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Introduction
Diabetes mellitus (DM) is a metabolic disorder characterized by loss and dysfunction of  pancreatic β cells 
along with insulin resistance, resulting in multiple long-term complications (1, 2). Despite various oral ther-
apies to lower glucose, disease progression is associated with a profound decline in β cell function leading 
to consequent insulin replacement (3, 4). Although it is accepted that increased apoptosis plays a role in 
declining β cell function and mass over time (5–8), an increase in apoptosis alone is insufficient to explain 
the β cell deficit in type 2 diabetes (9, 10). Additionally, in human islet-to-mouse studies, neither chron-
ic hyperglycemia nor peripheral insulin resistance was sufficient to cause apoptosis in human islets (11).  

Dedifferentiation has been implicated in β cell dysfunction and loss in rodent diabetes. However, 
the pathophysiological significance in humans remains unclear. To elucidate this, we analyzed 
surgically resected pancreatic tissues of 26 Japanese subjects with diabetes and 11 nondiabetic 
subjects, who had been overweight during adulthood but had no family history of diabetes. 
The diabetic subjects were subclassified into 3 disease stage categories, early, advanced, and 
intermediate. Despite no numerical changes in endocrine cells immunoreactive for chromogranin 
A (ChgA), diabetic islets showed profound β cell loss, with an increase in α cells without an 
increase in insulin and glucagon double-positive cells. The proportion of dedifferentiated cells 
that retain ChgA immunoreactivity without 4 major islet hormones was strikingly increased in 
diabetic islets and rose substantially during disease progression. The increased dedifferentiated 
cell ratio was inversely correlated with declining C-peptide index. Moreover, a subset of islet cells 
converted into exocrine-like cells during disease progression. These results indicate that islet 
remodeling with dedifferentiation is the underlying cause of β cell failure during the course of 
diabetes progression in humans.
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Definitive lineage-tracing experiments in rodent diabetes have recently identified β cell dedifferentiation 
with reversion to a progenitor-like state (12, 13). Importantly, analyses of  human cadaveric pancreatic 
tissues have provided corroboration of  the results of  animal studies (14, 15). A dedifferentiated β cell is 
defined as one that no longer contains pancreatic hormones, although it retains endocrine features such 
as chromogranin A and/or synaptophysin immunoreactivity (12, 14). The fact that islet hormone-nega-
tive endocrine cells were significantly increased in postmortem diabetic specimens suggests β cell dedif-
ferentiation to be involved in insufficient insulin secretion (14). However, the information from cadaveric 
sample analyses does not account for either the extent or the mechanism by which β cell dedifferentiation 
contributes to the β cell deficit and its progression during the entire disease course of  diabetes. Elucidating 
this issue is a key challenge owing to the difficulty in obtaining long-term access to human pancreatic sam-
ples of  appropriate quality for analyses, in conjunction with the necessary medical history and metabolic 
profiles. Therefore, we took advantage of  the opportunity to examine pancreatic samples from Japanese 
patients with and without diabetes undergoing partial pancreatectomy, for resection of  pancreaticobiliary 
neoplasms, to examine the hypothesis that islet remodeling with dedifferentiation is a pathologic mecha-
nism underlying long-standing disease progression. To this end, we subclassified the subjects with diabetes 
into early- and advanced-stage disease and examined islet morphology and dedifferentiation, as well as 
correlations with clinical parameters. Our work reveals the involvement of  dedifferentiation in β cell dys-
function and loss during the course of  diabetes progression.

Results
Clinical data and morphometric measurements. Clinical characteristics of  the 11 control patients (non-DM) and 
26 diabetic patients subclassified into 3 categories are summarized in Table 1, and clinical feature of  each 
individual subject is shown in Supplemental Table 1 (supplemental material available online with this arti-
cle; https://doi.org/10.1172/jci.insight.143791DS1). All study groups included patients with pancreatic 
cancer, and there were several with cholangiocarcinoma and duodenal papilla cancer among the non-DM 
and early- and advanced-DM patients. The non-DM and intermediate-DM patients were younger than 
those in the other 2 groups, although the mean ages did not differ significantly, whereas mean ages were 
similar in the early- and advanced-DM patients. Mean maximum BMI differed minimally among groups. 
However, BMI decreased with disease progression and was significantly lower in the advanced-DM than in 
the non-DM subjects (P = 0.031). Fasting plasma glucose and glycated hemoglobin A1c (HbA1c) levels in 
the non-DM patients showed normal glucose tolerance. Durations of  diabetes in the early-, advanced-, and 
intermediate-DM subjects were 4.2 ± 0.9, 17.5 ± 5.6, and 8.0 ± 1.4 years, respectively. The preoperative 
HbA1c levels were 6.7% ± 0.4 % (50 ± 5.5 mmol/mol), 7.3% ± 0.7% (57 ± 7.9 mmol/mol), and 7.3% ± 
0.9% (56 ± 10.1 mmol/mol), respectively. There were no statistically significant differences in HbA1c levels 
among the diabetic groups. As diabetes progressed, fasting plasma glucose levels rose and C-peptide immu-
noreactivity (CPR) levels decreased, resulting in a profound C-peptide index (CPI) reduction in patients 
with advanced DM (P = 0.0005 vs. non-DM).

