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The white adipose tissues (WAT) are located in distinct depots throughout

the body. They serve as an energy reserve, providing fatty acids for other

tissues via lipolysis when needed, and function as an endocrine organ to

regulate systemic metabolism. Their activities are coordinated through

intercellular communications among adipocytes and other cell types such

as residential and infiltrating immune cells, which are collectively under

neuronal control. The adipocytes and immune subtypes including

macrophages/monocytes, eosinophils, neutrophils, group 2 innate lymphoid

cells (ILC2s), T and B cells, dendritic cells (DCs), and natural killer (NK)

cells display cellular and functional diversity in response to the energy

states and contribute to metabolic homeostasis and pathological condi-

tions. Accumulating evidence reveals that neuronal innervations control
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lipid deposition and mobilization via regulating lipolysis, adipocyte size,

and cellularity. Vice versa, the neuronal innervations and activity are influ-

enced by cellular factors in the WAT. Though the literature describing adi-

pose tissue cells is too extensive to cover in detail, we strive to highlight a

selected list of neuronal and immune components in this review. The cell-

to-cell communications and the perspective of neuroimmune regulation are

emphasized to enlighten the potential therapeutic opportunities for treating

metabolic disorders.

Introduction

The WAT serve as a critical reserve of energy storage

and hormone production [1–3]. Lipodystrophy with

the deficiency in WAT formation leads to severe

defects in glucose sensitivity, and obesity with exces-

sive fat accumulation is the most common cause of

insulin resistance, a key feature of type 2 diabetes

(T2D) [4]. The rising prevalence of obesity and comor-

bidities such as cardiovascular diseases, various can-

cers, and diabetes has driven continued interest in

understanding the WAT biology along with the thera-

peutic potential [5–7].
A variety of cell types are present in the WAT,

including adipocytes, immune cells, endothelial cells,

stromal cells, and peripheral nerves which orchestrate

the functions of lipid storage, lipid hydrolysis, and oxi-

dation (Fig. 1). The white adipocytes are the major

energy storage cells, with a unilocular lipid droplet

occupying the majority of the cytoplasmic space. The

triglyceride stored in the lipid droplet undergoes lipoly-

sis to provide fatty acids to other tissues as an energy

source in demand [8]. The white adipocytes also serve

as important endocrine cells, secreting adipokines

including leptin and adiponectin to regulate metabolic

activities such as food intake and insulin sensitivity

[1,2]. Beige adipocytes become discernable in some

WAT post-treatments such as cold acclimation and b-
adrenergic agonists that are multilocular and express

thermogenic gene uncoupling protein 1 (UCP1) [9–16].
The induction of beige adipocytes has been inten-

sively characterized in some fat depots such as the in-

guinal white adipose tissues (iWAT) (Fig. 2) [12,17–
19]. The beige adipocytes share certain morphological

similarity with brown adipocytes in the interscapular

brown adipose tissues (iBAT), such as high content of

mitochondria, but are also different in development,

bioenergetics, and functions [16,20,21]. For instance,

the metabolic activities of glucose and fatty acid

uptake and distribution, assessed by [18F]-fluo-

rodeoxyglucose-positron emission tomography-

computed tomography (18F-FDG-PET/CT) and

[123I]-b-methyl-p-iodophenyl-pentadecanoic acid-single-

photon emission computed tomography-computed

tomography (123I-BMIPP-SPECT/CT), respectively,

reveal that the ‘beige-like’ fat tissues retain fatty acid

tracers more preferentially when compared to BAT

[18], indicating a rather distinct capacity for fuel uti-

lization. The epididymal WAT (eWAT) is less prone

to undergo beiging, and they do not display significant
18F-FDG-PET/CT or 123I-BMIPP-SPECT/CT-based

signals [18]. The heterogeneous features of various fat

pads suggest that a comprehensive characterization of

the fat depots would be of great importance, revealing

how the heterogeneity is determined developmentally

and adapted through adulthood, and how it may con-

tribute to the energy balance in an integrative manner.

A large body of literature has demonstrated that the

various cell types in addition to adipocytes affect adi-

pose metabolic activities. The immune cells dictate

both the tissue microenvironment and the systemic

inflammation, therefore contributing to metabolic

health [22–24]. Transient inflammatory response is ini-

tiated as part of the healthy adipose expansion, which

could influence the remodeling of the extracellular

matrix [25]. However, the chronically dysregulated adi-

pose immune profiles precipitate the pathological con-

ditions, contributing to progression of metabolic

disorders (Fig. 3) [4,26,27]. A plethora of immune cells

including macrophages/monocytes, eosinophils, neu-

trophils, ILC2s, T and B cells, DCs, and NK cells play

diverse roles in regulating immune homeostasis and

inflammation [22].

The progress in whole-mount immunostaining and

volume fluorescence imaging has aided the illustration

of the tissue-wide distribution of peripheral nerves in

the WAT [28,29]. Whole-tissue studies show that a

dense sympathetic neural network is distributed

throughout the tissues with the majority of adipocytes

receiving proximal neural input in mouse iWAT

housed at ambient temperature [28]. The cell-to-cell
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commutations are thus extended extensively at the

layer of neural regulation, which potentially reaches

each cell type within the tissues including the diverse

populations of immune cells.

Sympathetic nerves

Sympathetic innervation, axonal plasticity, and

fat pad-specific drive

The sympathetic innervation is observed in various

WAT, with a significant correlation between the den-

sity of the fibers and the number of beige adipocytes

[12,28–30]. Sympathetic neurons originate from neural

crest cells and form the sympathetic ganglia early in

development. The axon growth, dendrite formation,

and target innervation occur subsequently during

embryonic and postnatal stages [31]. Sympathetic

nerves grow into WAT parenchyma between postnatal

day 6 and day 28 in mice, overlapping with early beige

adipogenesis [32]. Developing axons are guided by

both attractive and repulsive cues. The expression of
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Fig. 1. The white adipose tissues and cellular components. Sympathetic and sensory nerves are detected in the white adipose tissues.

Sympathetic nerves release neurotransmitter NE, which signals to Adrb3 on white and beige adipocytes. Macrophages express the NE

receptor Adrb2. The stromal cell types express IL-33 which could signal to ILC2s and Treg. IL-5 released by ILC2s sustains eosinophils,

which further regulate macrophages via IL-4. cd T cells release IL-17A and TNF-a to promote IL-33 production from stromal cells. NK1.1+

iNKT cells produce IFNc, and NK1.1-iNKT cells respond to FFA and predominantly release IL-10 and IL-2, which further regulates

macrophages and Treg, respectively. Adrb2, adrenergic receptor b2; Adrb3, adrenergic receptor b3; DCs, dendritic cells; FFA, free fatty acid;

IL-17A, interleukin-17A; IL-2, interleukin-2; IL-33, interleukin-33; IL-4, interleukin-4; IL-5, interleukin-5; ILC2s, group 2 innate lymphoid cells;

iNKT cells, invariant natural killer T cells; MCP-1, monocyte chemoattractant protein-1; NE, norepinephrine; NK cells, natural killer cells; TNF-

a, tumor necrosis factor-a; Treg, regulatory T cells.
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Fig. 2. The distributions of adipose tissues in mice. The adipose

tissues are broadly categorized into brown, white, or beige,

according to the composition of brown, white, or beige adipocytes.

