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Impact of Energy Turnover on the Regulation of Energy 
and Macronutrient Balance
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Energy turnover, defined as the average daily total metabolic rate, can be 
normalized for basal metabolic rate in order to compare physical activity 
level between individuals, whereas normalization of energy turnover for 
energy intake (energy flux) allows investigation of its impact on regulation 
of energy partitioning independent of energy balance. Appetite sensa-
tions better correspond to energy requirements at a high compared with a 
low energy turnover. Adaptation of energy intake to habitual energy turno-
ver may, however, contribute to the risk of weight gain associated with 
accelerated growth, pregnancy, detraining in athletes, or after weight loss 
in people with obesity. The dose–response relationship between energy 
turnover and energy intake as well as the metabolic effects of energy 
turnover varies with the habitual level of physical activity and the etiology 
of energy turnover (e.g., cold-induced thermogenesis, growth, or lacta-
tion; aerobic vs. anaerobic exercise). Whether a high energy turnover due 
to physical activity or exercise may compensate for adverse effects of 
overfeeding or an unhealthy diet needs to be further investigated using 
the concept of energy flux. In summary, the beneficial effects of a high en-
ergy turnover on regulation of energy and macronutrient balance facilitate 
the prevention and treatment of obesity and associated metabolic risk.

Obesity (2021) 29, 1114-1119. 

Introduction of the Concept of Energy Turnover 
Versus Energy Flux
Daily energy turnover is defined as the average diurnal total metabolic rate (which is 
the sum of basal metabolic rate [BMR], diet-induced thermogenesis, and physical ac-
tivity level [PAL]) (1), which is higher in athletes compared with sedentary individuals. 
Turnover rates are measured as quotients of transfer rates divided by the energy content or 
energy pool of the body. In an attempt to normalize energy turnover in order to compare 
the metabolic rate of animals with different body size, Max Kleiber defined the energy 
turnover rate as metabolic rate divided by the chemical energy content of the body (2). 
Other authors have normalized energy turnover for BMR in order to compare the max-
imal sustainable metabolic rate between species (3). The importance of normalization 
for body size is evident when the metabolic effects of differences in energy turnover are 
compared between normal-weight people and people with obesity. The higher energy 
turnover in obesity is the effect of high body mass and therefore conveys no metabolic 
advantage when compared with a high energy turnover obtained by high physical ac-
tivity. The concept of metabolic equivalent of task, which is commonly used in sports 
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Study Importance

What is already known?

►	When compared with low energy turn-
over, high energy turnover facilitates 
weight maintenance because of appetite 
sensations that better correspond to en-
ergy requirements.

►	Normalization of energy turnover for en-
ergy intake allows for evaluation of the 
effects of energy flux on regulation of en-
ergy balance and metabolic risks.

What does this review add?

►	During growth and development, a dis-
proportionally higher increase in lean 
compared with fat mass may increase 
the risk of overweight and obesity in 
later life because of an increase in en-
ergy turnover.

►	The dose–response relationship be-
tween energy turnover and energy intake 
may vary with the acute and habitual 
level of exercise.

How might these results change the 
direction of research or the focus of 
clinical practice?

►	Different causes of energy turnover (due 
to different intensities of physical activity 
or a different contribution of organ and 
tissue masses during cold-induced ther-
mogenesis, growth, or lactation) exert 
discrepant metabolic effects that need 
to be differentiated with respect to their 
impact on energy balance and metabolic 
risk.

►	Appetite control adapts to the habitual 
energy turnover. The time to reach the 
adaptation remains to be investigated.
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and exercise, defines the intensity of physical activity as multiples 
of resting metabolic rate (RMR). Normalizing energy turnover (i.e., 
total energy expenditure) for BMR thus allows comparison of PAL 
between individuals. In order to account for the higher energy require-
ment in people with obesity, energy turnover should be normalized for 
body composition or resting energy expenditure (4). Interestingly, in 
hunter–gatherer populations, Pontzer et al. found low resting energy 
expenditure that compensated for an increase in total energy expen-
diture at a higher PAL (5). Normalizing energy turnover for resting 
energy expenditure reveals that these hunter–gatherers indeed have a 
high energy turnover despite total energy expenditure that is compara-
ble to industrialized populations.

