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Abstract
Purpose of Review Obesity is a significant international public health epidemic with major downstream consequences on
morbidity and mortality. While lifestyle factors contribute, there is an evolving understanding of genomic and metabolomic
pathways involved with obesity and its relationship with cardiometabolic risk. This review will provide an overview of some of
these important findings from both a biologic and clinical perspective.
Recent Findings Recent studies have identified polygenic risk scores and metabolomic biomarkers of obesity and related
outcomes, which have also highlighted biological pathways, such as the branched-chain amino acid (BCAA) pathway that is
dysregulated in this disease. These biomarkers may help in personalizing obesity interventions and for mitigation of future
cardiometabolic risk.
Summary A multifaceted approach is necessary to impact the growing epidemic of obesity and related diseases. This will likely
include incorporating precision medicine approaches with genomic and metabolomic biomarkers to personalize interventions
and improve risk prediction.
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Introduction

The epidemic of overweight and obesity is an important contrib-
utor to short- and long-term cardiometabolic morbidity and mor-
tality across the world. The negative health consequences of
obesity reach across the life span contributing to adverse out-
comes for adults, and unfortunately now even in children.
While lifestyle factors such as diet and sedentary behavior con-
tribute, novel insights including from genomic and metabolomic
studies have highlighted the underlying biology, and, in parallel,
have identified clinically relevant biomarkers for personalized
medicine approaches to potentially decrease the prevalence of
obesity and improve cardiometabolic outcomes.

Obesity: the Scope of the Problem

Epidemiology The prevalence of overweight (body mass in-
dex [BMI] ≥ 25) and obesity (BMI ≥ 30) has reached epidemic
proportions in developed countries such as the United States
(U.S.), and is starting to increase in prevalence even in the
developing world. In the U.S., greater than 40% of adults
are obese and Hispanic and Black adults have higher rates of
obesity [1]. Internationally, the prevalence of obesity nearly
doubled between 1980 and 2014. Sadly, rates of childhood
obesity are also rising, creating additional concern for the true
extent of long-term health consequences [2]. For example, in
the U.S., the 2015–2016 NHANES study reports that 20.6%
of children and adolescents 12–19 years old are obese [3].
These rising rates of obesity contribute to significant morbid-
ity and mortality worldwide [4–8]. In 2010, overweight/
obesity were estimated to account for 3.4 million deaths per
year globally [9].

Cardiometabolic Consequences of Obesity Obesity is a major
risk factor for metabolic diseases including dyslipidemia, in-
sulin resistance, type 2 diabetes mellitus (T2DM), hyperten-
sion, and non-alcoholic fatty liver disease (NAFLD) (Fig. 1).
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A systematic review and meta-analysis of 37 studies noted
childhood overweight/obesity to be associated with a higher risk
of T2DM in adulthood (odds ratio [OR] 1.70, 95% confidence
interval [CI] 1.30–2.22) [10]; a 10-kg increase in body weight is
associated with 3.0 mmHg and 2.3 mmHg in systolic and dia-
stolic blood pressure, respectively [11]; and high BMI (75th vs.
25th percentile) is associated with increased risk of NAFLD (OR
1.96, CI 1.51–2.56 for Blacks; OR 2.33, CI 1.70–3.19 for
Whites) [12]. Obesity also increases risk of downstream cardio-
vascular disease (CVD)–relatedmorbidity andmortality and oth-
er consequences, partially mediated through these metabolic risk
factors. Markers of obesity such as BMI and waist-hip circum-
ference are independent predictors of atherosclerotic CVD and
CVD events [13]. These rising rates of obesity contribute to
significant morbidity and mortality worldwide [4–8], with each
five-unit increase in BMI above 25 kg/m2 associated with a 30%
increase in overall mortality, 40% increase in ischemic heart
disease and stroke mortality, 120% increase for diabetes-related
mortality, 80% increase in hepatic mortality, and a 10% increase
for cancer-related mortality [14]. In 2017, overweight/obesity
were estimated to account for 4.72 million deaths per year [15].
Even in adolescent obesity, a study found increased risk of death
attributable to coronary artery disease in adulthood after adjust-
ment for sex, age, and sociodemographic characteristics (hazard
ratio [HR] 4.9, CI 3.9–6.1) [16] and obesity is associated with
presence and progression of subclinical atherosclerosis [17–19].
Further, obesity is related to the increasing incidence of heart

failure with 9% of cases in males and 14% of cases in females
being attributable to obesity [17, 20–22]. Obesity is also an
established risk factor for stroke (4% increased risk of ischemic
and 6% increased risk of hemorrhagic stroke per 1 unit increase
in BMI) [11], atrial fibrillation (RR 1.28, CI 1.20–1.38 per 5 unit
increase in BMI) [23], and venous thromboembolism (RR 2.39,
CI 1.79–3.17) [24, 25].

While these studies provide strong evidence for the associ-
ation between obesity and cardiometabolic endpoints, such
observational studies can be prone to unmeasured confound-
ing. Mendelian randomization leverages genetic variants as
instrumental variables for causal inference to help determine
potential causality between an intermediate factor and an end-
point. Recent Mendelian randomization studies of obesity
have shown that genetic susceptibility to obesity is associated
with cardiometabolic diseases, suggesting that obesity has a
causal association (i.e., not just due to confounders) with these
diseases, including hypertension, hypertriglyceridemia,
T2DM, coronary artery disease, atrial fibrillation, venous
thromboembolism, aortic stenosis, and heart failure [26–28].
Mendelian randomization analyses of polygenic risk scores
for obesity traits including BMI, waist-to-hip ratio (WHR),
and BMI-adjusted WHR have identified additional causal as-
sociations with stroke, chronic obstructive pulmonary disease,
lung cancer, non-alcoholic fatty liver disease, and renal fail-
ure, further informing the global impact of obesity on human
disease [29].

Heterogeneity in Development of Adverse Cardiometabolic
Consequences of Obesity Although it is clear that obesity is
a strong risk factor for these cardiometabolic consequences,
there is marked heterogeneity in their development, compli-
cating risk prediction models [30]. For example, a 2008
NHANES study examined the prevalence of poor metabolic
health in obesity and found that a surprising one-third of obese
individuals were metabolically healthy despite being obese
when evaluating the prevalence of cardiometabolic abnormal-
ities (hypertension, elevated levels of triglycerides, fasting
plasma glucose, C-reactive protein, insulin resistance, and
low high-density lipoprotein [HDL]) [31]. Younger age,
non-Hispanic Black ethnicity, and higher physical activity
were independent correlates of metabolic health in overweight
and obese individuals. Similar heterogeneity is seen in devel-
opment of CVD outcomes in individuals with obesity: a sys-
tematic review of all-cause mortality for obesity demonstrated
that while obesity was a consistent risk factor, hazard ratios
varied from 0.95 to 1.29 across BMI categories with the ma-
jority of patients with obesity not suffering from the endpoint
[32]. Given this heterogeneity, additional measures of obesity
and body fat distribution, such as WHR, may be better
markers than BMI for certain cardiometabolic comorbidities.
For example, a polygenic risk score for waist-to-hip ratio was

Fig. 1 Genomics and metabolic pathways of obesity and associated
cardiometabolic risk. Obesity is a systemic disease with impact on the
liver, heart, adipose tissue, skeletal muscle, and brain, particularly the
hypothalamic-pituitary axis. High-throughput multi-omic profiling
(genomic, epigenomic, transcriptomic, proteomic, metabolomic, and
microbiome) has advanced the understanding of dysregulated molecular
pathways in obesity to improve prediction of cardiometabolic risk.
Abbreviations: POMC, pro-opiomelanocortin; LEPR, leptin receptor;
LEP, leptin; MC4R, melanocortin 4 receptor; FTO, fat mass and
obesity-associated gene; PPM1K, protein phosphatase 1K; PEMT,
phosphatidylethanolamine N-methyltransferase; BCAAs, branched-
chain amino acids; T2DM, type 2 diabetes mellitus; CVD
cardiovascular disease; NAFLD, non-alcoholic fatty liver disease
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associated with T2DM and coronary heart disease even after
adjustment for BMI [26, 33].