BAT, brown adipose tissues; WAT, white adipose tissues.
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Sema3A and NP1 is detected in the rat retroperitoneal

WAT (rWAT) and eWAT [33]. Semaphorin 3A

(Sema3A) binds to neuropilin-1 (NP1) and activates

the transmembrane Plexin to transduce a repulsive

axon guidance signal [34]. Sema3A is produced in

smooth muscle cells of arteries and white adipocytes,

and NP1 is found on perivascular and parenchymal

nerves, consistent with a role for secreted Sema3A in

the growth and plasticity of the WAT nerves [33].

Besides, preadipocytes and adipocytes produce

unknown secretory molecules which could regulate

axon growth [35]. Genetic deletion of aldehyde dehy-

drogenase 1a1 (ALDH1A1), a key enzyme for the pro-

duction of vitamin A metabolite of retinoic acid (RA)

from the precursor retinaldehyde (Rald), leads to

increased sympathetic innervation in WAT [35]. Mech-

anistic analysis indicates that Rald and RA differen-

tially regulate the expression of axon guidance

molecules to influence the nerve density [35].

Both environmental stimuli and energy balance

affect the intra-adipose neuronal innervation. Meta-

bolic stress such as high-fat diet (HFD)-induced obe-

sity, genetic obese, and diabetic mice homozygous for

the diabetes mutations (Leprdb, referred to as db/db)

or for the obese spontaneous mutation (Lepob,

referred to as ob/ob) could drive sympathetic axonal

degeneration within the adipose tissues [28,36,37].

Further, aging is also associated with adipose neu-

ropathy, which results in loss of innervation around

the tissue vasculature [37]. Conversely, cold exposure

or exercise leads to increased nerve density [12,37–39]
visualized within the whole tissue [39]. The innerva-

tion is potentially influenced by the neurotrophic fac-

tors including nerve growth factor (NGF) [39] and

brain-derived neurotrophic factor (BDNF) [40].

Blockage of NGF through neutralization antibody or

pharmacological inhibition of the receptor tyrosine

kinase (RTK) for NGF (TrkA) impairs the axonal

outgrowth process [39]. BDNF functions in distinct

cell types located in the central nervous system and

the periphery [36,40]: Deletion of BDNF in the par-

aventricular nucleus of the hypothalamus blunts the

leptin-induced sympathetic re-innervation in the ob/ob

mice [36]; deletion of BDNF from LyzM+ myeloid

cells results in a decrease in total innervation of the

iWAT [40].
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Fig. 3. Neural and immune phenotypes in the lean and obese mouse white adipose tissues. The lean white adipose tissues predominantly

contain immune cells at noninflammatory states, including macrophages, eosinophils, ILC2s, CD4+ Treg, and CD8+ T cells. ILC2s maintained

by IL-33 from stromal cells produce IL-5 and IL-13, which subsequently regulate eosinophils and macrophages. ILC2s also secrete Met-Enk,

which promotes the beiging process. Eosinophils are a major cell source of IL-4 which regulates noninflammatory macrophage phenotype.

In obesity, the cellular composition changes with neutrophil infiltration in short-term followed by increased proportion of CD8+ T cells and

macrophages. The immune profile shifts to a proinflammatory state. Proinflammatory macrophages increase expression of TNF-a and IL-6.

The reduction of sympathetic nerve density and vascularization occurs in obesity. IL-13, interleukin-13; IL-33, interleukin-33; IL-4, interleukin-

4; IL-5, interleukin-5; IL-6, interleukin-6; ILC2s, group 2 innate lymphoid cells; MCP-1, monocyte chemoattractant protein 1; Met-Enk,

methionine-enkephalin; TNF-a, tumor necrosis factor-a; Treg, regulatory T cells.
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The sympathetic drive to the WAT displays fat pad-

specific patterns in response to different lipolytic stim-

uli [41–43]. For instance, the norepinephrine (NE)

turnover (NETO), indicative of sympathetic activity,

shows that the eWAT NETO is unaffected by gluco-

privation via administration of 2-deoxy-D-glucose but

increases with cold exposure or food deprivation; how-

ever, iWAT NETO significantly increases across all

stimuli in Siberian hamsters [41]. NETO also shows a

proportionately higher rate and greater extent of lipol-

ysis in eWAT compared with iWAT when exposed to

short winter-like days in Siberian hamsters [42], which

could potentially result in energy dissipation in specific

fat depots. Prolonged fasting results in increased

NETO in rWAT and eWAT, but no change in inter-

scapular BAT (iBAT) in rats [44]. Centrally adminis-

tered melanotan II (MTII), a synthetic melanocortin 3/

4-receptor agonist, leads to increased NETO in iWAT

and dorsal subcutaneous WAT, but not in eWAT or

rWAT [45]. The underlying mechanism mediating the

differential sympathetic outflow remains largely

unknown, which probably involves the centrally con-

trolled neural circuitry via selective activation of sym-

pathetic neurons.

Sensory nerves

Sensory innervation, adipose cellularity, and

sympathetic-sensory loop

The sympathetic innervation of WAT has been widely

observed in mammals [42,46]; detected at a much less

density, the sensory innervation is mainly studied in

laboratory rats and Siberian hamsters [47,48]. Neu-

roanatomical tracer of ‘true blue’ labels fluorescent cell

bodies in dorsal root ganglia (DRG) after the tracer is

injected into iWAT or dorsal subcutaneous WAT of

laboratory rats [49]. Immunohistochemical assessment

shows the sensory innervations labeled by calcitonin

gene-related peptide (CGRP) and substance P (SP)

immunoreactivity in the eWAT and iWAT of Siberian

hamsters [47,50,51].

The sensory nervous system could potentially trans-

mit the stimuli derived from the adipose tissues and,

further, regulate adipose tissue via a sensory-sympa-

thetic nervous system (SNS) loop [52,53]. The sensory

denervation achieved via local microinjections of cap-

saicin shows unchanged fat pad masses but signifi-

cantly increased average fat cell size in iWAT but not

in eWAT [47], indicating a possible function of sensory

nerves on adipocyte cell size in a fat pad-specific man-

ner. However, sensory denervation of eWAT with cap-

saicin leads to increased rWAT and iWAT masses

phenocopying the WAT mass increase after lipectomy

in Siberian hamster, suggesting a possibility that the

sensory nervous system might convey the information

of adipose tissue states to the central nervous system,

which subsequently engages the SNS and regulates

WAT distantly [50]. Further, the expression of leptin

receptor is detected in DRG in Siberian hamsters, and

intra-iWAT injection of leptin significantly induces c-

Fos immunoreactivity in DRG neurons colabeled with

fluorogold iWAT injection, hinting a possible para-

crine axis to the sensory neurons from adipocytes [54].