Subjects with diabetes had a broad range of  fractional β cell, α cell, and islet areas and α cell/β cell 
ratios as compared with non-DM subjects, but the differences among all groups did not reach statistical 
significance (Supplemental Figure 1, A–D). Although not statistically significant, islet areas in subjects 
with diabetes tended to be increased in the body to tail as compared with the head of  the pancreas (P = 
0.057) (Supplemental Figure 1E). There were significant correlations among β cell, α cell, and islet areas 
(r = 0.818, P = 3.431 × 10–9; r = 0.863, P = 5.375 × 10–11, respectively) (Supplemental Figure 1, F and G). 
There was also a significant correlation between the β cell and α cell areas (r = 0.717, P = 1.802 × 10–6) 
(Supplemental Figure 1H). In addition, there was a weak but statistically significant correlation between 
the α cell/β cell ratio and islet area (r = 0.378, P = 0.028) (Supplemental Figure 1I).

Diabetic islets have preserved endocrine cells but show altered β cell and α cell fractions. The large devia-
tions in islet morphometrics in subjects with diabetes may reflect diverse capabilities for islet compen-
sation in response to metabolic demands. To gain pathologic insight into failing islets, we examined 
the morphology of  individual islets. Representative images demonstrate changes in the appearance of  
size-matched islets stained with chromogranin A (ChgA) and insulin or Gcg, with disease progression 
(Figure 1, A and B). ChgA-positive cells per islet numbers were similar in all groups (Figure 1C). 
Because of  the small number of  subjects, we did not include the intermediate-DM group in further 
comparisons. We detected a 34% decrease (from 76% to 50%) and a 44% decrease (from 76% to 42%) 
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in β cells/islet ratio in the early-DM and advanced-DM groups, respectively, as compared with non-
DM subjects (P < 0.0001, P < 0.0001) (Figure 1D). The α cells/islet ratio increased by 58% (from 
33% to 52%) and 73% (from 33% to 57%) in the early-DM and advanced-DM groups, respectively (P 
= 0.007, P < 0.0001), leading to a higher α cell/β cell ratio per islet (Figure 1, E and F). Contrary to 
a previous report (16), the ratio of  insulin/Gcg double-positive cells, when normalized by the num-
ber of  ChgA-positive cells, was significantly decreased in diabetic groups as compared with non-DM 
subjects (Figure 1G). In addition, the mean ratio of  advanced-DM was further decreased, by 55%, as 
compared with that of  early-DM, suggesting that cells coexpressing immunoreactive insulin and glu-
cagon were hardly detectable in islets of  diabetic subjects. Next, we sought to determine whether there 
are any functional correlations with alterations in islet morphology. We found a significant correlation 
between a decrease in β cell/islet ratio and decreased CPI (r = 0.520, P = 0.027) (Figure 1H). In con-
trast, the α cell/islet ratio and the α cell/β cell ratio per islet both showed inverse correlations with CPI 
(r = –0.631, P = 0.005; r = –0.563, P = 0.015, respectively) (Figure 1, I and J).

