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Restrictive, Malabsorptive and others [12]. Restrictive 
procedures act by decreasing the gastric volume by 
space-occupying devices and/or by suturing or stapling 
techniques, whereas malabsorptive procedures tend to 
create malabsorption by preventing the food contact 
with the duodenum and proximal jejunum [12].

Malabsorptive procedure mimics Roux-n-Y gastric 
bypass (RYGB) surgery. RYGB exhibits significant hor-
monal changes after surgery which results in acute 
and immediate glycemic control via an anti-diabetic 
weight-independent mechanism, even without signif-
icant weight loss after surgery. Therefore, malabsorp-
tive procedure can be considered metabolic procedure 
because it will help in reducing weight as well as type 2 
diabetes mellitus (T2DM). In this review article, we aim 
to provide an overview on the role of small intestine on 
obesity and metabolic syndrome and different newer 
Endo Bariatric procedure focusing on small intestine.

Pathophysiology of Small Intestine in the 
Obesity and T2DM

It is very important to understand the role of small 
intestine in the pathophysiology of obesity in order to 
understand the effective treatment or endoscopic pro-
cedures. Recent insights have revealed the critical phys-
iologic and pathophysiologic role of the small bowel in 
metabolic homeostasis and its potential role as a driver 
of obesity, insulin resistance, and subsequent T2DM 
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Introduction
Obesity, defined as a body mass index (BMI) ≥ 30 kg/ 

m2, is a global public health issue. Obesity is associated 
with comorbidities such as diabetes, hypertension, dys-
lipidemia, obstructive sleep apnea, and non-alcoholic 
fatty liver disease and is known to significantly impair 
quality of life and reduce the life expectancy [1]. World-
wide obesity has nearly tripled since 1975 and in 2016, 
an estimated 650 million adults (13% of the world’s 
adult population) were obese, and by year 2030, it is 
estimated that 19.7% of the world’s population (1.12 
billion individuals) will be obese [2,3].

Treatment options for obesity include lifestyle inter-
ventions, pharmacotherapy, and bariatric surgery. The 
efficacy of currently available anti-obesity pharmaco-
therapy is far less than it was expected (estimate weight 
loss of 3-7% compared with placebo) [4,5]. On the other 
hand, bariatric surgery, although very effective, is asso-
ciated with significant morbidity (3-20%) and substan-
tial cost and is available for only fewer patients [6-8]. 
Bariatric endoscopic procedures are at the horizon and 
can be a bridge between bariatric surgery and pharma-
cotherapy, by effectively replicating the anatomic and 
physiological changes of the traditional weight-loss sur-
geries, while at the same time being less invasive, more 
cost effective and reversible [9-11]. Bariatric endoscopy 
therapy is categorized in mainly three different types: 
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Microbiome
Obesity is associated with a reduction in the abun-

dance of Bacteroidetes and a proportional increase in 
Proteobacteria, which could all be an epiphenomenon, 
but could also be the expression of a microbiota-related 
mechanism in the pathophysiology of obesity and T2DM 
in some individuals [13,19]. RYGB surgery restores the 
gut microbiome toward a healthy composition, which 
includes an increased diversity in flora and that may be 
another reason of improvement in obesity and T2DM 
[20].

Incretin hormone
Glucagon-like peptide 1 (GLP-1) and gastric inhibi-

tory polypeptide (GIP) are incretin hormones which are 
released by endocrine L cells and K cells throughout the 
small intestine in response to nutrients in the lumen 
[13]. GLP-1 stimulates insulin secretion from pancreat-
ic b-cells, inhibits glucagon secretion from pancreatic 
a-cells, and decreases gastrointestinal motility, appetite, 
and food intake [13]. The incretin effect is decreased in 
patients with T2DM, especially from L cells in the duo-
denum and jejunum [21]. GLP-1 when given exogenous-
ly reduces bodyweight and hyperglycemia in patients 

[13]. Although the other parts of the small bowel cannot 
be ignored when describing the potential mechanisms 
involved in the development of metabolic diseases and 
T2DM, the excellent endoscopic accessibility of the du-
odenum makes it a prime target for disease-modifying 
intervention [13].