In particular, anterograde transneuroal viral tract trac-

ing through injection of the H129 strain of the herpes

simplex virus-1 (HSV-1) into iWAT and eWAT in

Siberian hamsters shows substantial overlap in the pat-

tern of WAT sensory afferent projections with multiple

SNS outflow sites along the neuraxis including the

intermediolateral horn, leading to the proposition that

the WAT sensory-SNS circuits might exist to regulate

WAT sympathetic drive and lipolysis [55]. The neural

tracing by injection of Dil into perirenal adipose tis-

sues in rats shows that the labeled sensory neurons in

DRG are categorized into three groups, small transient

receptor potential cation channel subfamily V member

1 (TRPV1)-negative, small TRPV1-positive, and large

TRPV1-negative cells [56], and the injection of

resiniferatoxin (RTX), a capsaicin analog, into perire-

nal adipose tissue leads to reduced labeling by 36.7%

which represents the TRPV1-positive cells and is sus-

ceptible to RTX denervation [56]. Nontheless, caution

should be taken for that capsaicin treatment mainly

target the TRPV1-positive neurons in chemical dener-

vation, and the genetic studies on refined sensory neu-

rons would be necessary to clarify the roles of sensory

neurons.

Parasympathetic nerves

Presence or no-presence of parasympathetic

nerves

The innervations in the WAT by the parasympathetic

nervous system (PSNS) have been explored, but con-

troversies exist as to whether the parasympathetic

nerves are present in the WAT to any significant

extent [57–59]. When intra-abdominal fat pads in rats

were sympathetically denervated and then injected with

the retrograde transneuronal tracer pseudorabies virus

(PRV), PRV labeling was observed in the vagal motor

nuclei of the brain stem, indicating that adipose tissue

receives vagal input which promotes glucose and fat

uptake [60]. However, the separate study of histologi-

cal examination of parasympathetic nerve markers in
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rats, and wild-type and ob/ob mouse WAT did not

show detectable signals [61]. Vesicular acetylcholine

transporter (VAChT), vasoactive intestinal peptide

(VIP), and neuronal nitric oxide synthase (nNOS)

immunoreactivities were absent in multiple WAT

examined (retroperitoneal, epididymal, and inguinal)

[61]. In addition, when Siberian hamster iWAT were

sympathetically denervated, subsequent PRV injection

resulted in no central nervous system or sympathetic

chain labeling [61]. Nonetheless, PRV tracing did show

the occasional labeling in the vagal motor nucleus

despite at a drastically less intensity, leaving a possibil-

ity of sparse parasympathetic innervation in WAT

[59,61,62]. An investigation of the various fat depots

in different species with new technical approaches such

as whole-mount immunostaining might offer novel

insights into the anatomical distribution of the

parasympathetic nerves.

Adipocytes

The sympathetic regulation of lipolysis and

beiging in the mix of adipocyte-immune cell

communications

White adipocytes are lipid-rich cells storing triglyc-

erides for energy sources and producing leptin and adi-

ponectin among others in endocrine function [2,3,63–
65]. The adipocytes form a major volume despite com-

posing < 20% of the total cellularity [66]. WAT are

highly vascularized [67,68], and adipocytes can quickly

respond to hormones such as insulin and glucagon,

which regulate the glucose uptake and lipid turnover

during feeding or fasting in the adaptation of the

metabolic demand [69]. Sympathetic nerves visualized

in the whole fat pad display a high density in the

iWAT in mice [28,29]. Adipocytes highly express

adrenergic receptor b3 (Adrb3) which renders them

responsive to the sympathetic neurotransmitter NE.

Engagement of Adrb3 signal triggers the breakdown

of the triglyceride to glycerol and free fatty acids, the

process of lipolysis.

The control of fat deposition and mobilization by

the SNS has been revealed by approaches of surgical

or chemical denervation, genetic perturbations, and

optogenetic stimulation [48,70]. The unilaterally dener-

vated lumbar fat shows more tissue mass than the con-

tralateral intact depot after a 48-h fast in rats [71], and

similarly, the rWAT loses more weight than the dener-

vated pad after 14 days of treatment with estradiol

benzoate in ovariectomized rats [72]. Neuronal activi-

ties affect both lipid deposition and mobilization, as

unilateral splanchnicectomy leads to reduced lipid

mobilization together with decreased lipid deposit to a

lesser degree in the perirenal adipose tissues on the

ipsilateral side in rabbits, cats, and rats [73]. In addi-

tion, an inhibitory role of the SNS in the control of

WAT cellularity has been proposed, based on the

observation that unilateral surgical denervation or

chemical sympathetic denervation of iWAT increases

fat cell number in comparison to the contralateral

intact side in Siberian hamsters [51,74]. Moreover, the

lipolytic effect of leptin is mediated through the action

of sympathetic nerves that innervate the WAT:

Genetic blockage of adipose sympathetic inputs blocks

the lipolytic pathway; local optogenetic stimulation of

sympathetic inputs is sufficient to induce the local

lipolytic reaction [70].

The sympathetic activity also promotes beiging

through the adrenergic signal in response to cold expo-

sure, exemplified by the appearance of multilocular

beige adipocytes highly expressing UCP1 and mito-

chondria biogenesis gene peroxisome proliferator-acti-

vated receptor-c coactivator 1 a (PGC1a) leading to

increased thermogenic capacity [28,29,75].

The signaling molecules such as chemokines and

cytokines or the receptors are detected in adipocytes

which change in expression during differentiation or

inflammation, thereby influencing the immune cell infil-

tration or functions [76,77]. Adipose tissues produce

interleukin-6 (IL-6), and the expression could be

induced upon stimulation with bacterial lipopolysac-

charide (LPS) in primary adipocytes [78,79]. Acute

stress-inducible IL-6 is found to be produced from

brown adipocytes in an Adrb3-dependent manner,

which mediates hyperglycemia through hepatic gluco-

neogenesis [80]. The source of IL-6 shows different

effects in inflammatory response, as IL-6 secreted by

myeloid cells inhibits adipose tissue macrophage accu-

mulation, but IL-6 secreted by adipocytes promotes

macrophage accumulation [81]. Macrophage migration

inhibitory factor (MIF) is expressed in rat eWAT [82],

and produced and released by human adipocytes, with

expression levels positively associated with donor body

mass index (BMI) [83]. In addition, the receptors of

chemokine such as C-X-C motif chemokine receptor 1

and 2 (CXCR1 and CXCR2), and C-C motif chemo-

kine receptors 2, 4, and 5 (CCR2, CCR4, and CCR5)

are induced following in vitro differentiation of preadi-

pocyte to mature adipocyte [84]. Besides, direct interac-

tion could occur between adipocytes and immune cells,

as class II major histocompatibility complex (MHCII)

expression increases in adipocytes upon HFD feeding

which mediates T-cell activation [85]. More recently,

single-nuclei adipocyte RNA sequencing of iWAT

reveals that the lymphocytes and a metabolically active
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mature adipocyte subtype could interact intercellularly

via interleukin-10 (IL-10) and IL-10 receptor a (IL-

10Ra) axis, and IL-10 ablation or adipocyte-specific

deletion of IL-10Ra increases adipose adrenergic-re-

sponsive pathways [86,87]. White adipocytes also

express the NE recycling transporter, organic cation

transporter 3 (OCT3), which reduces the NE availabil-

ity and governs the b-adrenergic activity [88]. The wide

spectrum of signal molecules and receptors still awaits

to be fully characterized, which together endow the adi-

pocytes both as a source and responder to the immune

and neuronal components (Fig. 4).

