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CAD remains a major cause of morbidity and mortality world-
wide1 despite tremendous advances in prevention, diagnosis 
and treatment2. CAD is a complex physiological process that 

may manifest in multiple, possibly interacting risk factors3. Current 
treatments for CAD are based on traditional and modifiable CAD 
risk factors and result in only partial success, which is emphasized 
by the high recurrence rate of cardiovascular disease (CVD) in 
patients with balanced traditional risk factors4.

Blood serves as a liquid conveyor for molecules inside the body5. 
Of particular importance are the thousands of circulating small 
molecules, termed the serum metabolome, which provide unique 
insights into biological processes, and a valuable source for studying 
the multifactorial nature of CAD.

The gut microbiome is actively involved in the metabolism 
of blood metabolites. Several gut-microbiota-derived circulating 

metabolites are associated with CVD. Trimethylamine N‐oxide was 
established as a marker for CVD in humans6, with further evidence 
indicating pro-atherogenicity7 and prothromboticity8 in mouse 
models. Indoxyl sulfate is produced in the liver after degradation of 
tryptophan by bacterial tryptophanase, and was shown to be associ-
ated with arterial stiffness and peripheral vascular disease9. P-cresol 
is a product of colonic bacterial fermentation from phenylalanine 
and tyrosine and was shown to correlate with increased cardiovascu-
lar events10. In light of the above, we assume that many yet unknown 
factors contribute to the mechanism of CAD. With recent techno-
logical advances, it is now feasible to study these unknown factors 
in multi-omic data as well as to identify person-specific omic signa-
tures of CAD, thus promoting a personalized medicine approach.

Here, we recruited a cohort of 199 patients with ACS, for whom 
we obtained a multi-omic characterization, including metagenomic 
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Complex diseases, such as coronary artery disease (CAD), are often multifactorial, caused by multiple underlying pathological 
mechanisms. Here, to study the multifactorial nature of CAD, we performed comprehensive clinical and multi-omic profiling, 
including serum metabolomics and gut microbiome data, for 199 patients with acute coronary syndrome (ACS) recruited from 
two major Israeli hospitals, and validated these results in a geographically distinct cohort. ACS patients had distinct serum 
metabolome and gut microbial signatures as compared with control individuals, and were depleted in a previously unknown 
bacterial species of the Clostridiaceae family. This bacterial species was associated with levels of multiple circulating metabo-
lites in control individuals, several of which have previously been linked to an increased risk of CAD. Metabolic deviations in 
ACS patients were found to be person specific with respect to their potential genetic or environmental origin, and to correlate 
with clinical parameters and cardiovascular outcomes. Moreover, metabolic aberrations in ACS patients linked to microbiome 
and diet were also observed to a lesser extent in control individuals with metabolic impairment, suggesting the involvement 
of these aberrations in earlier dysmetabolic phases preceding clinically overt CAD. Finally, a metabolomics-based model of 
body mass index (BMI) trained on the non-ACS cohort predicted higher-than-actual BMI when applied to ACS patients, and the 
excess BMI predictions independently correlated with both diabetes mellitus (DM) and CAD severity, as defined by the num-
ber of vessels involved. These results highlight the utility of the serum metabolome in understanding the basis of risk-factor 
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sequencing of the gut microbiome, and untargeted serum metabo-
lomics. We identified a previously unknown bacterial species of the 
Clostridiaceae family that was depleted in ACS patients, and repli-
cated in a geographically distinct cohort, and showed that it is asso-
ciated with the levels of multiple circulating metabolites. We further 
identified a metabolic profile of ACS that intersects with a diverse 
set of established CAD risk factors, including diabetes, genetics, diet 
and microbiome. In addition, we found that metabolic deviations of 
ACS patients are person specific and correlate with clinical param-
eters and CVD outcomes. We further demonstrated that metabolic 
aberrations linked with microbiome and diet show a gradual trend 
in control participants with metabolic impairment, suggesting their 
involvement in earlier dysmetabolic phases preceding clinically 
overt CAD. Finally, a metabolomic-based model of BMI, predicted 
excess BMI levels for patients with ACS that correlated with an 
impaired glycemic status and disease severity.

Results
Comprehensive multi-omic characterization of ACS. We recruited  
199 participants with ACS at the Rabin Medical Center in Israel, 
for whom we obtained clinical and multi-omic profiling (Methods). 
These include demographics, anthropometrics, medical parameters, 
gut microbiome and serum metabolomics using two complemen-
tary platforms for a subset of 156 and 191 participants, respectively. 
For direct case-control comparisons, we leveraged a recently estab-
lished large cohort11,12, consisting of 970 non-ACS individuals, for 
which we measured the above data (Supplementary Table 1). We 
obtained omics data, using identical methodologies and platforms 
in subgroups of controls, which we further sampled for individuals 
matching for baseline characteristics (for the full cohort selection 
process see Extended Data Fig. 1 and Methods).

To profile the gut microbiome, we used shotgun metagenomics 
sequencing of stool samples, followed by an in-house computational 
pipeline (Methods). The serum metabolomics included two com-
plementary platforms: (1) untargeted mass spectrometry measured 
the levels of 961 metabolites, including lipids, amino acids, xeno-
biotics, carbohydrates, peptides, nucleotides and approximately 
30% un-named compounds (Supplementary Table 2); (2) addi-
tional 228 absolute-value-based plasma metabolites and ratios were 
measured by the proton nuclear magnetic resonance (1H-NMR) 
platform of Nightingale Health, expanding the detailed lipidomic 
profiles and adding measurements of clinically validated biomark-
ers (Supplementary Table 3). All biological samples (stool, serum) 
were collected near the index event (within 72 hours) to attenuate 
biological noise.