This disconnect between obesity measures and cardiomet-
abolic consequences leads to incomplete risk prediction
models and difficulty in identifying obese individuals with
the greatest need for therapeutic interventions to prevent fu-
ture events. While lifestyle factors such as diet and sedentary
behavior are important risk factors for overweight and obesity,
and public health measures aimed at the prevention of obesity
nationally and internationally through targeting these lifestyle
factors are key, it is also imperative to understand the biology
and related biomarkers that could help prevent and treat over-
weight and obesity to prevent downstream consequences.

The Genetics of Obesity: a Prototypical Common
Complex Genetic Disease

Monogenic Forms of ObesityMonogenic forms of obesity iden-
tified through linkage analyses of families with obesity account
for an extremely small proportion of obesity. These include
syndromic and nonsyndromic forms of obesity and usually result
in severe obesity that manifests in childhood. Syndromic mono-
genic obesity disorders are rare (1 in 565 to < 1 in 1,000,000)
[34] and include Bardet-Biedl syndrome, an autosomal recessive
disorder accompanied by retinal defects and caused by one of 21
genes that encode structure and function of cilia [35–37], and
Prader-Willi syndrome, caused by loss of imprinted genes that
are paternally expressed from the chromosome 15q11-q13 re-
gion and accompanied by hypogonadism, short stature, and mild
learning and behavioral problems [38]. Nonsyndromic mono-
genic forms of obesity are caused by loss-of-function variants
in the leptin (LEP), the leptin receptor (LEPR), pro-
opiomelanocortin (POMC), or melanocortin 4 receptor (MC4R)
genes which impact obesity susceptibility usually through dys-
regulated food intake [39–42].

Polygenic Common Complex Obesity: Common Variants,
Common Disease Although obesity is influenced by lifestyle
and environmental factors, heritable genetic determinants that
contribute to obesity risk and the underlying heritability of
obesity have been identified. Heritability estimates for obesity
calculated from studies of families range from 59 to 77% [43,
44]. Overweight and obesity in the majority of the population
operates as a prototypical common complex disease. Early
genome-wide studies that attempted discovery beyond candi-
date gene studies utilized linkage analysis in families with
non-monogenic obesity, operating under the assumption that
genetic discovery techniques for monogenic diseases would
also be useful in common complex diseases. These first
genome-wide linkage analyses of obesity identified a locus
on chromosome 10p [45] that was replicated in two additional
cohorts [46, 47]. Fine-mapping of this locus identified associ-
ation of BMI with common variants in glutamate

decarboxylase 2 (GAD2) [48]; however, these results were
not widely replicated [49, 50]. The first genome-wide associ-
ation studies (GWAS) of BMI and childhood and adult obe-
sity identified common intronic single nucleotide polymor-
phisms (SNPs) in the FTO (fat mass and obesity associated)
gene as the most strongly associated gene, with each risk allele
increasing obesity risk 1.2 times compared with no risk alleles
[51–53]. Common SNPs in FTO have remained the most con-
sistent and strongest GWAS locus. As GWAS expanded in
sample sizes through collaborative consortia studies and meta-
analyses, additional loci were identified albeit less significant
than FTO, and included common variants near MC4R (a
monogenic cause of obesity) [54], coding missense variants
in NPC1 (endosomal/lysosomal Niemann-Pick C1 gene), and
noncoding SNPs nearMAF (encoding the transcription factor
c-MAF), PTER (phosphotriesterase-related gene), and PRL
(prolactin) [55]. In fact, greater than 200 loci associated with
BMI and obesity have been identified by GWAS to date and
have estimated > 20% of BMI heritability can be attributed to
inheritance of common variants [56, 57••].

Rare Variants, Common Disease? Unfortunately, these com-
mon variants identified from GWAS individually have small
effect sizes and in aggregate, loci from these initial GWAS
studies only explain 2–3% of the variance in BMI; even FTO
with high population frequency and the largest effect size only
explains 0.34% of inter-individual BMI variation [56, 58–60].
As such, as high-throughput next-generation sequencing tech-
nologies evolved, the genomics community looked to analysis
of rare variation as a solution to the conundrum of the “miss-
ing heritability” in common complex diseases, in line with the
“rare variant, common disease” hypothesis where variants al-
beit rare exert larger effect sizes and in aggregate can thus
account for a common disease. Interestingly, the first whole-
exome sequencing (WES) studies of obesity identified rare
coding variants in the known monogenic obesity gene LEPR
[61, 62], suggesting that this gene contributes to both mono-
genic and more common later-onset forms of obesity. These
WES also identified new genes such as density lipoprotein
receptor–related protein 2 (LRP2), uncoupling protein 2
(UCP2), dynein axonemal assembly factor 1 (DNAAF1)
[63], and laminin subunit beta 3 (LAMB3) [64]. A more recent
study of 2737 severely obese cases used exome and targeted
sequencing to identify this missing heritability and found rare
variants in Pleckstrin homology domain–interacting protein
(PHIP), diacylglycerol kinase iota (DGKI), and zinc-finger-
MYM-type-containing 4 (ZMYM4) [65•]. A large study using
a hybrid approach of whole-genome sequencing (WGS) and
GWAS confirmed considerable overlap between monogenic
and polygenic contributors to BMI and other anthropometric
traits, compromised of mostly common variants with small
effect sizes [66]. Overall, these studies suggest that a combi-
nation of common and rare variants contributes to the burden
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of common obesity, as the scientific community is finding to
be the case for many common complex diseases. A summary
of genes identified through genomic studies of obesity is pro-
vided in Table 1.

