with cautious. Secondly, we interpreted our results regarding
he weight loss related subnetwork considering existing neural theories
f weight regulation ( Stice and Yokum, 2016 ). This was done in light of
he behavioral executive function measures and the subnetwork’s edges
nd nodes composition. Among the three neural theories, we reported a
oderate support for the over-sensitivity for palatable food cues theory.
evertheless, this should be further corroborated by directly combining
ehavioral measures of food cues sensitivity. Finally, a direct gastric ac-
ivity recording would allow us to best address our post-hoc hypothesis
egarding the role of brain-gastric interaction in weight loss. It is im-
ortant that such recordings would be combined with neural or gastric
timulation to establish the origin and directionality of this interaction.
otably, in the present study, we only examined this hypothesis by test-

ng spatial and temporal similarities to a previously reported cortical
etwork synchronized with the gastric activity ( Rebollo et al., 2018 ). 

.6. Conclusions 

In this work, we found evidence of a brain subnetwork supporting
uccessful weight loss. Connectivity within this subnetwork, comprised
ostly of connections to cortical sensory and motor regions, predicted
ietary success in weight loss after 6 months of lifestyle intervention.
hile weight loss was positively correlated with executive function be-

avioral measures, we have shown that connectivity within this subnet-
ork is not likely to relate to executive function abilities. Similarly, the

nvolvement of basic sensory and motor cortical regions do not easily
oincide with the abnormal reward theory. The involvement of sensory
egions in this subnetwork might provide evidence in favor of the over-
ensitivity to food cues theory, although similar findings were typically
eported in experiments in which visual or olfactory stimuli of food were
resented ( Stice and Burger, 2019 ). Rather, we documented some evi-
ence indicating that these connectivity patterns may arise from brain-
astric interactions. We note though that such evidence should be fur-
her addressed and confirmed by directly recording the electrical ac-
ivity from the stomach in a future study. These findings may have an
mportant implication for our understanding of the etiology of obesity
nd the mechanism of response to dietary intervention. 
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