Furthermore, normalization of energy turnover for energy intake is 
required to investigate whether energy turnover and the rate of change 
in energy turnover (timing, frequency, and intensity of energy turnover) 
can regulate energy and macronutrient balance and thus affect metabolic 
health (6-8). This is implemented in the concept of energy flux, which 
can be described as the level of energy balance, i.e., the rate of energy 
conversion from absorption to expenditure or storage (9). In physically 
active people, a high energy turnover coupled with high energy intake 
therefore corresponds to a high energy flux, whereas inactivity with a 
respective lower energy intake designates a low energy flux. A glossary 
of terms is given in Table 1.

Impact of Energy Turnover on Regulation 
of Energy Intake
From a teleological point of view, energy expenditure should directly 
impact the regulation of appetite and energy intake. There is evidence 
from a historic observational study that appetite is homeostatically 
controlled when the physical demand of work is high, but this control 
is lost at working activities with lower energy expenditure (10). In 
line with this hypothesis, 2 days’ inactivity in normal-weight young 
men led to spontaneous overeating with a positive energy balance 
depending on the fat content of the diet (+2.6  MJ/d on a 35% fat 
diet and +5.1 MJ/d on a 60% fat diet) (11). This positive energy bal-
ance was prevented by increased energy expenditure of 2.8 MJ/d on 
a cycle ergometer (3 × 40 minutes at 75 W). Data from Stubbs et al. 

also showed that there was no compensatory decline in ad libitum 
food intake in response to large reductions in energy expenditure 
(12). In addition, a dramatic reduction in energy expenditure during 1 
day of sitting was not accompanied by reduced appetite signals (13). 
Other authors have shown that acute physical activity transiently re-
presses appetite in both lean individuals and individuals with obesity 
by suppression of ghrelin and increases in peptide YY and glucagon-
like peptide-1 (GLP-1) (14). In a recent study, our group was able 
to verify that with increasing energy flux at equal energy balance 
(PAL of 1.3, 1.6, and 1.8 obtained by different durations of brisk 
walking on a treadmill), appetite control was improved in young men 
and women with normal weight and overweight (6). This was due to 
lower sensations of hunger and appetite as well as higher GLP-1 and 
lower ghrelin levels with a higher energy flux. The same results were 
obtained for controlled under- and overfeeding (−25% and +25% of 
energy balance). These findings confirm the hypothesis of an asym-
metric regulation of appetite in which, in contrast to increased energy 
expenditure, reduced energy expenditure is not compensated by an 
appropriate adaptation in energy intake. In contrast to the prevailing 
concept of body weight control, the positive impact of physical ac-
tivity is therefore not simply explained by burning up more calories 
but by improving appetite control.

Results from these short-term intervention studies are complemented 
by the effect of detraining due to injuries, vacation, overtraining, or 
seasonal sports on weight and fat gain in athletes. After 2  months 
of detraining, a 4.8-kg body weight gain was observed, including 
4.3 kg of fat mass (15). The energy equivalent of these changes in 
body composition was about 179 MJ and corresponded to about the 
amount of energy that would have been normally expended during 
the detraining period.

The appetite-suppressant effect of exercise may not be linear over the 
full range of physical activity. In support of this hypothesis, a shorter 
running distance produced a fourfold-greater gain in BMI per kilome-
ter per week between 0 and 8 km/wk than between 32 and 48 km/wk 
(16). In addition to different dynamics in the response of energy intake 
dependent on the level of energy expenditure, the impact of intensity 
of physical activity (e.g., brisk walking vs. running) on the energy 
balance-regulating effect of a high energy turnover needs to be inves-
tigated. In the study by Hägele et al., the appetite-suppressant effects 

TABLE 1 Glossary of terminology

Term Definition

Energy balance Difference between energy intake and energy expenditure
Energy expenditure Calories burned for the total daily energy requirement (sum of basal metabolic rate, diet-induced thermogenesis, physical activ-

ity energy expenditure, and energy expenditure for growth or lactation)
Energy flux Level of energy balance, i.e., at a low energy flux, energy intake and energy expenditure are both low whereas at a high energy 

flux, energy intake and energy expenditure are high
Energy intake Sum of consumed food calories
Energy partitioning Deposition or mobilization of body fat-free mass and fat mass, more specifically, the allocation of nutrients between these 

compartments or between the various organs and tissues
Energy requirement Amount of food energy needed to balance energy expenditure in order to maintain body composition and physical activity as 