Broad gut microbiome and serum metabolomics patterns of 
ACS. Multiple previous studies had linked the meta-organismal 
pathway with CAD13,14. Serum metabolites are known to play a key 
role in mediating the metabolic and immune interactions between 
the microbiome and its host, thus providing a fundamental view 
into the complex dynamics of environmental exposures. To create 
a microbial and metabolic map under ACS, we compared the gut 
microbiome and serum metabolome profiles of the ACS patients 
with non-ACS controls, matched for potential microbiome and 
metabolome confounders, including age, sex, BMI, smoking status 
and DM (Supplementary Tables 4 and 5; Methods). As the impact 
of drug intake on the gut microbiome and serum metabolome was 
extensively demonstrated15,16, we applied a recently developed ana-
lytical pipeline to de-confound microbiome and metabolome altera-
tions from drug usage17 (Methods).

We found that the serum profile of patients with ACS exhibits a 
broad set of perturbations in serum metabolite levels (Fig. 1a and 
Supplementary Table 6), including 533 significantly altered metabo-
lites (10% false-discovery-rate (FDR) adjusted). Of these, only 29 asso-
ciations of metabolites were likely to be confounded by medication  

usage (Supplementary Table 7). Notably, we found that the serum 
metabolome of ACS followed a major depletion pattern, as 358 
metabolites (67%) measured higher on average in control partici-
pants (Extended Data Fig. 2a). This trend, however, was inconsis-
tent across major biological pathways (Extended Data Fig. 2b).

Type 2 DM (T2DM) is prevalent among patients with CAD18. 
While we matched the cohorts on DM, we asked whether the dia-
betic status explained significantly altered metabolic components 
by comparing the serum metabolome of normoglycemic to dia-
betic ACS patients. We found that 48 out of the 533 molecules (10% 
FDR adjusted) significantly differed between the two subgroups. 
Still, over 90% of the significantly perturbed metabolites were not 
explained by the glycemic status, suggesting that there are other 
mechanisms underlying this variation.

Next, we asked which genetic and environmental factors explain 
the levels of the altered circulating metabolites. To that end, we inte-
grated results from analyses that we recently performed, in which 
we estimated the explained variance (EV) of individual serum 
metabolites, based on a comprehensive set of factors, including host 
genetics, microbiome and dietary data19. Here, we further estimated 
the EV of each metabolite based on traditional risk factors of CAD, 
which include age, sex, anthropometrics, blood pressure, smoking 
and diabetic status (Methods). We found that diet and microbiome 
could better explain ACS-depleted metabolites, while traditional 
risk factors better explained ACS-enriched metabolites (two-sided 
Mann–Whitney U-test, P = 3 × 10−5 for diet; P = 8 × 10−4 for micro-
biome, P = 0.01 for traditional risk factors; Extended Data Fig. 2a).

Comparing the relative abundances of 766 bacterial species 
between ACS patients and non-ACS controls, we uncovered a 
distinct signature of the gut microbiome in ACS. We found that 
ACS patients had higher abundances of Proteobacteria compared 
to controls matched for age, sex, BMI, smoking status and DM  
(Fig. 1b; Kruskal–Wallis H-test, P = 0.002) in line with previous 
reports showing that Proteobacteria flourish in an inflammation 
state and are a marker of dysbiosis20.

We identified 20 bacterial genomes significantly enriched 
in either the ACS or the control individuals (FDR < 10%; 
Supplementary Table 8), none of which were confounded by differ-
ences in clinical parameters or drug usage (Supplementary Table 9).  
These results replicate previously reported findings, such as a rela-
tive depletion in butyrate-producing bacteria13,14 (Clostridium, 
Anaerostipes hadrus, Streptococcus thermophilus and Blautia), and 
enrichment in Odoribacter splanchnicus and Escherichia Coli21 in 
patients with ACS.

An ACS-related meta-organismal pathway. Among the 20 sig-
nificantly enriched genomes, we identified a previously unknown 
bacterial species of the Clostridiaceae family, indexed SGB 4712, 
which was depleted in the ACS cohort (two-sided Mann–Whitney 
U-test, P = 0.003; Extended Data Fig. 3a). To validate the robust-
ness of this depletion, we applied our computational quality control 
(QC) and mapping pipeline to samples from the MetaCardis study 
(Fromentin et al., unpublished), a geographically distinct cohort 
of northern European ancestry, consisting of four major groups 
of participants: ischemic heart disease (IHD; n = 319; including 
patients with ACS, IHD and heart failure due to IHD), healthy 
controls (HC; n = 275; matched to the IHD group on age and sex), 
metabolically matched controls (MMC; n = 218; controls matched 
with IHD cases on T2DM status and BMI) and untreated metaboli-
cally compromised controls (UMCC; n = 211; individuals with fea-
tures of the metabolic syndrome and thus at increased risk of IHD 
but receiving no lipid-lowering or antidiabetic or antihyperten-
sive drugs). Consistent with our findings, the relative abundance 
of SGB 4712 was lower in IHD compared with HC (two-sided 
Mann–Whitney U-test, P = 6 × 10−12), MMC (P = 0.002) and 
UMCC (P = 7 × 10−5), showing a gradual decrease of the relative  
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abundance of this species along populations with traditional risk 
factors for CAD (Extended Data Fig. 3b).

SGB 4712 was significantly associated with the levels of 15 cir-
culating metabolites (FDR < 1%; Spearman correlation P value; 
Supplementary Table 10) in the control cohort (Fig. 1c). Markedly, 
in the MetaCardis study, the sign of the correlation coefficient for 
all 15 metabolites with SGB 4712 replicated, with 10 of these asso-
ciations remaining significant (FDR < 10%; Spearman correlation 
P value; Supplementary Table 11). Several of these metabolites are 
previously reported to be associated with an increased risk of CAD. 
These include p-cresol glucuronide and p-cresol sulfate, two major 
metabolites of p-cresol, a product of colonic bacterial fermentation 
from phenylalanine and tyrosine, and were associated with CVD 
in hemodialysis patients22; indoxyl sulfate, a protein-bound uremic 