Islet cell dedifferentiation is involved in diabetes progression. We next sought to establish a link between dediffer-
entiation and loss and/or dysfunction of  β cells during the course of  the disease. We arbitrarily defined a dedif-
ferentiated cell as a ChgA-positive cell that failed to react with the antibodies against the aforementioned 4H 
(Figure 2A). Ghrelin, another pancreatic hormone, was separately tested. The percentages of  cells immuno-
reactive for ghrelin in ChgA-positive cells was less than 1% without a significant change among study groups 
(data not shown). We next determined the numbers of  dedifferentiated cells per islet in all study subjects. As 
shown in Figure 1C, there was no loss of  cells corresponding to the general endocrine features in type 2 diabe-
tes. The percentages of  cells positive for ChgA and negative for 4H rose progressively, being lowest in the non-
DM, then rising from early-DM, through intermediate-DM, and finally being highest in the advanced-DM 
specimens (4% ± 2% vs. 16% ± 5%, 21% ± 7%, 25% ± 7%, respectively) (P < 0.001) (Figure 2B). Percentages 
of  dedifferentiated cells (dedifferentiation score) in intermediate-DM and advanced-DM were higher by 37% 
and 59% versus the early-DM group, respectively (P = 0.618, P = 0.0016, respectively). There was no signif-
icant difference in dedifferentiation scores between the head and body to the tail of  pancreas (Supplemental 
Figure 2A). We also assessed insulin-positive cells immunoreactive for nuclear V-maf musculoaponeurotic 
fibrosarcoma oncogene homolog A (MAFA) and NK homeobox, family 6, member A (NKX6.1), in a subset 

Table 1. Clinical characteristics of study subjects

Non-DM Early-DM Advanced-DM Intermediate-DM
N (male/female) 11 (9/2) 12 (11/1) 11 (10/1) 3 (2/1)
Operative procedure, PD/DP 6/5 5/7 7/4 1/2
Clinical diagnosis
Pancreatic cancer 2 5 4 1
Cholangiocarcinoma 2 3 2 0
Gallbladder cancer 0 0 1 0
Duodenal papilla cancer 1 1 1 0
Pancreatic cyst 1 1 0 0
Neuroendocrine tumor 3 1 0 1
IPMN 2 1 3 1
Age, years 61.0 ± 12.1 69.3 ± 7.0 67.8 ± 10.7 60.3 ± 16.6
Diabetes duration, years N/A 4.2 ± 0.9C 17.5 ± 5.6 8.0 ± 1.4
Maximum BMI, kg/m2 27.9 ± 2.7 26.5 ± 1.2 27.3 ± 2.1 28.9 ± 2.7
BMI at the study, kg/m2 25.6 ± 2.0 23.9 ± 2.0 22.8 ± 2.6A 26.5 ± 1.0
HbA1c, % (mmol/mol) 5.7 ± 0.3 6.7 ± 0.4B 7.3 ± 0.7B 7.3 ± 0.9B

(38.6 ± 3.5) (50.0 ± 5.0) (56.5 ± 7.9) (55.7 ± 10.1)
FPG, mmol/L 5.3 ± 0.3 6.5 ± 0.6A,D 8.6 ± 1.3B 6.8 ± 1.3C

F-CPR, nmol/L 0.72 ± 0.29 0.55 ± 0.10 0.43 ± 0.24 0.44 ± 0.08
CPI, nmol/mmol 0.13 ± 0.05 0.08 ± 0.02 0.05 ± 0.03B 0.07 ± 0.01A

Values are expressed as means ± SD. One-way ANOVA followed by Bonferroni’s post hoc test. AP < 0.05 vs. non-DM. BP < 0.01 vs. non-DM. CP < 
0.05 vs. advanced-DM. DP < 0.01 vs. advanced-DM. CPI, C-peptide index; DP, distal pancreatectomy; FPG, fasting plasma glucose; F-CPR, fasting 
c-peptide immunoreactivity; IPMN, intraductal papillary mucinous neoplasia; PD, pancreatoduodenectomy.

https://doi.org/10.1172/jci.insight.143791
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Figure 1. Morphologic changes in individual islets and correlation with β cell function. Representative images of pancreatic islets immunostained 
with chromogranin A (ChgA) (shown in red) and (A) insulin (shown in green) and (B) glucagon (shown in green) in each group. Scale bar: 20 μm. 
Quantitative analyses of (C) ChgA-positive cells per islet, (D) β cells per islet, (E) α cells per islet, and (F) the α cell/β cell ratio per islet. Data are 
means ± SD (n = 11 for non-DM, n = 12 for early-DM, n = 11 for advanced-DM, and n = 3 for intermediate-DM). ***P < 0.001 by 1-way ANOVA followed 
by Bonferroni’s post hoc test. (G) Quantitative analyses of insulin and glucagon double-positive cells in the pancreatic sections of specimens from 
the indicated subjects in each group. Data are means ± SD (n = 6 for non-DM, n = 7 for early-DM, and n = 5 for advanced-DM). *P < 0.05, **P < 0.01 
by 1-way ANOVA followed by Bonferroni’s post hoc test. We performed single regression analysis (Spearman’s correlation coefficient) to assess 