well as energy for growth or deposition of tissues during pregnancy and lactation
Energy turnover Total energy expenditure normalized for body composition
Metabolic equivalent of task Total energy expenditure normalized for basal metabolic rate
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of a higher energy turnover were obtained by low-intensity physical 
activity (brisk walking on a treadmill) (6). By contrast, other authors 
found that hunger and appetite regulatory hormones were insensitive to 
low-intensity bouts of physical activity (17). Likewise, with the same 
energy cost, high-intensity exercise exerted a greater reducing effect on 
energy intake relative to expenditure compared with low-intensity exer-
cise (18). Increasing intensity of exercise also led to greater suppression 
of orexigenic signals and greater stimulation of anorexigenic signals in 
another study (19). So far, it remains unclear whether the intensity of 
exercise might alter appetite at the same amount of energy intake and 
energy expenditure (i.e., at the same energy flux). Exercise could also 
affect energy intake independently of energy turnover and thus act as 
a stimulus rather than by modulation of energy turnover. In line with 
this hypothesis, beta-adrenergic stimulation by vigorous exercise thus 
not only may increase energy expenditure (20) but also could lead to 
decreased energy intake.

The appetite-suppressant effect of physical activity or exercise likely 
also depends on the habitual level of physical activity. In sedentary 
individuals, an increase in PAL from 1.4 to 1.6 may therefore lead to 
weight loss, whereas the same PAL of 1.6 should lead to weight gain 
in an athlete who used to be more physically active (e.g., PAL 1.8). 
This idea suggests that appetite control adapts to the habitual amount of 
energy turnover. The necessary time to reach such an adaptation and the 
persistence of this phenomenon remain to be investigated. Interestingly, 
compensation of energy expenditure by energy intake appears to be 
greater for longer exercise interventions (21), suggesting progressive 
adaptation of appetite to a higher energy turnover.

In addition to weight gain after detraining, further evidence for a per-
sistent adaptation of appetite to a high energy turnover comes from the 
increasing risk of weight gain after each pregnancy (22). Higher energy 
turnover during pregnancy with a sudden decrease in energy turnover 
after delivery (especially without breastfeeding) may therefore increase 
the risk of overweight or obesity.

Similarly to increased energy turnover during pregnancy, a high energy 
turnover with growth and development may change our perspective on 
the etiology of weight gain and obesity. Accelerated growth increases 
the energy requirement and may thus increase the risk for weight gain. 
High birth weight (23), high protein intake during the first 2 years of 
life (24), or early BMI rebound in young children (25,26), as well as 
precocious puberty (27) all have been shown to lead to a dispropor-
tional high increase in lean compared with fat mass and an increased 
later risk of obesity. Lean body mass and RMR (and other aspects of 
energy expenditure) were proposed to constitute a biological drive to 
eat, whereas fat mass was negatively associated with food intake, espe-
cially in leaner individuals (28). The energy requirement (i.e., due to 
accelerated growth or the increase in lean mass) may thus be the major 
determinant of appetite and energy intake rather than the adipocentric 
regulation of energy balance in which anabolic responses are triggered 
by adiposity-related signals that determine the drive for energy intake 
(29-31). Already in 1993 it was proposed that “the impetus for lean 
tissue growth, or protein accretion […] regulates nutrient supply” (32). 
The decrease in energy turnover with ageing is not only due to inac-
tivity but also caused by the age-related loss in skeletal muscle mass 
that may contribute to a gain in fat mass with age (33). Because the 
RMR on fat-free mass association (and thus the specific metabolic rate) 
decreases with age, the decrease in high metabolically active organ 
masses per kilogram of lean mass (34) might also contribute to the age-
related gain in fat mass.

A higher energy requirement in people with obesity due to high body 
mass may impede weight maintenance after successful weight loss 
because a loss in body mass is tantamount to a decrease in energy 
expenditure (35). The compensatory higher energy intake as a result 
of lower energy expenditure has been elegantly calculated from the 
difference between actual and predicted weight loss following therapy 
with sodium-glucose cotransporters, two inhibitors that lead to “energy 
loss” via glucosuria (36). The adaptive increase in energy intake above 
baseline was about 95 kcal/d for every kilogram of weight loss. This is 
a quantification of the appetite drive associated with energy flux. Such 
an increase in appetite contributes substantially to the apparent decrease 
in dietary adherence that limits weight-loss success (37). Attenuation of 
this biologic drive to regain weight can be achieved by filling the gap 
of energy flux by an increase in physical activity (38). The effect of 
additional energy expenditure by exercise on body weight regulation, 
however, shows a high interindividual variance (39). Further studies 
are necessary to systematically analyze the etiology of this variance 
that may depend on insulin sensitivity, aerobic fitness, differences in 
habitual PAL, or energy partitioning into fat and lean mass.