toxin which was suggested as a CVD risk factor in chronic kidney 
disease (CKD)9; and phenylacetylglutamine, a microbial metabolite 
associated with overall mortality and CVD in patients with CKD23, 
recently shown to contribute to CVD via driving platelet respon-
siveness and thrombosis through adrenergic receptors24. While 
SGB 4712 was negatively correlated with the above metabolites, it 
was positively correlated with ergothioneine, a naturally occurring 
amino acid shown to have antioxidant and cytoprotective capa-
bilities against cellular stressors in vitro25, and was recently shown 
to be an independent marker of lower risk of CVD and mortality 
in humans26. Finally, SGB 4712 was associated with seven com-
pounds of unknown chemical structure. These include X-11315 
and X-24473, which we predict to be diet derived, and are positively 
correlated with SGB 4712, and two compounds that we predict to 
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Fig. 1 | Microbiome and serum metabolomics signatures of ACS. a, A circular heatmap showing the top 200 metabolites that differ significantly between 
ACS and non-ACS control cohorts, matched for age, sex, BMI, smoking status and DM (Methods). Each slice represents a single metabolite, with its 
name indicated around the outer layer of the chart. The color code is indicated at the top of the panel. The outermost layer indicates the –log10(P value) 
(a logistic regression model adjusted for age and sex; Methods) for the enrichment of metabolites between the two cohorts, where orange/blue colors 
correspond to metabolites enriched/depleted in the ACS cohort. The next layer shows the –log10(P value) (a logistic regression model adjusted for age, 
sex and BMI) for each metabolite in diabetic versus normoglycemic ACS patients. Here, black/red colors correspond to metabolites enriched/depleted 
in diabetic patients. The next four layers show the EV of each metabolite by feature groups, as previously estimated19. The metabolites are first sorted by 
their categories, as indicated in the inner layer, and then by their directional enrichment between the two cohorts. b, The distribution of average phylum 
abundance (normalized to sum to 1.0) among non-ACS and ACS participants (unmatched controls, n = 335; matched controls, n = 64; unmatched  
ACS, n = 199; matched ACS, n = 64). P values refer to comparisons between the matched cohorts (Kruskal–Wallis). c, A circular heatmap showing  
15 metabolites that significantly correlate with the relative abundance of SGB 4712 (FDR < 1%, Spearman) in the control cohort. Each slice represents 
a single metabolite, with its name indicated at the outermost layer of the chart. The color code of each layer is indicated at the top of the panel. The 
outermost layer indicates the –log10(p value) (two-sided Mann–Whitney U-test) for the enrichment of metabolites between the two cohorts, where orange 
and blue colors correspond to metabolites enriched and depleted, respectively, in the ACS cohort. The next layer shows the Spearman correlation between 
each metabolite and the relative abundance of SGB 4712. The metabolites are sorted by their biological pathways, as indicated in the inner layer. Trad., 
Traditional; C&V, cofactors and vitamins; PCM, partially characterized molecules; P-C-G*, p-cresol-glucuronide*; PAGln, phenylacetylglutamine; DMTPA*, 
2,3-dihydroxy-5-methylthio-4-pentenoate (DMTPA)*.
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be tryptophan metabolites, X-11843 and X-11850, which are nega-
tively correlated with SGB 4712.

These results highlight the bacterial genome SGB 4712, as hav-
ing a potential protective role in CAD development, mediated by an 
array of circulating blood metabolites, several of which were previ-
ously shown to play a central role in the meta-organismal pathway, 
while others are unknown. Thus, upon further validation in experi-
mental studies, these metabolites may form new targets for attenu-
ation of CAD risk.

The metabolic signature of ACS is person-specific. CAD involves 
a heterogeneous set of risk factors, and while individuals with CAD 
share a common endophenotype, they typically exhibit a biologi-
cally distinct disease profile27. To gain a better understanding of 
the individual-level variability of ACS, we sought to examine the 
metabolic deviations from a non-ACS control and ask whether 
they are person specific. Thus, for each ACS patient, we matched a 
set of controls for age, sex and BMI (same sex, ∓ 5 years, ∓ 3 BMI 
points), resulting in a median of 11 controls per ACS individual, 
and a total of 135 ACS participants for which at least three con-
trols were assigned. We computed their individual deviations, and 
weighted the top 100 deviating metabolites per individual by their 
EV as previously estimated based on diet, microbiome, traditional 
risk factors and genetics (Methods). Finally, for every individual, 
we averaged these values per determinant factor, to obtain a vector 
of eight scores, four for either of ACS-enriched and ACS-depleted 
metabolites (Supplementary Table 12). These scores thus represent 
a weighted average of the association of the above four factors in the 
deviation of ACS-enriched and ACS-depleted metabolites.

We found a wide distribution of these scores, indicating that the 
metabolic deviation of ACS patients from their matched controls 
is person specific. These deviations exhibit remarkable differences 
between ACS-enriched and ACS-depleted metabolite sets with 
respect to their potential determinants (Fig. 2a,b). Notably, both diet 
and microbiome were far more dominant in associating with devia-
tions of ACS-depleted metabolites compared with ACS-enriched 
metabolites (two-sided Mann–Whitney U-test, P < 10−20 for both), 
suggesting that the microbiome may play a protective role in CAD.

While some patients may present with similar clinical pro-
files, their underlying physiological states and disease trajectories 
may differ. To emphasize this intra-CAD patient variability, we 
selected a homogeneous subgroup of ACS patients with respect to 
conventional risk factors. These include 17 male patients between 
ages 60 and 70 years, with low-density lipoprotein (LDL) in range 
0.70–1.30 mg ml−1 and glycated hemoglobin (HbA1C) below 6%. 
Despite sharing a similar clinical profile, this subgroup of ACS 
patients demonstrated heterogeneity in their metabolic deviations 
(Fig. 2c). As an example, two male patients with nearly identical 
clinical profiles (ages 63–65 years, LDL 0.77–0.82 mg ml−1, HbA1C 
5.5–5.2%), showed a notable difference in the above-computed 
scores (Fig. 2d). The first patient (blue) had greater metabolic devia-
tions explained by traditional risk factors, compared with the sec-
ond patient (orange). These patients also differed in their scores for 
metabolites which were explained by the microbiome, as the first 
patient had higher scores for ACS-enriched metabolites, while the 
second patient showed higher scores for ACS-depleted metabolites. 
This disparity suggests that even though CAD patients may share 
similar clinical profiles, the metabolic mechanisms underlying their 
atherosclerotic burden are different.