Insight into the Biology of Obesity Afforded by Genomic
StudiesWhile genomic studies have highlighted potential ge-
netic risk markers of obesity, they have also highlighted the
underlying biology of obesity risk. For example, genetic var-
iants in the leptin-melanocortin pathways (LEP, LEPR, LRP2,
POMC, and MC4R) contribute to obesity, at least in part,
through hypothalamic control of energy balance and suscep-
tibility to increased food intake. Leptin, secreted from adipose
tissue, acts in the arcuate nucleus of hypothalamic satiety cen-
ter where melanocortin neurons produce POMC that ultimate-
ly stimulate MC4R to reduce feeding [68]. PHIP enhances
transcription of POMC, lending further evidence to the bio-
logic pathways affected by genetic variants associated with
obesity. When GWAS studies first identified the association
between FTO and obesity, the biologic role of FTO was un-
known, but mouse models have subsequently shown the im-
portance of FTO in regulation of fat mass and adipogenesis
[69]. FTO is highly expressed in the hypothalamus and pitu-
itary and adrenal glands [83]; it has a role in development, as
postnatal mortality and growth retardation have been observed
in FTO deficiency [67]. Data has suggested that the influence
of FTO SNPs on obesity may be due to their impact on ex-
pression of neighboring genes [70, 71, 84]; however, work in
human fibroblasts and blood cells have confirmed the link
between SNP risk genotype and FTO expression [72–74].
From studies of NPC1 mutations in the lipid storage disease
Niemann-Pick type C, the NPC1 protein is known to be in-
volved in endosomal cholesterol transport in the central ner-
vous system, liver, and macrophages [77, 85, 86], but further
studies of the specific NPC1 variants associated with obesity
are warranted. The c-MAF transcription factor is involved in
cellular differentiation in the pancreas and adipose tissue as
well as tissue-specific gene expression, including insulin and
glucagon [87, 88]. At a molecular level, UCP2 functions in
oxidative phosphorylation and mitochondrial membrane
transport to regulate energy balance and ultimately body
weight [89]. In the same study that used WES to identify
LAMB3 to be associated with BMI, the investigators found
LAMB3 mRNA levels to be correlated with BMI and adipose
morphology and in vitro knockdown of LAMB3 inhibited
adipogenesis [64]. Additional loci identified by GWAS in
association with obesity have replicated genes implicated in
neuronal processes, hypothalamic function, and energy ho-
meostasis. Little is known about the biology of DGK1 and
ZMYM4.

Transethnic Genetic Studies of Obesity The majority of the
initial GWAS and WES studies was done in primarily

European cohorts. More recent studies have evaluated
transethnic genetic analyses (African, Hispanic/Latino,
Asian, and European descent) of BMI and obesity and found
consistency with previously reported SNPs like in FTO (lead
SNP effect 1.34%, standard error 0.10%, p = 2.3E−42); nearly
a quarter of 170 established BMI SNPs studied and 29 out of
36 fine-mapped BMI loci replicated in these analyses [90].
Further, the investigators found novel loci at LYPLAL1,
COBLL1, IRS1, SLC39A8, TFAP2B, and STK33/TRIM66,
expanding our understanding of the heterogeneity in genetic
architecture of obesity across diverse populations.

Polygenic Risk Scores in Obesity More recently, aggregating
these common variants in polygenic risk scores (PRS) has
demonstrated a stronger combined effect of many variants
[91–95]. Themost recent robust PRS, created from 2.1million
genetic variants identified from a GWAS of BMI [56], found a
strong correlation with BMI (0.292, p < 0.001) and a 13-kg
gradient in average weight comparing the top and bottom
deciles of PRS.. The effect of the PRS was comparable to that
of rare monogenic obesity-associated variants; individuals
with the top 1.6% of PRS had a mean BMI 4.1 kg/m2 higher
than the rest of population, equivalent to the BMI increase
seen in individuals with rare MC4R mutations [57••]. A high
PRS (i.e., the top decile of the 306,134 participants studied)
was associated with a 25-fold gradient risk of severe obesity,
including earlier in life with a mean higher weight of 3.5 kg by
8 years of age and 12.3 kg (both p < 0.0001) by 18 years of
age as compared with those in the bottom decile. However,
polygenic risk of obesity is not deterministic, as greater than
17% of these adults with a high PRS remained normal weight
or underweight [57••]. In addition to being a risk factor for
obesity, Khera et al. also found that a high BMI PRS is asso-
ciated with increased risk of cardiometabolic disease and mor-
tality, with a 23% increased risk of ischemic stroke, 27%
increased risk of coronary artery disease, 33% increased risk
of heart failure, 35% increased risk of hypertension, 40% in-
creased risk of venous thromboembolism, and 70% increased
risk of T2DM [57••]. Taken together, these findings suggest
that genetic variants, and in particular the combination of
many common variants such as through a BMI PRS, do not
only increase susceptibility to obesity, but also may help iden-
tify patients most at risk for severe obesity and cardiometabol-
ic complications to best target intervention strategies.

Genes, Obesity, and Lifestyle BMI-associated genetic variants
have been shown to be associated with food preferences,
thereby potentially modulating the impact of diet on obesity
and cardiometabolic outcomes [96–98], although the data are
inconsistent. Concordantly, in a pooled study of 30,904 indi-
viduals, an interaction of a PRS of 97 BMI-associated SNPs
and diet quality found an attenuated effect of PRS on obesity
risk in individuals who reported eating a healthier diet [99].
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Table 1 Overview of key genes identified from studies of obesity

Gene Biology Other associated phenotypes

Identified from genome-wide association studies (GWAS)

Fat mass and obesity-associated
gene (FTO) [47–49, 63, 65•,
67–69]

• Expressed in hypothalamus, and pituitary and adrenal grands
• Energy homeostasis, regulation of fat mass, and body weight
• Adipogenesis
• m6A demethylase, reduced m6A ghrelin methylation and

increased ghrelin expression

• Postnatal mortality
• Growth retardation
• T2DM

Melanocortin 4 receptor (MC4R)
[36, 38, 39, 50]

• Expressed in hypothalamus
• Acts as a receptor for pro-opiomelanocortin (POMC)-derived

peptides to regulate appetite, energy homeostasis, and satiety

• Monogenic obesity
• Hyperinsulinemia
• Hypertriglyceridemia
• Polyphagia
• Tall stature
• T2DM
• Hypertension

Endosomal/lysosomal
Niemann-Pick C1 gene (NPC1)
[51, 70–72]

• Ubiquitous expression, highest in immune cells and
hypothalamus

• Resides in endosomes and lysosomes and mediates
intracellular cholesterol trafficking

• Niemann-Pick disease type C
• Hypertriglyceridemia
• Coronary artery disease

c-MAF proto-oncogene (MAF) [51,
73–75]

• Ubiquitous expression
• Developmental and cellular differentiation processes in the

immune system, pancreas and adipose tissue
• Tissue-specific transcriptional regulation of gene expression

including insulin and glucagon

• Congenital cerulean cataract 4 (CCA4)
• Chronic obstructive pulmonary disease
• Lysophosphatidylcholine levels

Phosphotriesterase-related gene
(PTER) [51]

• Hydrolase activity
• Biology related to obesity is unknown

• Adolescent idiopathic scoliosis
• Fractures in osteoporosis
• Height

Prolactin (PRL) [51] • Anterior pituitary hormone
• Growth regulator with roles in immune cells
• Essential for lactation

• Chronic obstructive pulmonary disease
• Osteitis deformans

Identified from whole-exome sequencing (WES)

Leptin receptor (LEPR) [36, 39, 56,
57••]

• Receptor for leptin for regulation of body weight via
hypothalamic control to reduce feeding and regulate energy
balance