Duodenal mucosa response to diet

Intestinal mucosal maladaptation and bacterial 
translocation have been linked to the endotoxemia in 
response to caloric overexposure [8]. Chronic endotox-
emia induces low-grade systemic inflammation, which 
is associated with increases in fasting plasma glucose, 
insulin, visceral adipose tissue, and bodyweight, all 
leading to the phenotypic features of the metabolic syn-
drome, obesity, and T2DM [14]. Additionally, a high-fat 
diet also stimulates the proliferation of duodenal endo-
crine K cells, producing glucose-dependent insulinotro-
pic polypeptide, which is thought to induce insulin hy-
persecretion [15]. Upon duodenal-jejunal bypass (Roux-
en-Y surgery), epithelial proliferation and tight junction 
expression are increased, which subsequently leads to 
decreased intestinal permeability and decreased endo-
toxemia in patients with obesity and T2DM [16-18].

 

Figure 1: (a) The normal anatomy of the stomach, duodenum and jejunum shown schematically. The “foregut hypothesis” 
proposes that when the foregut of susceptible individuals is overstimulated with nutrient it releases a diabetogenic signal 
resulting in the development of type 2 diabetes; (b) Anatomical changes produced by RYGB are indicated. These include 
division of the stomach into a small upper pouch and a much larger, lower ‘remnant’ pouch, division of the small bowel about 
45 cm below the lower stomach outlet, and re-arrangement into a Y configuration, enabling outflow of food from the small 
upper stomach pouch, via a “Roux limb”. The Y intersection is formed 80-150 cm from the anastomosis between the small 
upper gastric pouch and the small bowel. The foregut hypothesis that following RYGB, diabetogenic signaling is avoided 
explaining the ‘acute’ RYGB-induced resolution of type 2 diabetes. The elaboration of the foregut hypothesis presented in 
the present paper suggests that part of the ‘foregut’ diabetogenic signals consists of glucagon itself and/or glucagonotropic 
signaling (e.g. by the hormone GIP) (indicated by ‘+++’ in (a)), which, in susceptible individuals, during normal anatomical 
conditions, would result in increased hepatic glucose output and subsequent hyperglycemia. Following RYGB, these signals 
would be circumvented (indicated by ‘--‘ in (b)) and therefore, in combination with increased anti-diabetogenic signaling (i.e. 
GLP-1 secretion; indicated by ‘+++’ in (b)) from the hindgut, result in amelioration of the diabetic state [22].
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Duodenal-Jejunal Bypass Sleeve
The endoscopic duodenal jejunal bypass sleeve 

(DJBS), now marketed as the EndoBarrier Gastrointes-
tinal Liner (GI Dynamics Inc., Lexington, MN, USA), was 
first reported by Rodriguez Grunert, et al. [27] in 2008. 
It is a 60 cm long, highly flexible, Teflon fluoropolymer 
which is deployed under endoscopic and fluoroscopic 
guidance (Figure 2A). It has a self-expanding nitinol an-
chor in the duodenal bulb that allows the barbs to fixate 
within the gastrointestinal tract, hence decreasing the 
risk of migration. This sleeve extends from duodenal 
bulb to the proximal jejunum, allowing chyme to pass 
directly from the stomach into the jejunum, making an 
intestinal bypass/biliopancreatic diversion without the 
need for stapling or anastomosis. Pancreatic enzymes 
and bile flow down between the liner and the intesti-
nal wall, mixing with nutrients at the jejunum [28]. The 
sleeve stays in the place from 3 to 12 months and then 
removed endoscopically [28]. Both the exclusion of the 
duodenal-jejunal nutrient flow and rapid delivery of un-
digested nutrients and bile acid to the distal small in-

with T2DM. The ‘hindgut hypothesis’ of RYGB surgery 
states that surgical re-routing of nutrients to the distal 
part of the small intestine results in increased secretion 
and concomitant glucose-lowering effects of GLP-1 [22]. 
The “foregut hypothesis” proposes that the exclusion of 
the duodenum and proximal jejunum from the transit of 
nutrients may prevent the secretion of a putative signal 
that promotes insulin resistance and T2DM, suggesting 
that a yet unidentified inhibitory product from the prox-
imal bowel causes metabolic changes (anti-incretin) 
[22] (Figure 1).