Next, we asked whether these individual-level scores are associ-
ated with known CAD risk factors. Notably, as age is a well-known 
independent traditional CAD risk factor28, we found two associa-
tions with age, which is considered to be a non-modifiable risk fac-
tor (Extended Data Fig. 4a,b). To understand whether these scores 
may embody a clinically important signature of CAD, we asked 
whether they are associated with disease state, clinical diagnoses 

and outcomes. We found that individuals who had a CVD-related 
outcome within 12 months of recruitment (Methods) showed 
larger deviations in metabolites explained by traditional risk factors  
(Fig. 2e; two-sided Mann–Whitney U-test, P = 0.005). This is despite 
age, sex, T2DM and smoking status not being predictive of these 
outcomes (P > 0.05 for all). Surprisingly, these individuals had sig-
nificantly lower scores for genetically related ACS-enriched meta-
bolic deviations (Extended Data Fig. 4c; two-sided Mann–Whitney 
U-test, P = 0.002). In addition, we found that ACS patients with 
T2DM had larger deviations in levels of ACS-enriched metabolites 
that are microbiome associated, compared with normoglycemic 
individuals (Fig. 2f; two-sided Mann–Whitney U-test, P = 0.003).

The microbiome plays a role in the early stages of CAD. 
Atherosclerosis is a progressive disease that develops over years, 
where each stage in the formation of an atherosclerotic plaque is 
characterized by a different pathological process29. In the early 
stages, the growth of an atherosclerotic plaque on the vessel wall is 
typically associated with impairment of the metabolic state30.

In an attempt to interpret the involvement of each metabolic 
component along the chronological timeline of CAD development, 
we applied our analysis of individual metabolic deviations to meta-
bolically impaired controls (defined as either diagnosis of T2DM, 
hypertension or dyslipidemia, or BMI > 35), and to a random subset 
of non-ACS individuals (Fig. 3 and Supplementary Tables 13 and 
14; Methods). We view the latter as representing the background 
variability of such scores in non-ACS participants. By construction, 
we expect that the ACS patients will have the highest scores on aver-
age, as the labeling of a metabolite as depleted/enriched is based 
on its trend from the comparison of ACS versus non-ACS control. 
When comparing the scores of these three groups, we found con-
sistent differences in score distributions. The metabolic aberrations 
linked with microbiome and diet show a gradual trend, with signifi-
cant metabolite deviations in control participants with metabolic 
impairment, compared with a random subset of control individuals 
(diet, Fig. 3a, two-sided Mann–Whitney U-test, P = 0.04; microbi-
ome, Fig. 3b, P = 0.007). In metabolites related to traditional risk 
factors, we observed no difference when comparing the metaboli-
cally impaired and the random control individuals (traditional risk 
factors, Fig. 3c, P = 0.7), while the ACS patients exhibited signifi-
cantly higher scores.

This suggests that the contribution of the microbiome and diet 
to ACS might be mediated through impaired metabolic status, as 
opposed to aberrations in metabolites related to traditional risk 
factors and genetics that are not yet manifested in metabolically 
impaired individuals.

Serum metabolomics predict higher BMI for ACS patients. 
Obesity is a major independent risk factor for CAD, influencing 
both known risk factors such as dyslipidemia, hypertension, glu-
cose intolerance and inflammatory state, and possibly yet unrec-
ognized mechanisms31. BMI measurement is used as a marker for 
obesity and an indicator of metabolic health32. As BMI was shown 
to be associated with a profound perturbation of the serum metab-
olome33, we asked whether and how the BMI–metabolome bal-
ance is disrupted in patients with CAD. To that end, we trained a 
gradient-boosting decision trees34 (GBDT) algorithm to predict 
BMI, based only on the serum metabolome profiles of participants 
in the control cohort, and applied it over a held-out test set, con-
taining both 156 controls and 156 subjects with ACS (Methods). 
Our metabolome-based model of BMI had superior performance 
when applied to the control test set (measured-predicted Pearson 
R = 0.67, P < 10−20) compared with its performance when applied 
on the ACS test set (R = 0.29, P = 2 × 10−4), suggesting that the  
metabolome–BMI pattern found in non-ACS subjects is perturbed 
in patients with ACS (Fig. 4a).
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To investigate these perturbations, we examined the differ-
ences between predicted and measured BMI in both the control 
and ACS test sets, here termed as ΔBMI. We found that our model 
predicted higher ΔBMI for ACS compared with non-ACS sub-
jects (Fig. 4b).

We next asked whether the metabolic patterns constituting 
the increased ΔBMI in ACS subjects might translate into clinical 
manifestation. We found that ACS patients with T2DM had signifi-
cantly higher ΔBMI compared with normoglycemic ACS patients 
across all BMI ranges, as a 1.0 s.d. greater ΔBMI was associated  
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with a 1.48-fold higher risk of T2DM (95% CI = 1.09–2.01; P = 0.01; 
a logistic regression model adjusted for BMI and age; Fig. 4c). 
Furthermore, we found that the number of diseased coronary arter-
ies, an index of the arteriographic extent of disease35, was associ-
ated with higher ΔBMI, as a 1.0 s.d. greater ΔBMI was associated 
with a 1.5-fold higher odds of having three vessels versus one vessel 
involved (95% CI = 1.03–2.19; P = 0.03; a logistic regression model 
adjusted for BMI, age and T2DM; Fig. 4d).

To validate the robustness of these results, we sought to repli-
cate these findings based on other types of metabolomics data 
and in an independent cohort. To that end, we applied the same 
prediction procedure to the NMR-based metabolomics data and 
observed even larger differences in ΔBMI between ACS and con-
trols (Extended Data Fig. 5; Methods). We further applied the 
same prediction scheme within our companion MetaCardis cohort 
(Fromentin et al., unpublished) and observed higher BMI predic-
tions for individuals with IHD compared with healthy and meta-
bolically matched controls (Extended Data Fig. 6a,b; Methods). In 
addition, diabetic individuals with IHD had significantly higher 
ΔBMI compared with normoglycemic IHD patients across all BMI 
ranges (Extended Data Fig. 6c).