Macrophages/monocytes

A diverse population with complex

spatiotemporal functions

Among the immune cells present in the WAT [89–91],
macrophages/monocytes are the most intensively scruti-

nized immune types which display a high degree of

heterogeneity [92–96]. Monocytes circulate in the blood

during adulthood identified as CD11b+Ly6c+ subset,

infiltrate into tissues, and differentiate into macrophages

for homeostatic maintenance or upon tissue inflamma-

tion. Within the WAT, macrophages can be derived

from circulating monocytes or proliferate locally to sus-

tain homeostasis. Though largely categorized as proin-

flammatory or anti-inflammatory subtypes in early

studies [97], the emerging studies have revealed that the

adipose macrophages are highly heterogeneous and

dynamically respond to metabolic and immune states.

Immune cells compose more than half of the total

cellularity of stromal/vascular fraction (SVF) of the

WAT [98]. Macrophages are among the predominant

immune subtypes [99] and accumulate in obese mice

and humans [100–102]. The accrual is attributed to

both cellular infiltration, retention, and local prolifera-

tion [103–112]. Macrophages are primarily located in

interstitial space between adipocytes in the adipose tis-

sues in lean individuals but are aggregated preferen-

tially to dead adipocytes, where they display crown-

like structures (CLS) in obese humans and mice

[113,114].
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Fig. 4. The white adipocyte with the associated secretory molecules and receptors in metabolic and immune regulation. The white

adipocytes express GCGR and insulin receptors to respond to glucagon and insulin, respectively. Adrb3 mediates the response to the

sympathetic neurotransmitter NE, and OCT3 functions as a recyclizing transporter to reduce the availability of NE. White adipocytes secrete

leptin and adiponectin to signal to other organs for maintaining energy balance and also produce cytokines and chemokines including IL-6,

MIF, and MCP-1 for regulating metabolic homeostasis and tissue inflammation. Adipocytes also express receptors for cytokines ad

chemokines such as IL-10R and CCR2 to respond to the immune microenvironment. Adrb3, adrenergic receptor b3; CCR2, C-C motif

chemokine receptor 2; GCGR, glucagon receptor; IL-10R, interleukin-10 receptor; IL-6, interleukin-6; MCP-1, monocyte chemoattractant

protein 1; MIF, migration inhibitory factor; NE, norepinephrine; OCT3, organic cation transporter 3.
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Previous studies have broadly described macrophage

phenotype as anti-inflammatory and proinflammatory

in lean and obese mice, respectively [97]. Lean mice

harbor macrophages expressing Ym1, arginase 1

(Arg1), and IL-10. Cold-induced thermogenic program

recruitment is observed together with the accretion of

anti-inflammatory macrophages in young mice [115].

HFD-induced obesity induces a phenotypic switch in

adipose macrophage activation state which is prone to

be inflammatory, expressing tumor necrosis factor-a
(TNF-a), IL-6, inducible nitric oxide synthase (iNOS),

and CCR2 [116,117]. A large portion of proinflamma-

tory macrophages is derived from circulating mono-

cytes and expresses CD11c on the surface. WAT

macrophages comprise CD11c+CD206+ cells in CLS

and CD11c�CD206+ cells at adipocyte junctions

[118,119]. The ones outside of CLS are prone to be

adipogenic labeled by Ly6C, while CD9+ adipose tis-

sue macrophages reside within CLS are lipid-laden

[120]. Bulk ablation of either the CD11c+ macrophages

or CD206+ macrophages leads to improved insulin

sensitivity in obese animals [118,119].

Extensive characterization has divided the

macrophages/monocytes further into distinct subtypes

with differential expression profiles. Flow cytometric

analysis of the mouse eWAT macrophages distin-

guishes four subpopulations, including two groups of

vasculature-associated adipose tissue macrophages

(VAMs) referred to as VAM1 and VAM2, PreVAM,

and CD64+CD11c+ double-positive macrophages [121].

Among them, VAMs are tightly associated with blood

vessels which are the dominant myeloid populations in

a steady state [121]. They poorly express Arg1 and

chitinase-like 3 (Chil3) but express high levels of

CD206, CD301a, CD163, CD209, and resistin-like a
(Retnla; also called found in inflammatory zone 1, or

Fizz1), displaying a high endocytic capacity [121]. Sin-

gle-cell RNA sequencing (scRNA-seq) of eWAT in

mice distinguishes two subsets of monocytes and three

subsets of macrophages (Mac1, Mac2, and Mac3)

[122]. Mac1 highly expresses Retnla, CD163, Lyve1,

and CD209F, a signature showing overlapping features

with the abovementioned VAMs and the perivascular

Lyve1hiMHCIIloCX3CR1lo macrophages characterized

separately [121,123]. Mac2 and Mac3 expand drasti-

cally in obesity, resembling the CD9+ cells which accu-

mulate in CLS in obesity [113,120,122], while Mac3

represents a novel subpopulation termed lipid-associ-

ated macrophage (LAM) emerging in obesity, which

expresses triggering receptor expressed on myeloid cells

2 (Trem2) and prevents adipocyte hypertrophy and

loss of systemic lipid homeostasis under obese condi-

tions [122]. A separate scRNA-seq study instead

defines seven macrophage subsets among fifteen leuko-

cyte subpopulations in mouse eWAT [124]. Calorie

restriction following HFD feeding induces the accumu-

lation of a macrophage subpopulation enriched in

genes associated with phagocytosis and endocytosis

(termed phagocytic macrophages) [124]. Notably, the

majority of the characterization is based on the studies

of male eWAT but not the periovarian WAT of female

animals. Yet, emerging evidence suggests that a pro-

nounced sexual dimorphism exists in the perigonadal

WAT [125]. Future investigation and analysis would

help resolve the distinctions between macrophage sub-

types across different datasets and genders, which

would provide a coherent view of the macrophage

dynamics, heterogeneity, and interrelationships.

Many of the factors derived from macrophages

influence insulin sensitivity in adipocytes in obesity.

The first attestation that adipose inflammation partici-

pates in the development of obesity and diabetes is the

finding that TNF-a is induced in adipose tissues and

interferes with the insulin receptor which links insulin

resistance in rodent models of obesity and diabetes

such as db/db and ob/ob mice [126]. In WAT of obese

mice and humans, macrophages are the predominant

source of TNF-a and contribute significantly to IL-6

and nitric oxide [100,101,127,128]. Neutralization of

TNF-a [126] or obese mice lacking TNF-a demon-

strate improved insulin sensitivity [129].