• Stimulates POMC

• Monogenic obesity
• Pituitary dysfunction
• Hypothyroidism
• High rate of childhood infections

Lipoprotein receptor-related protein
2 (LRP2) [58, 76]

• Regulation of leptin-melanocortin pathways
• Appetite regulation and generation of satiety signals in

hypothalamic neurons
• Multi-ligand endocytic receptor, including for leptin

• Donnai-Barrow/facio-oculo-acoustico-renal
(DB/FOAR) syndrome

• Developmental delay
• Urate levels
• Renal function and proteinuria
• Ocular phenotypes

Uncoupling protein 2 (UCP2) [58,
77–79]

• Separate oxidative phosphorylation from ATP
• Facilitate transfer of anions across inner mitochondrial

membranes
• Regulate energy balance, body weight, and thermoregulation
• Role in response to inflammatory stimuli

• Hyperinsulinemia hypoglycemia
• Hepatomegaly
• Predictive of lesser weight loss

Dynein axonemal assembly factor 1
(DNAAF1) [58, 80, 81]

• Stability of ciliary architecture • Primary ciliary dyskinesia (PCD)

Laminin subunit beta 3 (LAMB3)
[59, 82]

• Basement membrane protein
• Elevated LAMB3 mRNA levels correlate with BMI
• In vitro LAMB3 knockdown inhibits adipogenesis

• Growth delay
• Skin abnormalities including epidermolysis

bullosa

Pleckstrin homology domain
interacting protein (PHIP) [60]

•Binds insulin receptor substrate 1 protein and regulates glucose
transporter translocation in skeletal muscle

• Enhances transcription of POMC

• Developmental delay
• Sjögren’s syndrome
• Hypertension

Diacylglycerol kinase iota (DGKI)
[60]

• Regulates intracellular diacylglycerol concentrations • Schizophrenia
• Age-related cognitive decline
• Retinal degeneration

Zinc-finger-MYM-type-containing
4 (ZMYM4) [60]

• Regulation of cell morphology and cytoskeletal organization • Schizophrenia
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Conversely, in a randomized trial of 609 overweight or obese
individuals comparing low-fat vs. low-carbohydrate diets for
weight loss, patterns of alleles in three SNPs in genes relevant
to fat and carbohydrate metabolism (FABP2, PPARG,
ADRB2) showed no significant interaction with diet on
amount of weight loss at 12 months [100]. Genetic suscepti-
bility also interacts with other lifestyle factors in association
with obesity and related metabolic consequences. For exam-
ple, genetic susceptibility to obesity may be “unmasked” by
increasingly obesogenic environmental factors, such as ease
of access to inexpensive calorie-dense foods and reduced need
for physical activity [101]. Although initial studies showed
inconsistent results, a meta-analysis of FTO variants found a
modest interaction between genotype and physical activity on
obesity risk [102]. Multiple additional studies have described
the interaction of unhealthy diet and sedentary behaviors in
individuals with polygenic predisposition to obesity (32–69
variants) showing that the combination of lifestyle factors
and genetic risk is interactive on obesity risk [103–106].
Although the detailed biology of potential pleiotropy warrants
further study, the impact of genetic variants associated with
obesity on cardiometabolic phenotypes appears to be driven
through altered food intake and energy homeostasis.

Epigenetics and Obesity Epigenetic changes are modifications
to DNA that are heritable and can affect gene activity and
expression without changing the underlying DNA sequence,
for example, DNA methylation and histone modifications.
Epigenetic modifications can be induced by environmental
factors and can contribute to disease risk across the life span,
including in utero modifications that can transmit future dis-
ease risk. The study of epigenetic modifications, which have
both genetic and environmental effects, provides additional
insight into obesity and cardiometabolic disease risk. The
most well-studied epigenetic modification, DNAmethylation,
has been investigated through genome-wide, genetic variant
and candidate gene approaches in obesity and obesity-
associated traits. Genome-wide methylation analyses of whole
blood and adipose tissue show associations between methyl-
ation patterns of hypoxia-induced factor 3A (HIF3A) and oth-
er genes involved in adipogenesis, insulin, and glucose me-
tabolism with higher BMI [107]. Candidate gene approaches
to methylation identified pathways in eating behavior and lip-
id metabolism associated with obesity and related traits. FTO
may provide key epigenetic regulation as it has been identified
as a N6-methyladenosine (m6A) demethylase. An FTO SNP
associated with obesity and increased FTO expression shows
reduced m6A ghrelin methylation and increased ghrelin ex-
pression in blood cells, providing a mechanism for increased
food intake and preference for energy-dense food [73]. The
m6A activity of FTO provides a biologic link between obesity
and cancer risk, as FTO provides transcriptional regulation
impacting tumorigenesis [69].

Obesity Metabolomics: Novel Molecular Pathways
and Metabolic Biomarkers

Germline genetic variants provide a static view of risk of obe-
sity and related cardiometabolic disease. Environmental influ-
ences that change throughout the lifetime can dynamically
alter biologic pathways that may contribute to obesity and
cardiometabolic disease risk. Novel omic technologies have
yielded the opportunity to examine how biomarkers change
over time as chronic diseases develop and may provide more
proximal insight into dysregulated disease biology. These
technologic advances have allowed for the high-throughput
measurement of hundreds to thousands of metabolites in small
amounts of biospecimen samples enabling biomarker discov-
ery work. Molecular profiling of circulating metabolomic
measurements integrate environmental and genetic factors,
and thus can provide insight into obesity and risk of cardio-
metabolic complications, allowing simultaneous identification
of biology and biomarkers.