Finally, we sought to infer which specific metabolites were the 
main drivers of the high ΔBMI in ACS patients. Using feature 
attribution analysis (SHapley Additive exPlanations, SHAP36), we 
computed the individual-level contribution of every metabolite 
(termed SHAP values) to the prediction of BMI in the held-out 
ACS test set (Supplementary Table 15; Methods). Next, we 
regressed ΔBMI against each metabolite’s SHAP value, adjust-
ing for BMI and T2DM, and found 59 metabolites with signifi-
cant associations (FDR 1%; Supplementary Table 16). Of these, 
two lipids, 1-(1-enyl-palmitoyl)-2-oleoyl-GPC (P-16:0/18:1) and 
1-(1-enyl-palmitoyl)-2-linoleoyl-GPC (P-16:0/18:2) were negatively 
correlated with BMI in the control cohort (Spearman ρ = −0.41 and 
−0.37, respectively). The latter was also significantly depleted in 
patients with more extensive disease (three-versus-one-vessel dis-
ease; two-sided Mann–Whitney U-test, P = 0.02). 5-(galactosylhy
droxy)-l-lysine was positively correlated with BMI in the control 
cohort (ρ = 0.33) and was higher in patients with a three-vessel dis-
ease (P = 0.018).

Discussion
In this study, we obtained a comprehensive multi-omic profiling for 
199 patients with ACS to study the multifactorial nature of CAD. 
By comparing the serum profiles of ACS patients with non-ACS 
matched controls, we found a unique metabolomics signature of 
ACS, with hundreds of metabolites significantly perturbed. To date, 
the majority of studies focused on finding new metabolites that 
are increased in CAD patients, hence suspected as cardiotoxic8,24, 
while our findings emphasize that the metabolomic signature 
of ACS is characterized by the lack of multiple serum metabo-
lites, many of which are associated with diet and microbiome.  
These results are in line with the dominance of the microbi-
ome in associating with deviations of ACS-depleted metabo-
lites compared with ACS-enriched metabolites, which further 
highlights the protective role of the gut microbiome in CAD. 
A notable example is the previously unknown bacterial spe-
cies SGB 4712, which we found to be significantly depleted both 
in ACS patients and in an independent validation cohort. By 
further linking this bacterium with the levels of both cardio-
toxic and cardioprotective metabolites, we demonstrated how 
the absence of a specific bacterial genome may correspond to an 
increased risk for CAD, and suggest a concrete target to be evalu-
ated in follow-up intervention studies. Overall, these findings thus 
direct a new approach in the prediction, and even treatment, of  
CAD patients.

Most studies to date analyzed CAD patients in bulk, searching 
for population-level risk factors, instead of focusing on the biologi-
cal variability at an individual level. In this study, we analyzed the 
individual-level metabolic deviations of ACS patients, and found 
that these deviations are person specific, with respect to the genetic 
and environmental factors underlying their levels. We showed that 
even a homogeneous subgroup of ACS patients (with respect to 
conventional risk factors) had heterogeneous metabolic deviation 
profiles. Thus, our study emphasizes that personalized risk stratifi-
cation and preventative measures are essential in CAD.

The development of CAD consists of the gradual growth of 
atherosclerotic plaque on the vessel wall, which is typically associ-
ated with an impairment of the metabolic state30. To interpret the 
involvement of each metabolic component along the chronological 
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timeline of CAD development, we applied our analysis of individual 
metabolic deviations to control participants that are metabolically 
impaired. We demonstrated that metabolic aberrations linked with 
microbiome and diet show a gradual trend in control participants 
with metabolic impairment compared with a random subset of 
control individuals. In metabolites related to traditional risk fac-
tors and genetics, we observed no such difference, while the ACS 
patients exhibit significantly higher scores. We further showed that 
alterations in microbial metabolites are more prevalent within ACS 
patients with T2DM, while traditional risk factors are more com-
mon in patients with CVD outcomes. Taken together, these results, 
are in line with the theory, stating that the microbiome and diet 
might play a role in an earlier stage of the natural history of CAD 
(that is, the metabolic syndrome), as opposed to traditional risk fac-
tors and genetics which may take place in later shifting into ACS 
and adverse cardiovascular outcomes.

To investigate obesity as an independent risk factor of CAD, we 
have devised and thoroughly validated a serum metabolomics-based 
model of BMI, and showed that higher predicted ΔBMI corresponds 
to a more extensive atherosclerotic disease, implying that this model 
might be viewed as a model of metabolic health. Recent studies 
showed that the lipid 1-linoleoyl-GPC (18:2) is inversely associ-
ated with obesity and T2DM37, and increased levels of the lipid sig-
nificantly reduced the risk of T2DM38. We found 1-linoleoyl-GPC 
(18:2) and 1-(1-enyl-palmitoyl)-2-linoleoyl-GPC (P-16:0/18:2) to 
be negatively correlated with BMI in the control cohort and sig-
nificantly depleted in patients with more extensive CAD, suggesting 
that these metabolites may serve as potential targets to attenuate the 
risk of CAD. Furthermore, both metabolites contain one chain of 
linoleic acid, an essential fatty acid, shown to be inversely related to 
T2DM risk39,40. To infer causality, however, these hypotheses should 
be further examined in an interventional study.

Our study has several limitations. A valid concern is whether 
the biomarkers that we identified precede CVD incidence or result 
from it. Previous studies had shown that a core of dominant bacte-
rial species is stable in the long term41,42, while the serum profile is 
far more dynamic43. We, therefore, collected all biological samples 
near the index event, to control for biological noise, and took addi-
tional necessary measures to avoid additional biases (Methods). 
Additionally, the cohorts were not balanced according to T2DM 
and body fat distribution. However, CAD risk factors such as 
age, impaired glycemic status, hypertension, hyperlipidemia and  

smoking were matched in the analyses and our companion manu-
script (Fromentin et al., unpublished) thoroughly disentangle the 
links of some of these factors by systematically comparing matched 
subgroups of individuals, as well as controlling for covariates using 
a modeling framework. Nevertheless, some factors may still consti-
tute confounding factors, influencing the levels of the multi-omic 
data independently of CAD. Another limitation is that the samples 
were not taken under strict fasting conditions. It may introduce 
biases to the metabolic signatures that are caused by different post-
prandial states. The control cohort was recruited as part of a previ-
ous study, leading to a potential batch effect. We addressed these 
caveats by performing a rigorous batch correction procedure, and 
an additional correction for differences in storage times of samples 
(Methods). Still, it was shown that no batch correction can fully 
remove the effect of confounding between batch and outcome44, 
and that there is no optimal technique to correct for differences in 
storage times. Therefore, we further mitigated these concerns by 
performing an external validation of our results in the MetaCardis 
datasets. Finally, since this study is based on observational data, the 
associations found cannot be considered causal.