The infiltration of monocytes into the adipose tis-

sues in the HFD-induced obese mice is attributed

partly to the increased expression of chemokines.

HFD feeding elevates adipose expression of monocyte

chemoattractant protein 1 (MCP-1, or C-C motif che-

mokine ligand 2, CCL2). MCP-1 is produced from

SVF and in adipocytes to a lesser extent [130–132].
Overexpression of MCP-1 driven by adipocyte P2

(aP2) promoter in adipose tissues causes macrophage

recruitment and insulin resistance [103,105]. On the

other hand, insulin resistance, hepatic steatosis, and

macrophage accumulation in adipose tissue induced by

HFD feeding are reduced in MCP-1 knockout mice

compared with wild-type animals [103]. Acute expres-

sion of a dominant-negative mutant of MCP-1 amelio-

rates insulin resistance in db/db and wild-type mice fed

with HFD [103]. As the main receptor for MCP-1,

CCR2-deficient mice show susceptibility to HFD-in-

duced obesity in some though not all cases [104,133],

but increased MCP-1 level in plasma is detected in

CCR2-deficient animals, and normal migration of

macrophages occurs in eWAT, suggesting a compen-

satory response to additional chemokines and signaling

redundancy [133]. eWAT show a trend to lower

CD11c+MGL1� proinflammatory macrophages and
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higher CD11c�MGL1+ anti-inflammatory macro-

phages as a percentage of CD45+F4/80+CD11b+

macrophages in CX3CR1 and CCR2 double-deficient

mice versus wild-type mice, and single knockout of

CCR2 or CX3CR1 does not differ in their adipose

macrophage phenotypes [134]. Given the newly defined

macrophage subtypes, a more refined characterization

would be needed to determine the specific effect of

each chemokine and the respective receptor on the

accumulation of distinct subpopulations.

The activation states of macrophages are affected by

adipocytes revealed by various mechanisms. Adiponec-

tin induces the production of anti-inflammatory media-

tors IL-10 and interleukin-1 receptor antagonist

(IL-1RA) in primary human monocytes and mono-

cyte-derived macrophages [135]. Deficiency of fatty

acid synthase (FASN) in adipocytes enhances the

appearance of thermogenic beige adipocytes in mouse

inguinal WAT, and single-cell transcriptomic analysis

of stromal cells reveals increased macrophages display-

ing gene expression signatures of the alternately acti-

vated type, and their depletion abrogates iWAT

beiging, suggesting an important role of adipocyte-

macrophage axis in regulating adipocyte biology [136].

Moreover, macrophages could acquire mitochondria

from adipocytes via a heparan sulfate-dependent pro-

cess [137]. Deletion of the heparan sulfate biosynthetic

gene exostosin glycosyltransferase 1 (Ext1) in myeloid

cells decreases mitochondria uptake by WAT macro-

phages, increases WAT mass, lowers energy expendi-

ture, and exacerbates HFD-induced obesity [137]. The

emerging findings indicate that the crosstalk between

adipocytes and macrophages could be versatile, involv-

ing components not restricted to secreted molecules.

The distinct subsets of macrophages have been char-

acterized in close proximity to the sympathetic nerves

which influence sympathetic input (Fig. 5). The

CX3CR1+ population of macrophages is identified as

sympathetic neuron-associated macrophages (SAMs)

[138]. SAMs express solute carrier family 6 member 2

(SLC6A2), an NE transporter, and monoamine oxidase

A (MAOA), a degradation enzyme, and affect cate-

cholamine levels in WAT by phagocytosing and degrad-

ing NE [138]. A population of nerve-associated

macrophages (NAMs) that are in close association with

sympathetic fibers is independently visualized in visceral

WAT, and macrophages play important role in impaired

lipolysis in aging by lowering the bioavailability of NE

[139]. Consistent with the function in regulating sympa-

thetic drive, mice with deficiency of insulin receptor sub-

strate 2 (IRS2) in lyzM+ myeloid cells display increased

sympathetic nerve density and catecholamine availabil-

ity in adipose tissue, and the IRS2-deficient

macrophages show alterations in genes involved in scav-

enging catecholamines and supporting increased sympa-

thetic innervation [140]. A CX3CR1+ macrophage

subpopulation is also uncovered in iBAT which

expresses PlexinA4 and negatively regulates sympathetic

innervation via repulsive cue to Sema6A-expressing

sympathetic axons [141]. Likely different from the

SAMs, cold-induced neuroimmune cells (CINCs), a sub-

set of Ly6C+ CCR2+ Cx3CR1+ monocytes/macrophages

interacting with peripheral nerves in the iWAT, are

found homing to iWAT upon cold exposure and

expressing BDNF [40]. Genetic deletion of BDNF dri-

ven by lyzM-Cre in myeloid cells leads to reduced sym-

pathetic nerves in iWAT, supporting the function of

CINCs in regulating adipose innervation [40]. scRNA-

seq analysis of lung interstitial macrophages identifies

two subpopulations exhibiting distinct gene expression

profiles and phenotypes, Lyve1loMHCIIhiCX3CR1hi

and Lyve1hiMHCIIloCX3CR1lo, which are also present

in the WAT [123]. The Lyve1loMHCIIhiCX3CR1hi sub-

set resides in close distance with nerves, whereas the

Lyve1hiMHCIIloCX3CR1lo subset is located preferen-

tially alongside blood vessels [123]. Though the WAT

counterpart subsets remain to be determined, an intersti-

tial subpopulation of CD169+ lung-resident macro-

phages is identified surrounding the airways and is in

proximity to the sympathetic nerves in the bronchovas-

cular bundle [142]. These nerve- and airway-associated

macrophages (also called NAMs) are tissue-resident

which do not require CCR2+ monocytes for develop-

ment or maintenance [142]. Those NAMs highly express

immunoregulatory genes and play important roles in

dampening excessive production of inflammatory

cytokines and innate immune cell infiltration in inflam-

matory conditions [142]. Overall, functional studies indi-

cate that macrophages could play both stimulatory and

inhibitory functions on sympathetic innervations.

The direct role of sympathetic regulation of macro-

phages has been postulated but remains to be fully

illustrated. Macrophages express the adrenergic recep-

tor b2 (Adrb2); however, deletion of Adrb2 driven by

lyzM-Cre does not alter inflammation in the adipose

tissues or change insulin sensitivity fed on chow or

HFD; no significant changes on adipose tissue inflam-

mation and function are observed during feeding, fast-

ing, or cold exposure [143].