https://doi.org/10.1172/jci.insight.143791
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of subjects and found similar declines in early- and advanced-DM (Supplemental Figure 2, B, C, E, and F). 
When normalized by the number of  ChgA-positive cells, although no significant differences were seen among 
the diabetic groups, there was a tendency for nuclear MAFA and NKX6.1, immunoreactivity to decrease with 
disease progression (Supplemental Figure 2, D and G). Notably, immunoreactivities for nuclear MAFA and 
NKX6.1 were weaker in advanced- than in early-DM specimens, demonstrating a loss of  a mature cellular 
identity in parallel with dedifferentiation. In all study groups, dedifferentiation scores correlated strongly with 
a decreased β cell/islet ratio (r = –0.801, P = 1.297 × 10–8) and an increased α cell/islet ratio (r = 0.642, P = 
4.333 × 10–5) (Figure 2, C and D). The morphologic correlations were further confirmed by immunostaining 
with insulin and other pancreatic hormones separately (Supplemental Figure 3A). Functional relevance was 
next examined. Dedifferentiation scores inversely correlated with CPI in all study groups (r = –0.569, P = 
0.007) (Figure 2E), and a similar inverse correlation was shown in the diabetic subjects except those with 
advanced-DM (r = –0.7928, P = 0.0397) (Supplemental Table 2). As to clinical relevance, whereas no signifi-
cant correlation between dedifferentiation scores and disease duration was identified for each diabetic group 
(Supplemental Table 2), dedifferentiation scores correlated significantly with disease duration when tested 
in whole subjects with diabetes (Figure 2F). In 13 subjects, there was no difference in dedifferentiation score 
between treating with insulin and with sulfonylurea (Figure 2G). In addition, there was a significant correla-
tion between BMI prior to operation and dedifferentiation score in nondiabetic control subjects (r = –0.676, P 
= 0.026), whereas it was not seen in those with diabetes (Supplemental Figure 3, B–D).

Correlations of  dedifferentiation with islet morphology and age in early-DM subjects. β cell dysfunction with 
a background of  insulin resistance causes hyperglycemia that would in turn promote β cell dedifferentia-
tion (12–14, 17–19). However, other factors that might be involved are not fully understood. To explore 
this issue, we focused on 12 early-DM subjects, who would presumably have fewer long-standing effects 
of  hyperglycemia than patients with longer disease durations. As shown in Figure 3A, we found that an 
increased islet area correlated significantly with α cell/islet ratio rather than β cell/islet ratio in early-DM, 
resulting in an increase in the α cell/β cell ratio per islet. A significant correlation between dedifferentiation 
score and α cell/islet ratio was demonstrated (r = 0.644, P = 0.022). However, no increase in the frequency 
of  interconversion between β cells and α cells, partly represented by insulin/Gcg double-positive cells, was 
identified in diabetic patients (Figure 1G), raising the possibility of  an indirect correlation. Therefore, this 
series of  observations implied that islet area expansion, assumed to occur before progression of  hypergly-
cemia, would be accompanied by islet remodeling owing to islet cell plasticity. This would result in α cells 
being increased and thereby correlating indirectly with dedifferentiation. We next tested correlations with 
age (Figure 3B). All tests on control subjects showed there were no correlations between islet morphome-
tries and age. Although there was no significant correlation between β cells/islet and age, we found α cell/
islet ratio and α cell/β cell ratio per islet to correlate inversely with age. Moreover, dedifferentiation scores 
were decreased in older subjects and appeared to be inversely associated with age, although the relationship 
did not reach statistical significance (r = –0.522, P = 0.084).