Using a comprehensive metabolomic and microbiome profil-
ing, we present a deep mapping of the intra-CAD variability. Taken 
together, our results unravel new paradigms and therapeutic direc-
tions, which may form the basis for future mechanistic experiments, 
preclinical and human interventional studies.

Online content
Any methods, additional references, Nature Research report-
ing summaries, source data, extended data, supplementary infor-
mation, acknowledgments, peer review information; details of 
author contributions and competing interests; and statements of 
data and code availability are available at https://doi.org/10.1038/
s41591-022-01686-6.

Received: 1 March 2021; Accepted: 6 January 2022;  
Published: xx xx xxxx

References
	1.	 Roth, G. A. et al. Global and regional patterns in cardiovascular mortality 

from 1990 to 2013. Circulation 132, 1667–1678 (2015).
	2.	 Wilkins, J. T. et al. Lifetime risk and years lived free of total cardiovascular 

disease. JAMA 308, 1795–1801 (2012).

40
Control R = 0.67

ACS R = 0.29

35

10
P = 6 × 10

–6
P = 4 × 10

–5
P = 0.4

5

0

–5

–10

30

P
re

di
ct

ed
 B

M
I

D
iff

er
en

ce
 b

et
w

ee
n 

pr
ed

ic
te

d
an

d 
m

ea
su

re
d 

B
M

I

D
iff

er
en

ce
 b

et
w

ee
n 

pr
ed

ic
te

d
an

d 
m

ea
su

re
d 

B
M

I

D
iff

er
en

ce
 b

et
w

ee
n 

pr
ed

ic
te

d
an

d 
m

ea
su

re
d 

B
M

I

25

20

15
15 20 25

Measured BMI
30 35 40 <25

Measured BMI bin

Control

ACS

25–30 >30 <25 25–30
Measured BMI bin

Normoglycemic

T2DM

>30 <25 25–30
Measured BMI bin

>30

10
OR = 1.48 (1.09–2.01), P = 0.01

5

0

–5

–10

10
OR = 1.50 (1.03–2.19), P = 0.03

5

0

–5
No. of vessels involved

–10
1

3

a b c d

Fig. 4 | A metabolomics-based model of BMI predicts higher BMI in ACS patients and correlates with disease severity. a, Measured (x axis) versus 
predicted (y axis) BMI for controls (n = 156; blue) and ACS (n = 156; orange) individuals. Line and shaded coloring represent the fitting of a linear model 
and the 95% confidence interval. b, Difference between predicted and measured BMI (y axis) of individuals, binned into three BMI groups (<25, 25–30, 
>30; x axis). P values shown are computed using the two-sided Man–Whitney U-test. c, Same as in b, only for ACS participants, and each bin is separated 
into normoglycemic (n = 111) versus T2DM patients (n = 44). Higher predicted BMI was associated with an increased incidence of T2DM (odds ratio 
(OR) = 1.48; 95% confidence interval (CI) = 1.09–2.01; P = 0.01; a logistic regression model adjusted for BMI and age; Methods). d, Same as in b, only for 
ACS participants; each bin is separated into patients with one vessel (n = 71) versus three vessels involved (n = 36). Higher predicted BMI was associated 
with an increased incidence of having three vessels involved (OR = 1.5; 95% CI = 1.03–2.19; P = 0.03; a logistic regression model adjusted for BMI, age and 
T2DM; Methods). Box-plot elements: center, median; box, IQR; whiskers, 1.5×IQR.

Nature MedIcIne | www.nature.com/naturemedicine

https://doi.org/10.1038/s41591-022-01686-6
https://doi.org/10.1038/s41591-022-01686-6
http://www.nature.com/naturemedicine


Articles NATurE MEDICInE

	3.	 Poulter, N. Coronary heart disease is a multifactorial disease. Am. J. 
Hypertens. 12, 92S–95S (1999).

	4.	 Gaziano, J. M. et al. Use of aspirin to reduce risk of initial vascular events in 
patients at moderate risk of cardiovascular disease (ARRIVE): a randomised, 
double-blind, placebo-controlled trial. Lancet 392, 1036–1046 (2018).

	5.	 Psychogios, N. et al. The human serum metabolome. PLoS ONE 6,  
e16957 (2011).

	6.	 Tang, W. H. W. et al. Intestinal microbial metabolism of phosphatidylcholine 
and cardiovascular risk. N. Engl. J. Med. 368, 1575–1584 (2013).

	7.	 Brown, J. M. & Hazen, S. L. Metaorganismal nutrient metabolism as a basis 
of cardiovascular disease. Curr. Opin. Lipidol. 25, 48–53 (2014).

	8.	 Zhu, W. et al. Gut microbial metabolite TMAO enhances platelet 
hyperreactivity and thrombosis risk. Cell 165, 111–124 (2016).

	9.	 Barreto, F. C. et al. Serum indoxyl sulfate is associated with vascular disease 
and mortality in chronic kidney disease patients. Clin. J. Am. Soc. Nephrol. 4, 
1551–1558 (2009).

	10.	Meijers, B. K. I. et al. p-Cresol and cardiovascular risk in mild-to-moderate 
kidney disease. Clin. J. Am. Soc. Nephrol. 5, 1182–1189 (2010).

	11.	Zeevi, D. et al. Personalized nutrition by prediction of glycemic responses. 
Cell 163, 1079–1094 (2015).

	12.	Rothschild, D. et al. Environment dominates over host genetics in shaping 
human gut microbiota. Nature 555, 210–215 (2018).