In human subcutaneous adipose tissues, a positive

relationship is found between macrophage transcripts

CD68, TNF-a, and plasma IL-6, and an inverse corre-

lation between CD68 and insulin sensitivity [144]. Dia-

betic patients have significantly increased levels of

MCP-1 and RANTES [145], and CD11c+CD206+ adi-

pose tissue macrophages are associated with insulin
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resistance in human obesity [146]. In obese women,

CD11c+ adipose macrophages show much higher

expression of integrins, antigen presentation molecules,

cytokines including interleukin-1b (IL-1b), IL-6, inter-
leukin-8 (IL-8), and IL-10, TNF-a, and C-C motif che-

mokine ligand 3 (CCL3) than CD11c+ macrophages,

indicative of a proinflammatory state [146]. Tissue cul-

ture medium conditioned by CD11c+ adipose macro-

phages impairs insulin-stimulated glucose uptake by

human adipocytes [146]. Dietary or surgery interven-

tion of obesity leads to weight loss and reduced

inflammation [130,147]. Weight loss of obese subjects

after a very low-calorie diet is accompanied by

increased expression of IL-10 and IL-1RA in adipose

tissues, predominantly from macrophages [130]. Analy-

sis on subcutaneous WAT of lean and morbidly obese

subjects before and three months after bypass surgery

shows that the weight loss results in a significant

decrease in macrophage number, and genes involved in

macrophage attraction such as MCP-1 increase in obe-

sity and decrease after surgery in the SVF [147].

Overall, macrophages could adopt an immune phe-

notype across a wide spectrum in response to the

external stimuli and metabolic states, which renders

remarkable functional plasticity in influencing adipose

biology.

Eosinophils

Tissue homeostasis and metabolic health

Recent evidence suggests that the functions of eosino-

phils go beyond the immune reaction in antihelminth

infection and allergic response, as demonstrated by

their roles in metabolic homeostasis [148,149]. Eosino-

phils migrate into adipose tissue by an integrin-depen-

dent process [150]. Eosinophils are the major

interleukin-4 (IL-4)-expressing cells in WAT which sus-

tains the adipose macrophage [151]. Mice fed with

HFD develop obesity, impaired glucose tolerance, and

insulin resistance in the absence of eosinophils, while

helminth-induced adipose tissue eosinophilia enhances

glucose tolerance [151]. Genetic loss of eosinophils or

blockage of IL-4 and interleukin-13 (IL-13) signaling

impairs cold-induced biogenesis of beige fat [152].

Moreover, a decreased frequency in WAT-resident

eosinophils is detected in aging subjects of human par-

ticipants [153]. Exposure to a young systemic environ-

ment could partially restore adipose eosinophil

distribution in aged parabionts and reduce adipose tis-

sue inflammation [153]. Eosinophil transfer from

youthful donors results in systemic rejuvenation of the

aged host, leading to improved physical and immune
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Fig. 5. The emerging macrophage subsets in the white adipose tissues, including the ones associated with sympathetic nerves or

vasculatures. The CX3CR1+ population expressing SLC6A2 and MAOA is identified as sympathetic neuron-associated macrophages (SAMs).

Cold-induced neuroimmune cells (CINCs), a subset of Ly6C+ CCR2+ Cx3CR1+ monocytes/macrophages interacting with peripheral nerves,

home to iWAT upon cold exposure and expressing BDNF. Two subpopulations identified in lung are also present in the WAT: The

Lyve1loMHCIIhiCX3CR1hi subset resides in close distance with nerves, whereas the Lyve1hiMHCIIloCX3CR1lo subset is located preferentially

alongside blood vessels. The groups of vasculature-associated adipose tissue macrophages (VAMs) are tightly associated with blood

vessels, and they express high levels of CD206, CD301a, CD163, CD209, and Retnla/Fizz1. Lipid-associated macrophage (LAM) is identified

in obesity expressing Trem2. BDNF, brain-derived neurotrophic factor; iWAT, inguinal white adipose tissues; MAOA, monoamine oxidase A;

NE, norepinephrine; Retnla/Fizz1, resistin-like a (also called found in inflammatory zone 1, or Fizz1); SLC6A2, solute carrier family 6 member

2; Trem2, triggering receptor expressed on myeloid cells 2.
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fitness partially mediated by eosinophil-derived IL-4

[153].

The eosinophil abundance changes in obesity. When

treated with recombinant interleukin-5 (IL-5), eosino-

phils are increased about threefold in adipose tissues of

HFD-fed mice, which is comparable to lean mice [154].

However, no significant improvement in metabolic

assays is observed, such as weight gain, body composi-

tion, and glucose tolerance [154], indicating unknown

mechanism exists in addition to the contribution by the

increased quantity of eosinophils in mediating the ben-

eficial role in metabolic health. Alteration of eosinophil

abundance is also observed in human participants. A

high eosinophil percentage is found to be associated

with a reduced risk of T2D [155]. However, the precise

functions of eosinophils in different metabolic contexts

remain to be resolved. For instance, characterization of

eosinophils in human patients of metabolic syndromes

without complications from diabetes, atherosclerotic

cardiovascular disease, smoking, or inflammatory con-

dition shows that both circulating and eosinophils are

increased twofold [156]. An in-depth investigation

would help understand whether eosinophils may dis-

play heterogeneity and play differential roles at steady

state and under pathological conditions.

Neutrophils

Early recruitment and proinflammatory function

Neutrophils are rapidly recruited to WAT within

3 days upon HFD feeding, and this increase remains

constant for up to 90 days of HFD [77,157,158]. The

short-term HFD feeding causes a significant upregula-

tion of cytosolic phospholipase A2 (cPLA2a) in eWAT

which promotes adipose neutrophil infiltration [159].

The accumulation of neutrophils contributes to tissue

inflammation and impaired insulin sensitivity via the

increased production of neutrophil elastase, reduced

neutrophil elastase inhibitor a1-antitrypsin, and

increased inflammatory cytokines such as interleukin-

1b (IL-1b) in obesity [158,160,161]. Furthermore, sev-

ere obesity in human subjects is associated with

increased generation of plasmatic neutrophil extracel-

lular traps, suggesting a conserved role of neutrophils

in the systemic inflammatory state [162]. Interestingly,

social stress which is known to activate the SNS

enhances neutrophil accumulation in eWAT and accel-

erates insulin resistance development upon HFD feed-

ing, and inhibition of neutrophil elastase abrogates the

insulin sensitivity impairment of stressed mice [163].

The evidence points to a potential interaction between

the sympathetic activity and neutrophil infiltration and

activation, which would collectively participate in

metabolic deterioration.

ILC2s

Homeostatic maintenance through regulating

eosinophil, macrophage, Treg, and adipocytes

ILC2s are resident in adipose tissues and play protective

roles against obesity [164]. Interleukin-33 (IL-33) is a

cytokine belonging to the IL-1 family associated with

type 2 immune response and is important for the mainte-

nance of ILC2s in WAT, limiting adiposity by increasing

caloric expenditure in mice [165–168]. The cell source of

IL-33 has been refined to the WAT stromal cells. scRNA-

seq of visceral WAT stromal cells defines five distinct sub-

types, with three subtypes producing IL-33 and two

subtypes resembling adipocyte precursors [169]. Indepen-

dently, the adipose stem and progenitor cells are identi-

fied as a source of IL-33 in all WAT depots and

mesothelial cells as an additional source in visceral WAT

[170]. ILC2s are the major producer of IL-5 and IL-13 in

the visceral fat and promote the expansion of eosinophils

and macrophages [165]. IL-5 deficiency impairs visceral

adipose tissue eosinophil accumulation and results in

increased adiposity and insulin resistance when placed on

HFD [165]. Further, administration of exogenous IL-33

into HFD-fed mice restores ILC2s as well as the level of

tyrosine hydroxylase (TH), a rate-limiting enzyme for cat-

echolamine biosynthesis in sympathetic nerves; con-

versely, chemical sympathetic denervation reduces the

frequency of ILC2s and eosinophils in iWAT, collectively

indicating a sympathetic-regulated immune environment

[171]. ILC2s also influence energy expenditure in a man-

ner independent of eosinophils, macrophages, or adaptive

immune cells, as they produce methionine-enkephalin

(Met-Enk) peptides that can act directly on adipocytes to

upregulate UCP1 expression and promote beiging pro-

cess [167].