Advanced stage of  diabetes and altered islet cell fate. We then sought to examine features of  dedifferenti-
ated cells in the advanced disease stage. Tissues of  islet area–matched male subjects without pancreatic 
cancer, whose details are summarized in Supplemental Table 3, were costained with ChgA and a nonen-
docrine marker, i.e., amylase, and the results were then compared among all groups. In 3 sets classified 
with different islet areas (Figure 4, A–C, D–F, and G–I, respectively), all advanced-DM subjects exhibited 
a subset of  islet ChgA-positive cells immunoreactive for amylase (Figure 4, C, F, and I). Z-stack analysis 
demonstrated that amylase and ChgA were expressed in virtually the same cells (Figure 4J). An early-DM 
subject, who had the highest dedifferentiation score in this group, had similar cellular findings (Figure 4H). 
Notably, such cells showed apparently decreased immunoreactivities for ChgA as compared with neigh-
boring amylase-negative cells in the same islet, suggesting that a subset of  dedifferentiated cells loses endo-
crine features and takes an exocrine fate. Although a previous study demonstrated a mesenchymal marker, 
vimentin-expressing cells emerging in diabetic donor islets (20), no islet cells immunoreactive for vimentin 
were detectable in our cases (data not shown). In contrast to early-DM (Figure 3A), the α cells/islet ratio in 
advanced-DM tended to show an inverse association with dedifferentiation score (Supplemental Figure 4A).  

relationships between the C-peptide index obtained from 18 subjects (n = 5 for non-DM, n = 4 for early-DM, and n = 9 for advanced-DM) and (H) 
β cells/islet, (I) α cells/islet, and (J) α cell/β cell ratio per islet. Open circles, non-DM control subjects. Closed triangles, early-DM subjects. Closed 
squares, advanced-DM subjects. CPI, C-peptide index.
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Immunohistochemical analysis using a specific anti–glucagon-like peptide-1 (GLP-1) antibody, which is 
highly selective for processed amidated GLP-1 directed to the COOH-terminal (21), demonstrated that 
glucagon colocalizes with GLP-1 and that glucagon immunoreactivities relative to GLP-1 decreased with 
disease progression (Supplemental Figure 4B). This immunohistochemical evidence suggested that both β 
cell and α cell identity may be impaired over the course of  disease progression.

Figure 2. Evaluation of dedifferentiation and correlations with islet morphology and clinical parameters. (A) Representative images of pancreatic islets 
immunostained with ChgA (shown in red) and endocrine cocktail (insulin, glucagon, somatostatin, and pancreatic polypeptide [4H], shown in green). Scale 
bar: 20 μm. (B) Quantitative analysis of dedifferentiated cells (dedifferentiation score), calculated as ChgA+4H–/ChgA+ cells per islet. Data are means ± SD. 
**P < 0.01, ***P < 0.001 by 1-way ANOVA followed by Bonferroni’s post hoc test (n = 11 for non-DM, n = 12 for early-DM, n = 3 for intermediate-DM, and 
n = 11 for advanced-DM). Single regression analysis (Spearman’s correlation coefficient) of correlations between dedifferentiation score and (C) β cells/
islet, (D) α cells/islet, and (E) the C-peptide index obtained from 21 subjects (n = 5 for non-DM, n = 4 for early-DM, n = 3 for intermediate-DM, and n = 9 for 
advanced-DM), and (F) diabetes duration. (G) Comparison of dedifferentiation score between the subjects receiving insulin treatment (n = 6) and those 
treated with sulfonylurea but not insulin (n = 7). Open circles, control subjects. Closed triangles, early-DM subjects. Open squares, intermediate-DM sub-
jects. Closed squares, advanced-DM subjects. CPI, C-peptide index. SU, sulfonylurea.

https://doi.org/10.1172/jci.insight.143791
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Discussion
The pathogenesis of  β cell failure integrates both functional and quantitative (cell number) defects. Islet 
exerts plasticity in diverse metabolic conditions (18, 19, 22), and it has been suggested that β cells undergo 
dedifferentiation in type 2 diabetes (14, 16, 17, 23). In light of  the human evidence, we sought to elucidate 
the relevance of  dedifferentiation to disease progression during the course of  diabetes. Our study using 
surgically resected pancreatic specimens, taken into consideration with clinical information, demonstrated 
that islet plasticity in diverse disease conditions, which leads to dedifferentiation, is a pathologic basis of  β 
cell failure over the entire course of  type 2 diabetes.