	13.	Jie, Z. et al. The gut microbiome in atherosclerotic cardiovascular disease. 
Nat. Commun. 8, 845 (2017).

	14.	Tang, W. H. W., Kitai, T. & Hazen, S. L. Gut microbiota in cardiovascular 
health and disease. Circ. Res. 120, 1183–1196 (2017).

	15.	Maier, L. et al. Extensive impact of non-antibiotic drugs on human gut 
bacteria. Nature 555, 623–628 (2018).

	16.	Liu, J. et al. Integration of epidemiologic, pharmacologic, genetic and gut 
microbiome data in a drug-metabolite atlas. Nat. Med. 26, 110–117 (2020).

	17.	Forslund, S. K. et al. Combinatorial, additive and dose-dependent 
drug-microbiome associations. Nature https://doi.org/10.1038/s41586-021-
04177-9 (2021).

	18.	Kannel, W. B. & McGee, D. L. Diabetes and cardiovascular disease. The 
Framingham study. JAMA 241, 2035–2038 (1979).

	19.	Bar, N. et al. A reference map of potential determinants for the human serum 
metabolome. Nature https://doi.org/10.1038/s41586-020-2896-2 (2020).

	20.	Winter, S. E. & Bäumler, A. J. Dysbiosis in the inflamed intestine: chance 
favors the prepared microbe. Gut Microbes 5, 71–73 (2014).

	21.	Carnevale, R. et al. Low-grade endotoxaemia enhances artery thrombus 
growth via Toll-like receptor 4: implication for myocardial infarction. Eur. 
Heart J. 41, 3156–3165 (2020).

	22.	Meijers, B. K. I. et al. Free p-cresol is associated with cardiovascular disease 
in hemodialysis patients. Kidney Int. 73, 1174–1180 (2008).

	23.	Poesen, R. et al. Microbiota-derived phenylacetylglutamine associates with 
overall mortality and cardiovascular disease in patients with CKD. J. Am. Soc. 
Nephrol. 27, 3479–3487 (2016).

	24.	Nemet, I. et al. A cardiovascular disease-linked gut microbial metabolite acts 
via adrenergic receptors. Cell 180, 862–877.e22 (2020).

	25.	Cheah, I. K. & Halliwell, B. Ergothioneine; antioxidant potential, 
physiological function and role in disease. Biochim. Biophys. Acta. 1822, 
784–793 (2012).

	26.	Smith, E. et al. Ergothioneine is associated with reduced mortality and 
decreased risk of cardiovascular disease. Heart 106, 691–697 (2020).

	27.	Leopold, J. A. & Loscalzo, J. Emerging role of precision medicine in 
cardiovascular disease. Circ. Res. 122, 1302–1315 (2018).

	28.	Dhingra, R. & Vasan, R. S. Age as a risk factor. Med. Clin. North Am. 96, 
87–91 (2012).

	29.	Lusis, A. J. Atherosclerosis. Nature 407, 233–241 (2000).
	30.	Weber, C. & Noels, H. Atherosclerosis: current pathogenesis and therapeutic 

options. Nat. Med. 17, 1410–1422 (2011).
	31.	Poirier, P. et al. Obesity and cardiovascular disease: pathophysiology, 

evaluation, and effect of weight loss: an update of the 1997 American Heart 
Association Scientific Statement on Obesity and Heart Disease from the 
Obesity Committee of the Council on Nutrition, Physical Activity, and 
Metabolism. Circulation 113, 898–918 (2006).

	32.	Goossens, G. H. The metabolic phenotype in obesity: fat mass, body  
fat distribution, and adipose tissue function. Obes. Facts 10, 207–215  
(2017).

	33.	Cirulli, E. T. et al. Profound perturbation of the metabolome in obesity is 
associated with health risk. Cell Metab. 29, 488–500.e2 (2019).

	34.	Ke, G. et al. LightGBM: a highly efficient gradient boosting decision tree. 
NeurIPS Proceedings https://papers.nips.cc/paper/6907-lightgbm-a-highly-effic
ient-gradient-boosting-decision-tree.pdf (2017).

	35.	Ringqvist, I. et al. Prognostic value of angiographic indices of coronary artery 
disease from the Coronary Artery Surgery Study (CASS). J. Clin. Invest. 71, 
1854–1866 (1983).

	36.	Lundberg, S. M., Erion, G. G. & Lee, S.-I. Consistent individualized feature 
attribution for tree ensembles. Preprint at arXiv (2018).

	37.	Pickens, C. A., Vazquez, A. I., Jones, A. D. & Fenton, J. I. Obesity,  
adipokines, and C-peptide are associated with distinct plasma phospholipid 
profiles in adult males, an untargeted lipidomic approach. Sci. Rep. 7,  
6335 (2017).

	38.	Vangipurapu, J., Fernandes Silva, L., Kuulasmaa, T., Smith, U. & Laakso, M. 
Microbiota-related metabolites and the risk of type 2 diabetes. Diabetes Care 
43, 1319–1325 (2020).

	39.	Zong, G. et al. Associations between linoleic acid intake and incident  
type 2 diabetes among U.S. men and women. Diabetes Care 42,  
1406–1413 (2019).

	40.	Pertiwi, K. et al. Plasma and dietary linoleic acid and 3-year risk of type 2 
diabetes after myocardial infarction: a prospective analysis in the alpha omega 
cohort. Diabetes Care 43, 358–365 (2020).

	41.	Martínez, I., Muller, C. E. & Walter, J. Long-term temporal analysis of the 
human fecal microbiota revealed a stable core of dominant bacterial species. 
PLoS ONE 8, e69621 (2013).

	42.	Lozupone, C. A., Stombaugh, J. I., Gordon, J. I., Jansson, J. K. & Knight, R. 
Diversity, stability and resilience of the human gut microbiota. Nature 489, 
220–230 (2012).

	43.	Yousri, N. A. et al. Long term conservation of human metabolic phenotypes 
and link to heritability. Metabolomics 10, 1005–1017 (2014).