Branched-Chain Amino Acid Catabolic Pathway in Obesity
and T2DM Early studies applied high-throughput metabolo-
mics to studies of obesity in an unbiased fashion to identify
potential novel biological pathways and biomarkers related to
this disease over a decade ago. In a study of 74 obese and 67
lean individuals from the STEDMAN study, Newgard et al.
used targeted tandem flow injection mass spectrometry to
measure 53 metabolites in plasma and identified a cluster of
branched-chain amino acid (BCAA) and related mitochondri-
al catabolic byproducts that discriminated obese from lean
individuals. Further, this cluster of BCAA and related metab-
olites was associated with homeostatic model assessment
(HOMA, a marker of insulin resistance) in both obese and
lean individuals [108]. To determine whether BCAAs are
markers of the obesity and insulin resistance process or are
potentially involved in the causative pathway, Zucker obese
rats were fed standard chow vs. high fat chow vs. chow sup-
plemented with BCAAs. After 13weeks, despite lesser weight
gain due to lesser food intake, the BCAA-supplemented rats
were equally insulin resistant to those fed high fat chow, sug-
gesting that BCAAs are not merely markers but appear to be
involved in induction of insulin resistance in the setting of
obesity. Supportive of this, in other studies in both mice and
rodents, BCAA restriction has been shown to improve insulin
sensitivity and metabolic health [109, 110]. Potential mecha-
nisms of BCAA interference with insulin signaling were iden-
tified: insulin resistance was accompanied by phosphorylation
of mTOR and was reversed by treatment with rapamycin, an
mTOR inhibitor [108]. More recently, Vogelzangs et al. used
nuclear magnetic-resonance spectroscopy to measure 17 se-
rum metabolites in 634 overweight or obese adults without
T2DM and found BCAA levels associated with both hepatic
and muscle insulin resistance [111•].
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Determinants of elevations in circulating BCAA levels in
obesity are diverse. Decreased rates of BCAA oxidation in adi-
pose tissue secondary to suppression of catabolic enzymes likely
contribute to circulating levels [112]. Genetics appears to also
influence circulating BCAA levels: a genome-wide meta-analy-
sis of 16,596 individuals found the strongest association near the
protein phosphatase 1K (PPM1K) gene with higher circulating
levels of BCAAs and risk of T2DM; this gene encodes an acti-
vator of mitochondrial branched-chain alpha-ketoacid dehydro-
genase [113]. The microbiome also appears to play a role in
BCAA pathways in obesity and in BCAA levels. Ridura et al.
performed an elegant study of fecal transplantation from human
twins discordant for obesity into gnotobiotic mice [114]. Fecal
communities clustered based on twin obesity phenotype and
transplantation with the obese twin’s feces was sufficient to in-
duce obesity in the mice, with coordinated upregulation of
BCAA pathways in the mice as they developed obesity. A
2016 study of 277 lean and obese individuals without T2DM
found BCAAs to correlate with both insulin resistance and gut
microbiota, enriched with species for biosynthetic potential of
BCAAs and with fewer genes related to inward amino acid
transport, further showing the interrelated metabolomic and
microbiome pathways underlying obesity and cardiometabolic
risk [115]. These and other studies display the multifactorial
reasons and complex feedback loops that determine elevated
circulating BCAA levels in obesity which are determined partial-
ly by genetics; dietary sources including meat, fish, dairy prod-
ucts, and eggs; and the microbiome [116, 117].

Recently, the liver has emerged as an important organ for
BCAA catabolism in obesity. Insulin signaling inhibits
branched-chain α-keto acid dehydrogenase (BCKDH, the
first irreversible step in BCAA catabolism); fructose feeding
in rats, as seen in obesity, inhibits hepatic BCKDH via phos-
phorylation of its inhibitor kinase BDK leading to hepatic
lipogenesis, suppression of fatty acid oxidation, and increased
fat storage in the lipid [118]. In Zucker obese rats, a BDK
inhibitor molecule relieved the inhibition of BCKDH, lower-
ing circulating branched-chain keto acid (BCKA) and BCAA
levels, improving glucose tolerance and insulin resistance and
decreasing hepatic fat storage. Overexpression of the phos-
phatase PPM1K increased BCKDH activity and had similar
effects on BCAA levels and hepatic lipid metabolism. In the
setting of insulin resistance, impaired hepatic BCAA metabo-
lism is also linked to a compensatory upregulation of skeletal
muscle BCAA oxidation, altering mitochondrial substrate uti-
lization and decreasing acylglycine efflux [110]. Heart failure
is an important cardiometabolic consequence of both obesity
and T2DM and BCAA restriction in obese rats shifts myocar-
dial fuel metabolism in favor of fatty acids over glucose me-
tabolism and reduces myocardial triglyceride stores indepen-
dent of BCKDH [119].

In addition to highlighting a novel biological pathway un-
derlying obesity and insulin resistance, BCAAs have also

been shown to serve as biomarkers in obesity and obesity-
related diseases [120], including risk of incident T2DM, even
independent of BMI [121, 122]. In a study of metabolomic
profiling in 2422 individuals from the Framingham Offspring
Study, Wang et al. found that BCAA and related metabolites
were the metabolites most associated with measures of insulin
resistance, and further, these metabolites predicted risk of in-
cident DM up to 12 years in the future in individuals free of
insulin resistance or T2DM at baseline [121]. Circulating
BCAAs have also been identified as a biomarker for discrim-
ination of metabolic wellness independent of BMI. In a study
of 1872 individuals classified as metabolically well or unwell
based on impaired fasting glucose, hypertension, high triglyc-
erides, low HDL, or impaired insulin resistance, BCAA levels
were higher in metabolically unwell overweight individuals
compared with metabolically well obese individuals, suggest-
ing these metabolites may be more granular markers of meta-
bolic health than traditional clinical lab values [123].
Relatedly, BCAAs and related metabolites have been found
to be similarly upregulated between overweight-obese indi-
viduals and normal weight-obese individuals (defined as
BMI < 25 and body fat > 30% for women and > 25% for
men) compared to lean individuals [124]. Finally, circulating
BCAA levels have been shown to discriminate patients with
coronary artery disease incremental to clinical risk factors
[125, 126]. A summary of BCAA studies relevant to obesity,
as well as the subsequent metabolic pathways discussed, is
provided in Table 2.

Lipid-Related Metabolic Pathways in Obesity Identified
Through Metabolomic Profiling Evolution of mass spectrome-
try and other methods for comprehensive metabolomic profiling
has enabled discovery of a broader set of metabolic pathways
underlying obesity and related phenotypes, includingmany lipid-
related pathways. For example, lipid profiling of 1076 individ-
uals revealed higher ceramide levels (β = 2.01) and lower
lysophospholipids (β = − 1.44 to − 2.04) associated with BMI
(all p < 0.001) [127]. A second large study of 1176women found
higher sphingomyelin and diacylphosphatidylcholine levels and
lower lysophosphatidylcholines associated with waist circumfer-
ence and BMI; a subset of the associated lipids also correlated
with HOMA [144]. Two smaller studies replicated BCAA find-
ings and similarly identified choline-containing phospholipids to
be lower in individuals withmetabolic unhealthy obesity as com-
pared with normal weight metabolically healthy or metabolically
health obesity [128, 145]. A factor composed of
lysophosphatidylcholines was inversely associated with cardio-
metabolic biomarkers such as hemoglobin A1C (β = − 0.010,
p = 0.028, 95% CI [− 0.018 to − 0.001]) and CRP (β =− 0.22,
p < 0.001, 95% CI [− 0.334 to − 0.110]) in metabolically healthy
obese, and with HOMA (β = − 0.118, p = 0.021, 95% CI [−
0.217 to − 0.018]) in metabolically unhealthy obese; and a
diacyl-phosphatidylcholine factor was directly correlated with
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Table 2 Overview of metabolomic studies of obesity

Study population and sample size Platform Key significant
metabolites

Other outcomes

Obesity/BMI

STEDMAN [104]
- 74 obese
- 67 lean

Targeted MS/MS • BCAAs and aromatic AAs
• C3 and C5 acylcarnitines
• Glycine (−)

Insulin resistance

European Diogenes Study [107]
- 634 overweight/obese

NMR • BCAAs
• Triglycerides
• Lactate
• Glycine (−)

Hepatic insulin resistance and skeletal
muscle insulin sensitivity

MURDOCK [119]
- 610 overweight
- 852 obese
- 410 lean

MS/MS • BCAAs Metabolic health

- 43 normal weight obesity [120]
(BMI < 25 and body fat > 30% for

women and > 25% for men)
- 110 overweight/obesity
- 26 lean

LC ESI-MS • BCAAs and aromatic AAs
• Linoleic acid

Body composition subtypes

SAFHS [123]
- 1431 adults

LC ESI-MS/MS • Cholesterol esters
• Triacylgylcerols
• Ceramide
• Lysophospholipids (−)