Bile acid
Bile acids are a key stimulus for the farnesoid X re-

ceptor in the liver [23,24] affecting hepatic metabolism, 
and G-protein-coupled  bile  acid-activated receptors 
(TGR5) of the enteroendocrine L-cells [25,26] and pro-
moting the release of incretin. Therefore, bile acids play 
an important role in glucose homoeostasis. Post-opera-
tive increases in circulating bile acids have been suggest-
ed to contribute to the metabolic benefits of bariatric 
surgery; however, their mechanisms remain undefined.

 

Figure 2: Small bowel endoscopic bariatric therapies (A) Duodenaljejunal bypass liner; (B) Gastroduodenojejunal bypass 
sleeve; (C) Incisionless anastomosis system; (D) Duodenal mucosal resurfacing [28].
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matic anchoring and retrieval systems, which are being 
currently studied in clinical human trials.

Gastroduodenojejunal Bypass Sleeve
Gastroduodenal-DJBS (GDJBS; ValenTx Endo Bypass 

System, Inc., Hopkins, MN, USA) is another bariatric en-
doscopic malabsorptive procedure (Not FDA approved 
yet). It is a 120-cm-long fluoropolymer sleeve designed 
to be anchored to the gastroesophageal junction and 
then it extends from the stomach to the jejunum, hence 
food passes directly from the esophagus into the small 
bowel avoiding absorption of nutrients in the stomach, 
duodenum, and jejunum [28] (Figure 2B). The implan-
tation procedure is both endoscopic and laparoscopic, 
with laparoscopy allowing for external visualization to 
ensure transmural anchor placement at the gastro-
esophageal junction. The device can be removed endo-
scopically through endoscopic ligation of the anchoring 
sutures [28]. In a small cohort of 24 patients, Sandler 
and colleagues found that the device was successfully 
delivered in 22 (92%) patients, with five patients (23%) 
requiring early removal of the device because of ody-
nophagia [41]. In remaining 17 patients, the device re-
sulted in 39.7% EWL (range, 27%-64%) at 3 months, and 
7 patients with T2DM had normal blood glucose levels 
throughout the trial [41]. In other study, the same au-
thors published the results of GDJBS at 12 months on 
13 patients [42]. One patient was excluded because of 
inflammation of gastroesophageal junction during en-
doscopic evaluation and two patients required early ex-
plantation (within the first 4 weeks) of the device due to 
intolerance. Of remaining 10 patients, six patients had 
fully attached functional devices till the end of follow-up 
period and GDJBS achieved a mean EWL of 54% at 12 
months without any major side effects. Four patients 
had partial cuff detachment and the mean EWL was low-
er than that of the patients with full attachment. Also, 
in the subgroup, obesity-related comorbidities (diabe-
tes, hypertension, dyslipidemia) showed improvement 
during the trial [42].

Duodenal Mucosal Resurfacing (DMR)
Duodenal mucosal resurfacing (Fractyl Laboratories, 

Inc., Lexington, KY, USA) (not FDA approved, received 
CE mark) is a novel, minimally invasive endoscopic pro-
cedure that involves circumferential hydrothermal ab-
lation of the duodenal mucosa through a 2-cm balloon 
filled with heated water under direct endoscopic visu-
alization [28] (Figure 2D). A polyethylene terephthal-
ate balloon catheter is introduced into the duodenum, 
and circumferential mucosal lifting is performed along 
the length of the postpapillary duodenum. After that, 
a 2.0-cm-long balloon on the catheter is inflated with 
heated water at 90 C for circumferential ablation of the 
duodenal mucosa for 10 seconds in each application 
[28]. Endoscopist should only start ablation after the 
ampulla of vater to prevent complication.

testine are thought to play roles in the weight loss and 
improvement of glucose metabolism [22]. (Foregut hy-
pothesis and hindgut hypothesis as described above).

Efficacy
Although this technology has yet to be approved by 

FDA within the United States, there have been multi-
ple clinical trials which have shown promise with this 
device with significant weight loss and improvements 
in several metabolic parameters [29-33]. In a large me-
ta-analysis by ASGE taskforce published in 2015, en-
dobarrier was associated with 35.3% excessive weight 
loss (EWL) at 12 months (95% CI, 24.6%-46.1%) and ad-
ditional -1% improvement in HbA1C (95% CI, -1.67 to 
-0.4; P 0.001) when compared with a sham or control 
diabetic group [34]. Another meta-analysis by Rhode, et 
al. [35] in 2016, showed that DJBS resulted in additional 
12.6% EWL (95% CI, 9.0%-16.2%, I2 = 24%) and addition-
al -0.8% improvement in HbA1C (95% CI, -1.8 to 0.3, I2 