Weight loss also leads to a reduction in energy expenditure beyond 
what is expected from the decrease in fat-free mass and fat mass. 
This adaptive thermogenesis was explained by weight loss–induced 
changes in sympathetic nervous system activity, thyroid function, 
and leptinemia (40,41), it was found to be significantly correlated to 
the change in hunger in response to weight loss and may thus contrib-
ute to weight regain (42).

In contrast to exercise, small increases in energy turnover induced by a 
short sleep duration (43,44) or demanding mental work (45,46) resulted 
in overeating and thus a positive energy balance. The effect of energy 
turnover on energy intake therefore depends on the nature of the under-
lying stimulus that need not be energy expenditure per se but could also 
be other stimuli.

Impact of Energy Turnover on Energy 
Partitioning and Metabolic Health
The capacity to match metabolic fuel selection to changing rates of en-
ergy use and substrate availability ensures survival of all organisms. 
In humans, dysregulation of metabolic fuel selection between fat and 
glucose (metabolic inflexibility) is associated with disorders such as 
metabolic syndrome and type 2 diabetes, whereas caloric restriction 
and exercise improve energy partitioning and thus metabolic health 
(47). The interaction between fat and glucose use has therefore been in-
tensely studied at the organ-tissue and whole-body level in the context 
of exercise, fed-fast transitions, caloric restriction, overfeeding, varying 
diet composition, and metabolic diseases (e.g., 48-50).

Energy turnover has the ability to appropriately regulate individual 
fluxes of fuels in response to changes in diet composition. Fuel selec-
tion at rest depends on individual preferences of organ and tissue masses 
(e.g., glucose oxidation in the brain and fat oxidation in muscle). At a 
low energy turnover, fuel selection is mainly determined by the meta-
bolic requirement of organs (i.e., up to 70% of resting energy expendi-
ture is due to high metabolically active organ mass) (51). Conversely, 
at a high energy turnover, physical activity is high, and substrate use 
increasingly relies on skeletal muscle and depends on the intensity of 
exercise as well as on aerobic fitness (52).
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Different kinds of energy turnover (cold-induced thermogenesis, 
growth, pregnancy, and aerobic or anaerobic exercise) involve differ-
ent metabolic pathways and tissues and may thus differently affect 
metabolic consequences or energy partitioning. The nature of energy 
turnover therefore needs to be considered in order to interpret health 
consequences. Exercise or cold exposure may have a positive effect on 
metabolic flexibility (i.e., the ability to switch between carbohydrate 
and fat oxidation with fasting and postprandial conditions) and appetite 
control, whereas hepatic insulin resistance with increased gluconeogen-
esis increases energy turnover without beneficial effects on health.

When intentionally overfed, participants failed to compensate by rais-
ing voluntary activity (11). This failure of a “push mechanism” by 
energy intake also applies to cellular bioenergetics, because energy 
expenditure in all cells is not directly coupled to energy supply but 
rather is determined by the rate of energy turnover (pull mechanism) 
(53). Hence, increased energy turnover was identified as a common 
underlying protective mechanism in various genetic models resistant to 
diet-induced metabolic disease (53-56).

It was recently proposed that an unhealthy Western diet may have less or 
even no adverse health consequences at a high energy turnover (57,58). 
At the extreme of energy turnover, endurance athletes consume high 
amounts of fructose during physical activity, and sports nutrition guide-
lines have consistently recommended high carbohydrate intake before, 
during, and after exercise to meet working muscle energy demands (59). 
For example, Tour de France cyclists reach a sugar intake of ∼460 g 
(∼1,720 kcal), at a total energy intake of ∼5,800 kcal/d (60) without 
developing metabolic impairment or hepatic steatosis. Likewise, some 
hunter–gatherer populations consume as much as 50% of energy intake 
from honey but also have a very low prevalence of metabolic disease 
(5). Even a hypercaloric diet may have no adverse consequences at a 
high energy flux. Sumo wrestlers consume 5,000 to 7,000 kcal/d, with 
∼80% coming from carbohydrate. Although these athletes have obe-
sity, most of them maintain normal glucose and triglyceride levels, pre-
sumably because of the ability to partition excess energy in expanding 
hyperplastic subcutaneous adipose tissue rather than in dysfunctional 
hypertrophic subcutaneous and visceral fat depots or ectopic liver fat 
(61,62). On the contrary, in physically inactive humans, overfeeding of 
a high-carbohydrate diet results in metabolic detriment and high rates 
of net de novo lipogenesis within days (63).