From a clinical standpoint, our study had the following potentially novel findings. First, the clinical rel-
evance of  dedifferentiation to long-standing progression of  diabetes was demonstrated. Second, islet cells 
undergo dedifferentiation in the early stage of  diabetes, in association with β cell dysfunction. Finally, a 
subset of  dedifferentiated cells exhibited an exocrine-like phenotype, in association with profound dysfunc-
tion. Despite the large deviations of  percentage areas of  β cell, α cell, and islet relative to whole pancreas 
area, loss of  β cells and expansion of  α cells in individual islets and their correlation with dedifferentiation 
are the common features of  islets of  patients with diabetes. Importantly, a link between dedifferentiation 
and dysfunction was demonstrated in association with disease progression. Despite loss of  β cells, numbers 
of  islet endocrine cells, as assessed based on ChgA immunoreactivity, were preserved even in subjects with 
advanced DM, implying an increase in β cells that had lost mature identity and the capacity for insulin 
production. This was supported by transcription factor analysis demonstrating progressive loss of  nuclear 
MAFA and NKX6.1 as insulin-positive cells decreased. In contrast to previous studies (14, 16), cells with 

Figure 3. Analysis of correlations of dedifferentiation with islet morphology and age in early-DM subjects. (A) Single regression analysis (Spearman’s 
correlation coefficient) of correlations between islet morphology parameters and islet area with dedifferentiation scores in early-DM subjects (n = 12). 
(B) Single regression analysis (Spearman’s correlation coefficient) of correlations between age and islet plasticity parameters in non-DM control (n = 11) 
and early-DM subjects (n = 12). Open circles, non-DM control subjects. Closed triangles, early-DM subjects.

https://doi.org/10.1172/jci.insight.143791
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mixed α and β features, which were partly represented by insulin/Gcg double positivity, were undetectable 
in our study. This may suggest that β cells are unlikely be a source of  α cells, at least in Japanese subjects 
with diabetes. In fact, a recent study reported a similar observation in surgically resected pancreas from 
Japanese subjects with long-standing diabetes (24).

In rodents, dedifferentiated β cells revert to a progenitor-like stage characterized by transcription factor 
expression (12, 13, 25). As previously described (14), we were also unable to detect neurogenin3 immunore-
activity in islets. Aldehyde dehydrogenase 1 isoform A3 (ALDH1A3) has been identified as an alternative 
progenitor marker in failing islets (14, 26). However, given the nature of  ALDH1 in cancer progenitor cells 
(27), we did not assess the significance of  ALDH1A3 to avoid implications that would lack the certainty 
necessary for this analysis. In fact, pancreatic cancer tissues from our cases showed strong immunoreactivities 

Figure 4. Immunohistochemical evidence of conversion from endocrine to exocrine cell phenotype in failing islets. 
Islet area–matched male subjects without pancreatic cancer were selected from each group. The 9 subjects were clas-
sified into 3 comparison sets according to the fraction of islet area as shown in Supplemental Table 3. Their pancreatic 
sections were examined. Representative images of pancreatic islets immunostained with ChgA (green) and amylase 
(red) of 9 subjects in 3 comparison sets representing different islet areas are shown (A–C, D–F, and G–I). Insets demon-
strate representative cells showing immunoreactivity for ChgA and amylase. Scale bar: 20 μm. (J) Z-stack of pancreatic 
islets immunostained with ChgA (green) and amylase (red) of advanced-DM. Multiple Z-plane fluorescent images of 
pancreatic sections of the subjects in C, F, and I were captured. The representative Z-stack images are shown in the 
same order as in C, F, and I. The representative islet cells expressing both amylase (red) and ChgA (green) are shown in 
the lower images with a high magnification. Scale bar: 20 μm.
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for ALDH1A3 (data not shown). Thereby, understanding to what extent islet cells become dedifferentiated 
was limited. Moreover, we observed that a subset of  islet endocrine cells exhibited an exocrine-like phenotype, 
in association with disease progression. This finding may provide pathologic insight into the irreversible and 
profound dysfunction in advanced disease. Further work exploring the association between the stage of  dedif-
ferentiation and functionality is needed to gain key mechanistic insight into failing islets.

When is dedifferentiation initiated? We observed that β cells undergo dedifferentiation, starting 
early in the disease course. In this regard, a correlation between dedifferentiation and increased α cells 
was observed in early-DM subjects, and the increasing α cell/islet ratio paralleled expansion of  islet 
area (Figure 3A). As reported previously, nondiabetic subjects with insulin resistance showed increased 
numbers of  α cells and β cells with a consequent increase in islet volume (22, 28), suggesting that expan-
sion of  α cells in early DM could, at least partly, result from preexisting insulin resistance. Therefore, we 
speculate that when faced with sustained hyperglycemia, islet cells exert plasticity favoring dedifferen-
tiation, possibly potentiated by insulin resistance. In addition, whereas our subject number was small, 
we did not observe that aging promoted either dedifferentiation or expansion of  α cells. This allows us 
to hypothesize that islet cell plasticity declines with aging, although investigations with a larger number 
of  subjects will be needed to examine this hypothesis.