Anthropometric and biochemical
measurements

Western Australian Pregnancy Cohort
[124]
- 1176 women

MS • Sphingomyelins
• Diacylphosphatidylcholines
• Lysophosphatidylcholines (−)

Waist circumference
Insulin resistance

- 34metabolically healthy obese [125]
- 38 metabolically unhealthy obese

LC/MS & GC/MS • Glycerophosphocholine (−)
• Glycerol 1-phosphate (−)

Metabolic health

- 107 metabolically healthy obese
[126]

- 100 metabolically unhealthy obese
- 78 normal weight metabolically
healthy

LC-MS/MS • BCAAs
• Diacylphosphatidylcholines
• LCAC (−)
• Acyl-lysophosphatidylcholines

(−)
• Alkyl-lysophosphatidylcholine

(−)
• Acyl-alkyl-phosphatidylcholine

(−)

Metabolic health
Cardiometabolic biomarkers

- 10 obese without T2DM [127]
- 9 obese T2DM
- 11 lean

LC/MS • Lysophosphatidylcholines (−)

Boston Puerto Rican Health Study
[128]
- 781 adults

LC/MS • 148 metabolites correlated
metabolites with BMI

• 86 metabolites correlated with
SSB intake

• Phosphatidylcholine and
lysophospholipid
pathways linked to SSB intake
and obesity

Sugar-sweetened beverage (SSB)
consumption and obesity risk

- 14 obese without T2DM [129]
- 10 T2DM
- 12 lean

MS/MS • LCACs
• Free Carnitines

Glycemic control
Acylcarnitines levels following insulin

infusion

- 6 obese [130]
- 6 lean

Before and after 5-day high-fat diet

MS/MS • Plasma SCACs
• Skeletal muscle AAs (−)
• Skeletal muscle MCACs

Plasma and skeletal muscle
metabolomics

Six independent cohorts [131]
- 739 adults

Targeted MS • BCAAs and aromatic AAs
• MCACs and LCACs
• Glycine (−)

Age

- 35 men [132]
- 47 women

NMR • Serine (−)
• Glycine (−)

Metabolic health
Activity Energy Expenditure
Sedentary Time and Activity Reporting

Questionnaire

TwinsUK Registry [133] UPLC-MS/MS • Nucleotides, including urate Cardiovascular events

174    Page 8 of 19 Curr Cardiol Rep (2020) 22: 174



Table 2 (continued)

Study population and sample size Platform Key significant
metabolites

Other outcomes

- 1969 twins • Peptides
- 85 obese [134]
- 42 non-obese

LC ESI-MS/MS • Kynurenine/tryptophan ratio
• Serotonin (5-HT) and indoles (−)

Interleukin-6
C-reactive protein

Gestational obesity

HAPO Study [135••]
- 1600 pregnant women

Targeted MS/MS • BCAAs and aromatic AAs
• Glycine (−)
• Triglycerides
• NEFA
• MCACs
• LCACs

Insulin resistance

HAPO Study [136]
- 1412 pregnant women

Targeted MS/MS and
Non-targeted GC-MS

•Variants in glucokinase regulatory
protein
gene associated with palmitoleic
acid

GWAS
Insulin resistance

Pediatric obesity

- 80 obese children [137]
- 40 normal weight children

LC-MS/MS • Glutamine (−)
• Methionine (−)
• Proline (−)
• Phosphatidylcholines (−)
• LCACs

Pubertal stage

- 2191 healthy participants (age
3 months to 18 years) [138]

LC-MS/MS • BCAAs and aromatic AAs
• C3 carnitine
• Citrulline (−)
• Glycine (−)

Pubertal stage

- 524 adolescents (age ~ 13 years)
[139]

Non-targeted LC-MS • BCAAs
• Diacylgylcerols
• Steroid hormones
• LCACs

Metabolic health

Systematic review [140]
- 10 studies
- 2673 participants

Varied • BCAAs and aromatic AAs
• Lipid metabolism

Insulin resistance

Behavioral weight loss intervention

Weight Loss Maintenance Study [141]
- 500 participants with ≥ 4-kg weight
loss
- 22 participant independent
validation cohort

Targeted MS/MS • BCAAs and associated catabolites Change in insulin resistance independent
of amount of weight lost

Surgical weight loss intervention

- 16 gastric bypass [142]
- 17 dietary intervention

Matched 10 kg weight loss

MS/MS • BCAAs, total AAs and C3 and C5
acylcarnitines
derived from BCAA oxidation
decreased after
gastric bypass but not dietary
intervention and
correlate with insulin resistance.

Insulin resistance

- 10 gastric bypass [143]
- 10 laparoscopic adjustable gastric
banding

~ 20% weight loss

MS/MS • BCAAs, C3 and C5 acylcarnitines
decreased
similarly between surgical
groups and correlate with
insulin resistance

Insulin resistance

Except where specified by (−), higher metabolites levels are associated with increased BMI or other outcomes noted in the table. In studies where
examined, metabolic health is defined as a combination of one or more abnormal measures of waist circumference, blood glucose, hypertension,
dyslipidemia, and insulin resistance

Abbreviations: MS, mass spectrometry;MS/MS, tandem mass spectrometry; LC, liquid chromatography; GC, gas chromatography; LC ESI-MS, liquid
chromatography-electrospray ionization-mass spectrometry;UPLC-MS/MS, ultra-high-performance liquid chromatography-tandem mass spectrometry;
NMR, nuclear-magnetic-resonance; BCAA, branched-chain amino acid; AA, amino acids; NEFA, non-esterified fatty acids; SCACs, short-chain
acylcarnitines; MCACs, medium-chain acylcarnitines; LCACs, long-chain acylcarnitines
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cardiometabolic markers in metabolically unhealthy obese indi-
viduals [145]. In mice, 12 weeks of high-fat feeding resulted in
reduction of lysophosphatidylcholines with the greatest changes
occurring in the first week [146]. Mechanistically, treatment of
isolated adipocytes and mice with lysophosphatidylcholines im-
proves glucose uptake in a dose-dependent manner [147]. A
recent study investigating the metabolic mechanisms linking
sugar-sweetened beverage intake and obesity used plasma
metabolomic profiling of 781 individuals and found phosphati-
dylcholine and lysophospholipid pathways to be enriched with
amount of beverage intake and BMI [148]. Lending further sup-
port, 8 of 10 genes in these pathways interacted with sugar-
sweetened beverage intake on BMI. Based on data from isolated
perfused rat livers [149] and obese beagles [150], decreased ac-
tivity of lecithin:cholesterol acyltransferase (LCAT)may contrib-
ute to altered lysophosphatidylcholine levels. Further, genetic
deficiencies or polymorphisms in phosphatidylethanolamine N-
methyltransferase (PEMT) may contribute to altered
lysophosphatidylcholine levels as data from both mice and
humans show risk of NAFLD in PEMT KO or polymorphisms
[129, 151, 152].