It remains unknown whether and how an unhealthy Western diet with 
a high glycemic load and a high intake of sugar and saturated fat can 
be less detrimental to health if people are involved in intense recre-
ational physical activity (58). The impact of energy turnover on meta-
bolic response to a diet remains remarkably understudied. This may be 
due to methodological challenges because the high standard of a met-
abolic chamber is required to carefully match energy intake to energy 
expenditure in order to avoid the confounding effect of a negative 
energy balance that is promoted by a high PAL (see concept of energy 
flux). Using the setting of a metabolic chamber, we investigated the 
impact of energy flux (different levels of energy turnover at the same 
energy balance) on the regulation of macronutrient balance and glucose 
metabolism. Relative fat balance (8), postprandial glycemia, and insu-
lin secretion (7) were all improved with increasing levels of daylong 
energy turnover (PAL of 1.3, 1.6, and 1.8 achieved by different dura-
tions of brisk walking). These results were not only observed at equal 
energy balance but also when comparing a high versus low energy turn-
over during caloric restriction or overfeeding. The findings show that 
acute increases in energy turnover led to improved glucose metabolism 

despite an increased rate in fat oxidation. By contrast, increased fat 
oxidation by time-restricted feeding (breakfast skipping) contributed to 
higher insulin levels and metabolic inflexibility in another metabolic 
chamber study of our group (64).

The characteristics and underlying mechanisms for improved metab-
olism by increasing energy turnover involve improved mitochondrial 
function (47). Because different intensities of energy turnover modu-
late energy partitioning, the comparison of low- versus high-intensity 
exercise is proposed to reveal the causes of metabolic improvement. 
Interindividual differences in the phenotype characteristics of body 
composition, insulin sensitivity, and aerobic fitness are determinants 
of metabolic fuel selection that need to be measured as potential con-
founders and to be controlled by intraindividual comparison of different 
levels and intensity of energy turnover.

Impact of the Intensity of Energy Turnover 
on Energy Partitioning and Metabolic 
Health
During low- to moderate-intensity exercise (brisk walking) that was 
used in our previous study to induce different levels of energy turn-
over, glycogen breakdown and glycolysis should be barely stimulated, 
and fat oxidation rates were high (6,8). Despite higher fat oxidation, 
a higher energy turnover reduced overfeeding-induced postprandial 
glycemia and insulin secretion, presumably by increasing non-insulin-
dependent glucose uptake (7).

Higher-intensity exercise increases hepatic and muscle glycogenoly-
sis, especially in untrained individuals (65). Because high-intensity 
physical activity lowers glycogen stores, overfeeding and high glu-
cose intake are proposed to stimulate glycogen synthesis and the flux 
through hepatic lipogenic pathways (increasing liver fat and very low-
density lipoprotein export) should remain low (57). Because glyco-
gen binds to the β-subunit of AMP-activated protein kinase (AMPK) 
and this inhibits AMPK activity in skeletal muscle (66), a low glyco-
gen status may also exert favorable metabolic effects by increasing 
the activity of AMPK independent of the energy status of the cell 
(ATP:AMP ratio). In individuals with prediabetes, three “exercise 
snacks” (6 × 1  minute of high-intensity activity before each meal) 
improved daily glycemia on both the day of exercise and over the sub-
sequent 24 hours (67). In patients with type 2 diabetes, high-intensity 
training confers superior glycemic improvement as compared with 
continuous moderate-intensity training, despite a lower time commit-
ment of 1.5 versus 2.5 h/wk (for a review, see Savikj and Zierath (68)).

Substrate use (glucose vs. fat, endogenous vs. exogenous substrates) not 
only depends on exercise modality (low intensity vs. high intensity) but 
also on timing of training (fasting vs. postprandial). Interestingly, the 
effect of low-intensity exercise on glycemic control is further enhanced 
when work bouts are performed in the postprandial state (with high 
substrate availability), whereas the effect of high-intensity training on 
glycemic control is further enhanced when exercise is performed in the 
fasted state (68). The effects of timing and frequency of energy turnover 
on regulation of energy and macronutrient balance are beyond the scope 
of this review.