Loss of  maturity through dedifferentiation provides a pathophysiologic link between dysfunction and 
reduced β cell numbers. Despite the evidence that reversal of  hyperglycemia can partially restore β cell func-
tion even in advanced disease (29), the potential for functional recovery declines with disease progression, 
ultimately leading to irreversible insulin insufficiency (18). Our observation that dedifferentiation scores did 
not differ between treatments with insulin and sulfonylurea in advanced disease suggest that even decreas-
ing the β cell overload by insulin therapy would not reverse dedifferentiation, once diabetes has reached an 
advanced disease stage. Therefore, intervention in the early disease stage against insulin resistance as well 
as hyperglycemia reduces metabolic overloading of  β cells and thereby offers an opportunity for recovery, 
thus preventing a devastating and irreversible loss of  β cells (18, 30–32). Nonetheless, for β cells themselves, 
adopting dedifferentiation is advantageous. This seemingly “selfish” behavior facilitates the survival of  β 
cells that are stressed continuously by metabolic overloads during the long-term course of  diabetes.

Our study has limitations. Subjects with various pancreaticobiliary tumors were selected by applying 
stringent exclusion criteria to reduce potential tumor-related effects on disease conditions and/or progres-
sion, and we carefully sectioned the tissues with avoidance of  nearby tumors. However, pancreatic cancer 
in particular may have affected islet plasticity and morphology through indirect mechanisms, which would 
be a limitation of  this study (33).

In conclusion, our observations highlight islet cell dedifferentiation as a mechanism underlying dia-
betes progression. This makes dedifferentiation a potential target for treatments. Future studies exploring 
mechanistic insight into islet plasticity with dedifferentiation are warranted and may open new avenues to 
the prevention and/or reversal of  β cell failure in type 2 diabetes.

Methods
Research design. Archived pancreatic samples from 26 Japanese subjects with type 2 diabetes (23 males 
and 3 females) and 11 nondiabetic control subjects (9 males and 2 females), who had undergone partial 
pancreatectomy (19 PD, 18 DP) were examined for resection of  pancreaticobiliary tumors. A total of  29 
patients had been operated on at the Department of  Gastroenterological Surgery, Yamaguchi University 
Hospital, Ube, Japan, 8 at the Department of  Hepatobiliary and Pancreatic Surgery, Tokyo Medical and 
Dental University Hospital, Tokyo, Japan. We retrospectively selected subjects according to their medical 
histories and records.

Description of  subjects. All subjects had been overweight (BMI ≥ 25 kg/m2) during adulthood, and none 
had a family history of  diabetes. Patients administered anticancer drugs and glucocorticoids prior to pan-
creatic resection, those with functional pancreatic endocrine tumors, those with a medical history of  pan-
creatitis and excessive alcohol consumption, and those with renal failure (estimated glomerular filtration 
rate < 30 mL/min/1.73 m2) were all excluded from this study. Based on fasting and casual blood glucose 
and HbA1c measured 1–14 days before pancreatic resection, glycemic status was confirmed to meet the cri-
teria for diabetes or normal glucose tolerance defined by the Japan Diabetes Society (34). One nondiabetic 
patient whose glycemic status was validated by a 75 g oral glucose tolerance test lacked an HbA1c measure-
ment. To preclude tumor-related diabetes, only patients who had been diagnosed with type 2 diabetes by 
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a diabetologist and had been under medical management for at least 3 years were enrolled. Furthermore, 
patients with a relative increase in HbA1c of  more than 1% (11 mmol/mol) in the 6 months prior to surgery 
and those with a preoperative HbA1c of  more than 8.6% (70 mmol/mol) were excluded. Patients in whom 
either insulin or insulin secretagogues had been newly administered owing to worsening glycemic control in 
the 12 months before pancreatic resection were also excluded. Subjects with diabetes were subclassified into 
3 disease progression categories, early-DM, advanced-DM, and intermediate-DM, according to medical 
records. Early-DM was defined as a disease duration of  less than 5 years, no medical history of  microvas-
cular complications, and never having been treated with insulin and/or sulfonylurea. Advanced-DM was 
defined as a disease duration of  more than 10 years, any medical history of  microvascular complications, 
and continuous treatment with sulfonylurea or insulin for at least 1 year. Intermediate-DM was defined by 
exclusion from the other categories. In a subset of  subjects (5 non-DM, 4 early-DM, 9 advanced-DM, and 
3 intermediate-DM), preoperative serum fasting CPR and blood glucose were concomitantly measured. To 
assess insulin secretory reserve, we calculated the CPI using the following formula: fasting CPR/fasting 
plasma glucose (35). Features of  individual subjects are shown in Supplemental Table 1.