Fatty Acid–Related Pathways in Obesity Identified Through
Metabolomic Profiling Plasma long-chain acylcarnitines,
byproducts of mitochondrial fatty acid oxidation, are ele-
vated in individuals with obesity and T2DM compared to
lean individuals without metabolic syndrome and are as-
sociated with insulin resistance [130]. A study of 12 lean,
14 obese without T2DM, and 10 participants with T2DM
found elevated levels of long-chain acylcarnitines (C14:1,
C16, C18, C18:1) in subjects with obesity and T2DM
compared to lean controls [153]. Insulin infusion reduced
plasma levels of long-chain acylcarnitines in all groups but
patients with T2DM had a blunted response. In rodents,
high-fat feeding and obese, insulin-resistant Zucker rats
have accumulation of long-chain acylcarnitines in skeletal
muscle, representing incompletely oxidized lipid species
and reporting on impaired mitochondrial fatty acid β-
oxidation [154]. This substrate accumulation leads to mi-
tochondrial stress and ultimately impaired responsiveness
to insulin [131]. A study of plasma and skeletal muscle
metabolomics from 6 obese and 6 lean individuals before
and after high-fat diet found increased medium-chain
acylcarnitines (C6, C8, C10:2, C10:1, C20 and C12:1) in
skeletal muscle of obese subjects after high-fat diet, but
decreased in lean subjects, potentially providing further
evidence to the mechanisms of altered skeletal muscle me-
tabolism in obesity [132]. Obesity and cardiometabolic
disease represent pro-inflammatory states and though the
detailed causal mechanisms and tissue-specific sources re-
main to be further elucidated, it has been shown that
medium- and long-chain acylcarnitines activate pro-
inflammatory signaling pathways [133, 155].

Other Major Metabolic Pathways in Obesity Beyond BCAAs,
lipids, and fatty acid pathways, other biologic markers of me-
tabolism have been identified in obesity. Metabolomic profil-
ing of 739 subjects found in addition to the association of
clusters of lipids and amino acid metabolites with BMI, gly-
cine had an inverse association with BMI and has been found
to be directly related to insulin sensitivity [156]. Similarly, a
small study identified lower serine and glycine concentrations
in patients with metabolic syndrome risk factors and greater
adiposity that increased with activity energy expenditure
[157]. A large study of 1969 unrelated individuals identified
49 significant metabolites associated with BMI across multi-
ple time points that validated in an independent cohort [135••].
In addition to amino acids and lipids, the investigators found
nucleotides related to purine metabolism (percent variation in
BMI explained by metabolites 7.3–16.4%) and peptides (4.6
to 6.9%) associated with obesity, with urate being the most
significant metabolite overall (p = 1.2E−40). Assessment of
CVD outcomes found lower event rates in participants with
healthier metabolomic profiles compared to normal/
overweight BMI with obese metabolic profile and obese indi-
viduals (2.6 events per hundred individuals, 3.4 events and 4.4
events, respectively, p = 0.003).

Metabolic Pathways and Biomarkers
of Obesity in Pregnancy and in Childhood
and Adolescence

In addition to genetic predictors of metabolic signatures and
obesity, pregnancy represents an important time point in the
lifespan, as obesity is associated with adverse pregnancy out-
comes (pre-eclampsia [OR 3.15, CI 2.96–3.35], gestational
hypertension [OR 2.91, CI 2.76–3.07], and gestational diabe-
tes [OR 3.56, CI 3.05–4.21]) and may predict future risk of
obesity and cardiometabolic disease for both the mother and
newborn [158–160]. For example, a large targeted metabolo-
mics study of 1600 pregnant women from four different an-
cestry groups identified BCAA, their carnitine esters, aromatic
amino acids, triglycerides, non-esterified fatty acids, and
medium- and long-chain acylcarnitines to be associated with
maternal BMI, glucose levels, and insulin sensitivity [136].
This study also replicated the negative correlation of glycine
with both maternal BMI and insulin resistance. Maternal BMI
is also associated with fetal metabolites and after correction
for maternal BMI and blood glucose, maternal levels of
branched-chain and other amino acids, acylcarnitines, lipids,
and fatty acids have been identified to correlate with fetal
growth, adiposity, and hyperinsulinemia [137–139]. A recent
study performed integrated GWAS and metabolomic analyses
of insulin resistance in 1412 pregnant women and identified
variants in the glucokinase regulatory protein gene that asso-
ciated with palmitoleic acid levels [140].
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With rising rates of childhood obesity, it is important to
understandmetabolic pathways and predictors of obesity early
in life, to better understand earlier biological underpinnings
and potential lifespan “setpoints,” and to target earlier thera-
peutic interventions. Interestingly, metabolomic profiling in
children and adolescents suggests some similar but also some
potentially different dysregulated metabolic pathways. A
study of 80 obese children and 40 normal weight children
between the ages of 6 and 15 found increased levels of two
long-chain acylcarnitines (C12:1 and C16:1) and decreased
levels of the amino acids glutamine, methionine, and proline
and of 9 phosphatidylcholines in obese children compared to
controls, suggesting changes in oxidative stress, β-oxidation,
and sphingomyelin metabolism in pediatric obesity [161]. No
correlations in metabolite concentrations were seen with pu-
bertal stage. Concordant with studies in adults, acylcarnitine
levels were higher in obese children and phosphatidylcholine
and lysophosphatidylcholines were lower, but in contrast to
adult metabolomic findings in obesity, this study found no
significant differences in BCAA levels. Conversely, a study
of 2191 children between the ages of 3 months and 18 years
did find associations between elevated levels of BCAAs, aro-
matic AAs and C3 carnitines (an intermediate of BCAA me-
tabolism), and BMI, and found distinct metabolite patterns
when comparing pubertal stages, with sex-dependent differ-
ences with males having higher metabolite levels in later pu-
bertal stages [162]. The investigators also found negative as-
sociations between citrulline and glycine and BMI, but only in
females. Similarly, a study of 524 overweight or obese ado-
lescents found higher levels of BCCAs and related metabo-
lites, as well as long-chain acylcarnitines, diacylglycerols, and
steroid hormones in overweight/obese adolescents with high
metabolic risk compared to non-overweight/obese with low
metabolic risk [163]. A systematic review of metabolomic
markers of insulin resistance in childhood obesity identified
BCAAs, aromatic amino acids, and acylcarnitines to be most
frequently associated with insulin resistance [164]. BCAAs
and tyrosine were associated with future metabolic risk in
cohorts with long-term follow-up; however, overall small
scale and heterogeneity of study design limits these results.
Larger metabolomic studies of children and adolescents that
consider pubertal stage and include racially diverse cohorts
are needed to better understand the metabolomics of obesity
and cardiometabolic risk across the life span.