Post-exercise substrate partitioning is shifted toward higher fat oxidation 
in order to restore glycogen levels. Lipid oxidation rates can reach 25% of 
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that reported during exercise and contribute greater than 60% of oxidative 
metabolism during recovery (69). After heavy and prolonged exercise, 
the replenishment of muscle glycogen to pre-exercise levels may require 
24 to 48 hours depending on the diet and glycogen synthase activity.

Improved appetite control with a higher energy turnover may not only 
depend on gut peptides, which are predominantly associated with sig-
naling of postprandial satiety rather than the control of eating. From 
a teleological point of view, substrate metabolism may impact energy 
intake, satiety, and food preferences (70). Eating behavior is proposed 
to be regulated by the need to maintain limited glycogen stores of the 
body, according to the glycogenostatic theory by Flatt (71), which is 
based on the glucostatic theory by Mayer (72). This hypothesis is sup-
ported by the finding that carbohydrate balance on an isocaloric high-
carbohydrate diet (55% ​carbohydrate) inversely correlated with the 
change in fat mass over the following 4 years (73). Likewise, 24-hour 
carbohydrate oxidation and 24-hour carbohydrate balance measured in 
a metabolic chamber in energy-stable adults predicted subsequent ad 
libitum energy intake over the next 3 days (74). Carbohydrate balance 
was also a predictor of ad libitum energy intake in men and women 
who switched from 1-day high-carbohydrate diet to an isoenergetic 
high-fat diet (75). In addition, a lower carbohydrate balance after a 
6-hour high energy turnover condition (with immediate compensation 
of energy expenditure to maintain energy balance) was associated with 
higher ad libitum energy intake at a subsequent buffet (76).

A very high energy turnover may also bear risks and side effects because 
high fluctuations in energy turnover could lead to temporal imbalance 
between oxidative stress and anti-oxidant defense systems that may 
accelerate aging (77). Extremely high levels of energy turnover due to 
competitive exercise may therefore lead to compensatory reductions in 
resting energy expenditure (constrained energy expenditure model by 
Herman Pontzer) (1,78)).

Importance of Study Duration to 
Investigate the Impact of Energy Turnover 
on Body Weight Regulation and Metabolic 
Risk
Overweight and obesity are commonly explained as a consequence 
of a chronically positive energy balance (79). This interpretation is, 
however, an oversimplification that bears the risk of missing the un-
derlying mechanisms contributing to long-term weight gain. In re-
ality, energy intake and expenditure are highly variable from day to 
day and even within a day, e.g., the balance is negative overnight and 
positive at daytime, leading to a considerable fluctuation in energy 
balance. Brief periods in which energy intake far exceeds energy ex-
penditure last from one meal to several days and regularly occur over 
the weekend, on holidays, at periods of celebration, or during vaca-
tions (80,81). Gradual weight gain, therefore, more likely results from 
repeated short periods of large positive energy balance that are inad-
equately compensated for. Although the regulation of energy balance 
is based on transient and short-lived fluctuations, the bulk of studies 
performed long-term overfeeding experiments that are difficult to in-
terpret because accumulation in fat mass and ectopic fat lead to a 
decrease in insulin sensitivity. A few studies investigated the effect of 
only 1-day overfeeding on metabolic regulation (e.g., 6,7,64,82-85). 
These studies reveal a significant impairment in insulin sensitivity, 

an increase in 24-hour energy expenditure, and a decrease in fat ox-
idation with overfeeding. One-day 30% excess energy intake nearly 
doubled inactivity-induced decreases in peripheral insulin sensitivity 
in physically fit normal-weight men, whereas hepatic insulin sensitiv-
ity was maintained (82). Most importantly, metabolic changes in re-
sponse to 1-day overfeeding (+100%) showed a good reproducibility 
(84) and were of prognostic relevance for body weight regulation: A 
smaller increase in energy expenditure response to low-protein over-
feeding and a larger response to high-carbohydrate overfeeding both 
correlated with spontaneous 6-month weight change (85).

Conclusion
The beneficial effects of energy turnover on regulation of energy and 
macronutrient balance facilitate prevention and treatment of obesity 
and associated metabolic risk. A high energy turnover due to physical 
activity or exercise may even compensate for adverse effects of over-
feeding or an unhealthy diet, but this hypothesis needs to be further 
investigated using the concept of energy flux. A high energy turnover 
cannot, however, be fully recommended because it also bears a risk for 
weight gain when it cannot be maintained in the long term.O
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