Pancreatic tissue processing and immunohistochemistry. Pancreatic samples obtained from the edge of  the 
surgically resected portion had been fixed, paraffin-embedded, and archived. The tissues were serially sec-
tioned at a thickness of  4 μm at 2 random levels and processed for histological analysis. All hematoxylin 
and eosin–stained pancreatic sections were confirmed by in-house pathologists to contain no pancreatic tis-
sues with tumor elements, pancreatitis and/or autolysis, and immunohistochemistry was then performed. 
Nuclear counterstaining of  sections was performed with DAPI (Vector Laboratories). Histochemical reac-
tions were assessed at the same time in all groups studied, using the same lot of  antibodies at dilutions and 
light exposure times predetermined to maximize sensitivity and minimize nonspecific staining. To identify 
islet dedifferentiated cells, the tissues were stained with a cocktail of  4 major pancreatic hormones (4H: 
insulin, glucagon, somatostatin, and pancreatic polypeptide) and ChgA according to a previous report (14). 
All antibodies used for immunohistochemical analysis are listed in Supplemental Table 4. Fluorescence 
images were captured using a BZ-X710 microscope with BZ-X software (Keyence).

Morphometric analysis. To perform quantitative analyses, we analyzed 2 random sections per subject. We 
also randomly selected 20 islets with a long diameter of  150–400 μm over pancreas area per section and cap-
tured them to allow analysis of  individual islets. For determination of  β cell, α cell, and islet areas, the entire 
pancreatic section was imaged, and the total area of  the pancreas was measured with removal of  interlobular 
connective tissue, large blood vessels, and adipocytes. The immunoreactive areas for insulin, glucagon, and 
ChgA were then determined. β cell, α cell, and islet areas were expressed as a percentage of  the total pan-
creatic area, and the ratio of  α cell area to β cell area was represented as the α cell/β cell ratio. The numbers 
of  insulin-, Gcg-, and ChgA-positive cells per islet were scored according to the DAPI-stained nucleus. The 
fractions of  insulin- and Gcg-positive cells to ChgA-positive cells were represented as β cells/islet and α cells/
islet, respectively. The ratio of  α cells/islet to β cells/islet was represented as the α cell/β cell ratio per islet. 
The ChgA-positive and 4H-negative cells were scored as dedifferentiated cells, as previously reported (14). 
We captured islets containing at least 1 dedifferentiated cell and measured percentage of  dedifferentiated 
cells in ChgA-positive cells per islet, representing it as dedifferentiation score. The number of  insulin/Gcg 
double-positive cells per islet was measured in subjects less than 70 years of  age whose α cell/β cell ratio per 
islet score was within the mean ± 0.5 SD. In subjects whose dedifferentiation scores were within the mean ± 
0.5 SD, we scored insulin-positive cells stained for nuclear MAFA and NKX6.1. For quantitative analysis of  
insulin/Gcg double-positive cells and transcription factors in β cells, at least 2000 insulin-positive cells per sub-
ject were examined. Supplemental Table 1 shows the details of  the analyzed subjects. All quantitative mea-
surements were conducted using BZ-X software in a blinded fashion by 2 in-house independent investigators.

Statistics. Quantitative data are presented as means ± SD. Significant differences were evaluated by 
1-way ANOVA followed by Bonferroni’s post hoc test. To assess correlations among morphometric data 
and with clinical parameters, single regression analysis was carried out with Spearman’s correlation coef-
ficient. A P value of  less than 0.05 was considered significant. All statistical analyses were performed with 
GraphPad Prism software version 7.

Study approval. The collection and use of  clinical data, followed by analysis of  pancreatic samples, 
were approved by the ethics review board of  Yamaguchi University Hospital (approval number H29-112, 
H30-176) and Tokyo Medical and Dental University Hospital (approval number M2000-1890). All subjects 
provided appropriate written informed consent.
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