Integrated Genomics and Metabolomics
for Greater Understanding of Obesity Biology

The combination of genomic and metabolomic research can
enhance our understanding of the biology of obesity. For ex-
ample, metabolomic profiling of six individuals with homo-
zygous loss-of-function mutations in LEP before and after

leptin replacement showed decreases in BCAAs and phospho-
lipids. These changes were not seen after caloric restriction,
suggesting that leptin administration leads to changes in sub-
strate utilization but that the effect of leptin on these metabo-
lites is independent of caloric intake [165]. These patients also
had increases in fatty acids and acylcarnitines, and overall a
metabolomic score of 37 metabolites was similar to that of
individuals with obesity in the absence of monogenic syn-
dromes, suggesting the utility of metabolomic scores regard-
less of genetic risk of obesity. Beyond GWAS of BCAA
discussed above, GWAS of metabolomic traits and even
metabolome-wide genome-wide association studies have
emerged as methods to understand the biologic impact on
disease phenotypes. These studies allow for integrated analy-
sis of genetic, metabolite, and environmental influences on
disease phenotypes and genetic variants can in part explain
metabolomic variance [166, 167]. For example, a study of
1809 individuals with targeted metabolomics identified that
the genetic variant is located in or near genes encoding the
enzymes associated with metabolic traits, including those re-
lated to lipid and fatty acid metabolism [141]. Interestingly, a
metabolic score of 49 BMI-associated metabolites was not
associated with a PRS for obesity, suggesting distinct path-
ways for these molecular predictors of obesity risk [135••].
Taking a broader approach to systems biology, integrating
genetics and metabolomics, or genetics and gene expression,
investigators have identified biologic pathways of adipogene-
sis and fatty acidmetabolism associated with weight [168] and
new genes associated with obesity [169, 170].

Personalized Approaches to Obesity Using
Genomics and Metabolomics: One Size Does
Not Fit All

There are many potential interventions for obesity, including
behavioral, dietary, exercise, pharmacologic, and surgical
therapies; however, there is marked heterogeneity among in-
dividuals in weight loss response to interventions and im-
provement in cardiometabolic risk factors like insulin resis-
tance [171, 172]. Despite attempts to characterize predictors
of response to weight loss intervention, only early weight loss
response in the first few weeks of intervention and adherence
to the weight loss program have been consistently identified
predictors [173]. Many studies have documented this hetero-
geneity of response of metabolic risk factors in the context of
weight loss [174]. This suggests that improvement in cardio-
metabolic health is not directly related to amount of weight
lost and that additional genomic and metabolomic measures
may be important in predicting heterogeneity.

As proof of this concept, a study evaluating a PRS com-
prised of 25 BMI-associated SNPs showed greater weight loss
after dietary counseling in individuals with low PRS than in
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individuals with higher PRS, with the PRS explaining 2.4% of
weight change variance at 1 year [175]. Conversely, a study of
a 15 SNP PRS was not associated with differential response to
lifestyle interventions in children and adolescents with obesity
[176]. Metabolites have also been shown to predict response
to weight loss interventions. For example, baseline levels of
BCAAs and related metabolites are responsive and predictive
of improvements in insulin resistance in behavioral weight
loss [171]. However, acylcarnitines levels, although elevated
in obesity, have not been found to respond to weight loss and
do not correlate with improvement in insulin resistance [177].
This suggests that certain metabolite levels could be used to
identify individuals whose metabolic health would benefit
most from specific types of weight loss intervention.

Surgical weight loss interventions also result in heteroge-
neous improvements in cardiometabolic risk factors. Three
years after bariatric surgery in obese individuals, gastric bypass
resulted in resolution of dyslipidemia in 62% of participants
compared to only 27% of patients treated with laparoscopic
gastric banding [178]. Similar heterogeneity was seen in this
population and others for improvement in T2DM and hyper-
tension after surgery [78, 79, 179–183]. As surgical interven-
tions are costly and pose both short-term surgical complications
and longer-term complications, the obesity guidelines indicate
the need to characterize patients “most likely to benefit from
and least likely to suffer adverse consequences of bariatric sur-
gical procedures” [184]. Studies of genetic predictors of weight
loss after gastric banding or bypass have identified polymor-
phisms in UCP2 to be predictive of lesser weight and fat-free
mass loss [142, 185]. A GWAS of 693 individuals found a
variant at 15q26.1 to be associated with greater weight loss after
gastric bypass; higher expression of ST8SIA2, a gene near this
locus, in omental fat was associated with greater weight loss
after gastric bypass surgery [143]. Patients undergoing gastric
bypass have been observed to have greater improvement in
metabolic health measures compared to dietary interventions,
even after accounting for the amount of weight lost [75, 76].
Concomitantly, BCAAs and related metabolites have been
shown to decrease to a greater extent after gastric banding or
bypass than after dietary weight loss in weight loss–matched
individuals and correlate with levels of insulin resistance [80,
81]. As such, there is already a robust literature supporting the
use of genetic and metabolic biomarkers for identifying those
individuals who may benefit the most from a given weight loss
intervention with regard to its weight loss and metabolic health
benefits. However, while these discovery studies are interesting
and in parallel highlight important biology, biomarker-guided
implementation studies to determine efficacy of such a person-
alized approach to weight loss interventions are necessary. As
well, studies that incorporate genomic and metabolomic mea-
sures may aid in prediction of response to weight loss pharma-
cotherapy to limit exposure to risks and costs of therapies for
those who do not respond with weight loss.

Future Directions: Multifaceted Approaches
to Tackle the Obesity Epidemic

While metabolomics lends itself well scientifically to under-
standing the biology and biomarkers of obesity given its met-
abolic basis, the future landscape of obesity omics research
will include a more comprehensive perspective incorporating
epigenomics, proteomics, and the exposome and other envi-
ronmental factors for a deep understanding of biology and a
more precise prediction of obesity-related outcomes. The in-
tegration of these layers in parallel with advances in bioinfor-
matics and computational biology is creating opportunities for
clinical translation to improve patient outcomes, and to create
a more personalized approach to obesity management and
prevention of cardiometabolic disease. Stratifying individuals
based on more personalized needs will hopefully allow for
allocation of health care resources to individuals with the
greatest need and to tailor interventions to a given patient.
However, while discovery studies are vital, implementation
research to show efficacy and utility of these personalized
approaches is also necessary. Clinical implementation of these
strategies will necessitate development of decision support
tools, digital health device integration, and scaling for
population-level strategies, with dynamic return of data to
patients and communities stand to improve current outcomes
for obesity and cardiometabolic disease.

Importantly, tackling the obesity epidemic will have to in-
clude partnerships between health systems, public health re-
searchers, and local and federal governments to create policies
and interventions that support the health of communities
throughout their lifespan. This will require addressing socio-
economic and health disparities that impact access to healthy
foods and the creation of opportunities for community educa-
tion and engagement. These endeavors require a multi-
disciplinary team approach incorporating primary care physi-
cians, endocrinologists, cardiologists, surgeons and dietitians,
patients, and communities.

Conclusion

The past two decades have ushered in an era that has enabled
application of high-throughput genomic and metabolomic
technologies to identify the biology and biomarkers of obesi-
ty. These multi-omic measures have created a framework of
important discoveries that can be used for precision medicine
approaches to tackle obesity throughout the lifespan.
Implementation studies are necessary to determine effective-
ness and clinical utility of these approaches. Regardless, a
multifaceted, interdisciplinary approach is essential to tackle
the obesity epidemic and thereby mitigate the downstream
adverse health consequences.
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