T cells

Differential functions of CD4+ T subtypes,

proinflammatory role of CD8+ T cells, context-

dependent effect of iNKT, and homeostatic

function of cd T cells

White adipose tissues is home to both T helper cells

and cytotoxic T lymphocytes (CD4+ and CD8+ cells,

respectively), and the cellularity and ratio vary among

different WAT depots from lean and obese mice

[98,172,173]. Mesenteric WAT (mWAT) contain a

higher percentage of T cells in the SVF compared with

11The FEBS Journal (2021) ª 2021 Federation of European Biochemical Societies

X. Qian et al. Neuroimmune regulation of fat



eWAT and iWAT in lean mice. The CD4 : CD8 ratio

is between 1 and 2 detected in iWAT and mWAT, and

around 5 in eWAT [98]. T-cell numbers in eWAT and

iWAT correlate positively with body weight [98]. In

both eWAT and iWAT, the CD4 : CD8 ratio shows a

negative correlation with body weight, indicating a rel-

ative increase in cytotoxic T cells compared with T

helper cells [98]. Analysis of healthy overweight or

obese human subjects shows that CD4+ and CD8+ T

cells infiltrate both visceral and subcutaneous fat

depots, with proinflammatory CD4+ T helper 1 and 17

(Th1 and Th17) cells, and CD8+ T cells [174]. T-cell

receptor (TCR) repertoire characterized in visceral

WAT shows a restricted pattern which is further com-

promised in obesity [175].

Among the CD4+ T-cell subsets, the Foxp3+ regula-

tory T cells (Treg) are highly enriched in the visceral

fat of lean mice, but their numbers are reduced in

insulin-resistant models of obesity [176]. The mainte-

nance and expansion of Treg cells in visceral WAT

depends on IL-33 both at steady state and upon hel-

minth infection [177–179]. IL-33 could activate the

signaling event in ILC2s and Treg as they express the

receptor complex containing suppression of tumori-

genicity 2 protein (ST2). ILC2-intrinsic activation by

IL-33 is also crucial for Treg cell accumulation, which

occurs in part via ICOSL-ICOS interactions [178].

Besides, IL-33 induces upregulation of OX40L in

WAT ILC2s, which promotes Treg expansion as well

[180]. Adipose Treg cells show a distinct clonal TCR

repertoire, possibly regulated by adipose tissue anti-

gens [177,181]. Depletion and expansion experiments

reveal that the Treg cells influence the inflammatory

state of adipose tissue and, thus, insulin resistance

[176]. Yet, Treg cells show distinct functions in age

versus obesity-associated insulin resistance: Mice defi-

cient in adipose Treg cells are protected against age-

associated insulin resistance but remain susceptible to

obesity-associated insulin resistance and metabolic

disease [182]. Moreover, WAT represents a natural

memory T-cell reservoir at the steady state [183].

After infection, large numbers of pathogen-specific

memory T cells accumulate in WAT that could pro-

vide potent and rapid effector memory responses

[183].

Upon HFD feeding, a large number of CD8+ effec-

tor T cells infiltrate the eWAT, and depletion of CD8+

T cells lowers macrophage infiltration and adipose tis-

sue inflammation and ameliorates systemic insulin

resistance [184]. Further, adipose T cells in obese mice

and diabetic humans exhibit enrichment of genes char-

acteristic of T-cell exhaustion and decreased capacity

for cytokine secretion and cell proliferation, the

contribution of which to the tissue inflammation

remains unknown [185].

Unconventional T-cell subsets are also enriched in

both human and mouse adipose tissues, including

invariant natural killer T cells (iNKT) and cd T cells,

which recognize nonpeptide ligands of various types

[186–188]. Parabiosis experiments have revealed that

iNKT cells and cd T cells are resident in mouse adipose

tissues [186,187]. Studies have indicated the complex

roles of iNKT to be fully resolved. Upon short-term

HFD feeding, iNKT promotes macrophage polariza-

tion to an anti-inflammatory state [189]. iNKT cells

produce IL-10 and interleukin-2 (IL-2), which induces

an anti-inflammatory phenotype in macrophages and

controls the number, proliferation, and suppressor

function of adipose Treg cells, respectively [187,190].

Further characterization identifies two distinct popula-

tions of adipose tissue iNKT cells as NK1.1-iNKT and

NK1.1+iNKT [191]. NK1.1-iNKT cells respond to free

fatty acids and produce IL-10, which protects mice

from metabolic diseases during obesity [191]. Con-

versely, NK1.1+iNKT cells predominantly produce

IFNc, which licenses NK cell-mediated killing of adi-

pose tissue macrophages, thus serves to promote meta-

bolic health in the nonobese state [191]. CD1d, a

molecule involved in lipid antigen presentation to

iNKT cells, is expressed in adipocytes which stimulate

iNKT cell activity through physical interaction [192].

Adipocyte-specific deletion of CD1d leads to reduced

numbers of adipose iNKT cells; however, the conse-

quence of germline or adipocyte-specific deletion of

CD1d on adipose inflammation and insulin resistance

in obesity or homeostatic state remains debatable [193–
196]. Nevertheless, a declination of CD1d expression

and iNKT cell population is observed as adipose tis-

sues expand in obesity [197–199].
cd T cells are long-lived adipose tissue residential

immune cells which function to enhance the thermogenic

capacity. Two subpopulations are distinguished based on

their expression levels of promyelocytic leukemia zinc fin-

ger protein (PLZF) [186]. The innate-like PLZF+ cd T

cells represent the major subpopulation in adipose tissues,

which produce interleukin-17A (IL-17A) and TNF-a and

signal to stromal cells, potentially inducing the produc-

tion of IL-33 and promoting the expansion of ILC2s and

Treg [186]. Mice lacking cd T cells or IL-17A exhibited the

inability to regulate core body temperature at thermoneu-

trality and after cold challenge [186]. More recently, cd T

cells are shown to play a crucial role in promoting sympa-

thetic innervation in the thermogenic adipose tissues,

partly by driving the expression of transforming growth

factor b1 (TGFb1) in parenchymal cells via the IL-17

receptor C (IL-17RC) [200].
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B cells