= 53%) as compared with diet modification in patients 
with obesity and T2DM. A retrospective study of dia-
betic patient’s undergone liver elastography for NAFLD 
has evidenced a significant reduction of liver stiffness 
and controlled attenuation parameter (CAP) in patients 
treated with DJBS for 1 year [36]. A recent meta-anal-
ysis by Jirapinyo, et al. [37] in 2018 showed total body 
weight loss (TBWL) of 18.9% [95% CI, 7.2%-30.6%], and 
EWL of 36.9% [95% CI, 29.2%-44.6%] at 9 months and 
a decrease in HbA1c level of 1.3% (95% CI, 1.0%-1.6%) 
relative to control subjects. The amount of weight loss 
remained significant at 1 year post-explantation [37] 
but a recent long term follow- up study revealed that 
the weight reduction of initial DJBS treatment seems to 
be diminished after 4 years of follow up [38].

Safety
Adverse events reported with the DJBS include ab-

dominal pain, nausea, and vomiting [35]. Almost all 
patients with DJBS have been reported to experience 
mild-to-moderate adverse events, which can be im-
proved with conservative management [35]. Associated 
serious adverse events include sleeve migration (4.9%), 
gastrointestinal bleeding (3.9%), sleeve obstruction 
(3.4%), liver abscess (0.1%), cholangitis (0.1%), acute 
cholecystitis (0.1%), and esophageal perforation (0.1%) 
[34]. Early device removal has been required in up to 
38% of patients, due to bleeding, migration, obstruc-
tion, or abdominal pain [34,35,37]. No case of proce-
dure-related mortality has been reported. However, 
one multicenter, randomized, sham-controlled United 
States pivotal trial named ENDOtrial was prematurely 
abandoned after enrolment of 325/500 patients due to 
a relatively high incidence of hepatic abscess formation 
(3.5%) [39]. For safety reasons, the device did not re-
ceive FDA approval, whereas CE mark was achieved in 
2009, then withdrawn in 2017 [40]. Due to the results 
discussed above, the current system fell out of favor but 
paved the way for second generation DJBS with atrau-

https://doi.org/10.23937/2469-584X/1510077


ISSN: 2469-584XDOI: 10.23937/2469-584X/1510077

• Page 5 of 7 •Patel et al. J Clin Gastroenterol Treat 2020, 6:077

pass surgical procedure that creates a blind defunction-
alized segment of small intestine, which may result in a 
number of serious AEs [12]. Nevertheless, its metabolic 
effects are favorable due to gut hormone modulation 
similar to those seen with biliary pancreatic diversion 
with duodenal switch or ileal transposition surgery [12].

Efficacy and Safety
In the first pilot study of 10 morbidly obese patients 

with a mean body mass index of 41 kg/m2 demonstrat-
ed the technical feasibility and durable patency of du-
al-pass enteral bypass [43]. The total procedure time 
was 115 min. The average TBWL was 14.6% and 40.2% 
EWL at 12 months. A significant reduction in HbA1c lev-
el was observed in all diabetic (-1.9%) and prediabetic 
(-1.0%) patients, while reducing or eliminating the use 
of diabetes medications [49]. No serious AEs occurred, 
but most patients had transient nausea and diarrhea 
that resolved without sequel [49].

Conclusion
Small intestine is a very important part of the gas-

trointestinal tract where multiple external factors (eg, 
nutrients, microbiome) and internal factors (eg, bile 
acids, mucosal sensing, enteroendocrine function) con-
tribute to metabolic (dys) regulation. The accessibility 
of the duodenum to gastroenterologists renders it an 
attractive target for new experimental bariatric and 
metabolic procedures aimed at finding novel therapeu-
tic leads. Various experimental small bowel EBTs have 
bright future because they have produced promising 
results in weight loss and metabolic parameters, with 
reasonable safety profiles. Small Bowel EBTs are more 
effective than lifestyle modification and are less invasive 
and thus safer than bariatric surgery, however its long-
term efficacy is less durable than bariatric surgery. Fur-
ther research is required to improve the technicality of 
the existing small bowel EBT and establish its long-term 
effects; and perhaps develop new small bowel EBT for 
even better safety and efficacy in near future.
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