Proinflammatory role via antibodies and antigen

presentation, immunomodulatory role by anti-

inflammatory cytokine, and production of

neurotransmitter

B-cell accumulation is found in visceral WAT in

HFD-fed obese mice [157]. Adoptive transfer of

MHCII null but not the wild-type B cells to mice lack-

ing B cells results in increased insulin sensitivity, indi-

cating that B-cell antigen presentation to CD4+ T cells

contributes to tissue inflammation and insulin resis-

tance, and pathogenic immunoglobulin G (IgG) anti-

bodies produced by B cells are also shown to promote

insulin resistance [157]. In addition, B cells secrete

proinflammatory cytokines which enhance proinflam-

matory T-cell function in obesity, and B-cell-null mice

have decreased adipose tissue inflammation and show

insulin resistance in obese mice [201]. Further, charac-

terization of B cells reveals distinct functions of differ-

ent B-cell subtypes in adipose tissues. The B2 cells

have a proinflammatory effect, and B1a cells or

spleen-supplied innate-like B cells express the anti-in-

flammatory cytokine IL-10 and prevent the develop-

ment of adipose tissue inflammation in obesity [202–
204]. Deletion of IL-10 in B cells enhances adipose

inflammation and insulin resistance in HFD-induced

obese mice [205].

Besides, the expression of the cholinergic receptor

nicotinic a2 subunit (CHRNA2) is induced in subcuta-

neous fat during beiging [206]. Though the distribution

of cholinergic parasympathetic nerves is sparse in the

WAT [28], ChAT-eGFP reporter, which express an

enhanced green fluorescent protein (eGFP) under the

control of the transcriptional regulatory element of

the gene encoding choline acetyltransferase (ChAT)

the rate-limiting enzyme in acetylcholine synthesis,

labels eGFP-positive cells among immune cells includ-

ing B lymphocytes, T lymphocytes, and macrophages

within the WAT [206]. The immune subtypes could

therefore function as a source of acetylcholine to sig-

nal to the Chrna2-expressing beige adipocytes [206].

DCs

Context-dependent role in adipose immune

microenvironment

The adipose tissues contain the two major subsets of

DCs: conventional dendritic cells (cDCs) and plasma-

cytoid dendritic cells (pDCs). The conventional DCs

are known for antigen presentation and initiation of

T-cell response [207,208]. The adipose tissue DCs are

predominantly CD11b+ cDCs and make up the bulk

of CD11c+ cells in adipose tissue upon HFD exposure

[209]. CD11c+ populations are elevated in obesity and

contribute to tissue inflammation and insulin resistance

in HFD-induced obesity [210]. CD11c+CD64- distin-

guish adipose tissue DCs from macrophages which are

marked by CD64+, and cDCs express MHCII and cos-

timulatory receptors, which render them to stimulate

CD4+ T-cell proliferation [209]. The recruitment of the

cDCs is largely dependent on the chemokine receptor

C-C motif chemokine receptor 7 (CCR7), and DC

accumulation during obesity is attenuated in Ccr7-/-

mice and is associated with decreased adipose tissue

inflammation and insulin resistance [209]. In obese

patients, the presence of CD11c+CD1c+ DCs is corre-

lated with BMI and an elevation in Th17 cells, and

these DCs promote ex vivo Th17 differentiation [211],

the CD4+ T-cell subset with key proinflammatory

function [212]. Though the cDCs contribute to the tis-

sue inflammation in obesity, they acquire a tolerogenic

phenotype through upregulation of pathways involved

in adipocyte differentiation in visceral WAT to accom-

modate the tissue expansion at the early stage of obe-

sity [213]. Specifically, the activation of the Wnt/b-
catenin and peroxisome proliferator-activated receptor-

c (PPARc) pathway in the two subpopulations of

cDCs, cDC1 (CD11chiMHCII+CD11b-), and cDC2

(CD11chiMHCII+CD11b+) subsets, respectively, sus-

tains a tolerogenic phenotype to suppress the local

inflammation and delay the onset of insulin resistance

[213]. Though present at relatively lower frequency in

comparison with cDC, pDCs increase in the visceral

WAT during prolonged HFD and cause Treg decline

via IFN-a production, thereby leading to compromised

insulin sensitivity [214].

NK cells

Proinflammatory in adipose immune

microenvironment

NK cells contribute to the development of obesity-as-

sociated insulin resistance. HFD feeding increases NK

cell numbers and the production of proinflammatory

cytokine TNF-a in eWAT [215]. Depletion of NK cells

leads to decreases in adipose tissue macrophage num-

bers and tissue inflammation, accompanied by

improvement in obesity-induced insulin resistance

[215]. A distinct NK subpopulation expressing the IL-

6 receptor a (IL-6Ra) and colony-stimulating factor 1

receptor (CSF1R) is identified which expands in obe-

sity [216]. Ablation of the NK subpopulation or
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Fig. 6. Summary of the cellular components in the white adipose tissues and their associated functions. The white adipocytes,

macrophage, eosinophil, neutrophil, ILC2, Treg cell, cd T cell, B cell, cDC, and NK cell are illustrated together with the sympathetic nerves,

sensory nerves, and blood vessels. cDC, conventional dendritic cell; ILC2, group 2 innate lymphoid cells; NK cell, natural killer cell; Treg cell,

regulatory T cell.
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conditional inactivation of IL-6Ra or signal transducer

and activator of transcription 3 (STAT3) in NK cells

prevents obesity and insulin resistance [216].

Conclusions

The WAT represent one key metabolically active

reservoir filled with humming intercellular communi-

cations among many of the cell types either

residential or migratory (Fig. 6). The intricate multi-

directional dialogue ensures coordinated responses in

the determination of energy storage, consumption,

partition, and tissue environment. The highly dynamic

nature of the WAT such as in lipolysis and thermo-

genic capacity alteration endows it as an attractive

target in therapeutics, though the predominant func-

tion of beige adipocytes in fuel utilization other than

thermogenesis and the modifiable potential of the

neuroimmune axis in those processes remain to be

fully elucidated. With lingering questions just starting

to be resolved among the intensively explored cell

types, new players are emerging. For instance, a sub-

population of mouse WAT perivascular mesenchymal

cells termed fibro-inflammatory progenitors (FIP) is

found to activate proinflammatory signaling cascades

shortly after the onset of HFD feeding and regulate

proinflammatory macrophage accumulation [217].

More recently, the single-cell or single-nuclear

sequencing datasets have yielded rich information on

the cellular heterogeneity and expression profiles of

individual cell types [86,122,124,218–222], and pertur-

bational studies would provide an in-depth under-

standing of the intercellular signaling axis and

network. Further, the role of peripheral innervation

on adipose tissue metabolism becomes increasingly

recognized as has been reviewed [52,223,224], unravel-

ing a therapeutic opportunity to reshape the energy

balance by modulating the neuronal pathways. With

the emerging evidence demonstrating the importance

of individual cell types, collaborative research efforts

on how the neuronal and immune components may

interplay will provide invaluable knowledge to under-

stand the systemic metabolism both at the organismal

and cellular levels.
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