	44.	Soneson, C., Gerster, S. & Delorenzi, M. Batch effect confounding leads to 
strong bias in performance estimates obtained by cross-validation. PLoS ONE 
9, e100335 (2014).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.

© The Author(s), under exclusive licence to Springer Nature America, Inc. 2022

Nature MedIcIne | www.nature.com/naturemedicine

https://doi.org/10.1038/s41586-021-04177-9
https://doi.org/10.1038/s41586-021-04177-9
https://doi.org/10.1038/s41586-020-2896-2
https://papers.nips.cc/paper/6907-lightgbm-a-highly-efficient-gradient-boosting-decision-tree.pdf
https://papers.nips.cc/paper/6907-lightgbm-a-highly-efficient-gradient-boosting-decision-tree.pdf
http://www.nature.com/naturemedicine


ArticlesNATurE MEDICInE

Methods
Description of cohorts. The ACS cohort was recruited at Rabin Medical 
Center (Beilinson and Hasharon hospitals) and included 199 participants. The 
inclusion criteria were ACS patients aged 30–80. The exclusion criteria were 
antibiotic usage in the past 3 months, bariatric surgery or intestinal resection, 
except for appendectomy, inflammatory bowel disease, active cancer, infectious 
diseases (including hepatitis B or C and human immunodeficiency viruses), 
autoimmune disease, patients with a history of organ transplantation or receiving 
immunosuppressive therapy, or patients with drug or alcohol addiction. The 
participants answered detailed medical, lifestyle and nutritional questionnaires, 
and provided stool and serum samples. Both blood and stool samples were not 
taken under strict fasting conditions. The study was approved by the Ethics 
Committee of Rabin Medical Center, approval number RMC-622-16. All 
participants signed written informed consent forms.

The control cohort included 970 previously collected samples of Israeli 
individuals who were enrolled in previous studies that were approved by Tel Aviv 
Sourasky Medical Center Institutional Review Board (IRB), approval numbers 
TLV-0658-12, TLV-0050-13 and TLV-0522-10; Kfar Shaul Hospital IRB, approval 
number 0-73. Full study designs were described elsewhere11,12. In brief, participants 
were healthy individuals aged 18–70. The participants answered detailed medical, 
lifestyle and nutritional questionnaires, provided stool and serum samples. Both 
blood and stool samples were not taken under strict fasting conditions.

Cohort selection. The cohort selection and data acquisition pipeline are shown in 
Extended Data Fig. 1. All 970 control participants were profiled for microbiome 
composition as previously described11. Matching for stool collection (swab) and 
DNA library preparation kits (Nextera DNA Flex Library Prep), a subset of 340 
samples were considered as valid controls for direct comparison of bacterial 
species abundances. All 199 participants with ACS were profiled for microbiome 
composition.

A pilot study of 488 control individuals was previously profiled for serum 
metabolomics using the Metabolon platform19. Of these, we excluded 15 samples 
of participants that did not have sufficient high-quality clinical data, resulting in 
a control cohort of 473 individuals. In this study, we profiled a subgroup of 156 
participants with ACS for serum metabolomics using the Metabolon platform. 
Sample selection was on the basis of recruitment date, such that the first 156 
available serum samples of individuals with full clinical data were profiled. All 
available samples of controls (961 of 970) and participants with ACS (191 of 199) 
were profiled for serum metabolomics using the platform of Nightingale Health.

Clinical data in the ACS cohort. Recruited ACS patients were diagnosed with 
either unstable angina (n = 30), non-ST-elevation myocardial infarction (n = 68), 
or ST-elevation myocardial infarction (n = 101). All participants underwent 
cardiac catheterization in accordance with the standard of care and based upon 
the decision of the treating cardiologist. Stool and serum samples were stored 
at the clinical centers at a temperature of −80 °C until delivery. Comprehensive 
clinical data were collected from medical records, including electrocardiography, 
vital signs, complete blood count, creatinine and troponin T levels, fasting glucose, 
HbA1C, lipid profile, and angiographic data, including the number of coronary 
artery vessels involved.

T2DM, hypertension and dyslipidemia diagnosis. T2DM was defined as fasting 
plasma glucose ≥7 mmol l−1 and/or HbA1C ≥6.5% and/or subjects taking any 
glucose-lowering agents. Hypertension was defined as systolic blood pressure 
>130 mmHg and/or diastolic blood pressure >90 mmHg and/or subjects 
taking antihypertensive drugs. Dyslipidemia was defined as LDL cholesterol 
>1.60 mg ml−1 and/or HDL cholesterol <0.35 mg ml−1 and/or subjects taking 
lipid-lowering drugs. In ACS patients, as the prescription of lipid-lowering drugs 
was not specific for dyslipidemia, we only considered patients with a previous 
diagnosis of dyslipidemia. As LDL cholesterol was not directly measured in the 
non-ACS cohort using standard clinical chemistry, we estimated it based on the 
Friedewald calculation45:

(LDL − C)
[mg
ml

]

= Total cholesterol − (HDL − C) − Triglycerides
5

Metabolomics profiling and preprocessing. Metabolite concentrations were 
measured in serum samples using two different and complementary platforms:

	(1)	 An untargeted LC–MS analysis was performed by Metabolon, Inc., Durham, 
NC, USA. Full details are available in Supplementary Note 1. A total of 900 
serum samples were profiled in two separate runs. In the first run,  
540 samples were profiled, 19 of which were control samples (technical rep-
licate) pooled from several individuals, and a total of 1,251 metabolites were 
identified. In the second run, 360 serum samples were profiled, 10 of which 
were control samples, identical to those in the first run, and here a total of 
1,171 metabolites were identified, 1,011 of which overlapped with  
the first run. The first run included 457 samples of non-ACS individuals, 
while the second run included 31 samples of non-ACS individuals and  

156 ACS samples. We excluded 15 samples of control individuals for which 
we did not have sufficient high-quality clinical data, resulting in a control 
cohort of 473 individuals. To correct for possible batch effects resulting  
from the separate runs, we first applied the log (base 10) transform over  
the data and used the control samples within each run to compute the 
median and standard deviation of every metabolite that was measured in 
both runs. Then, within each run, for every metabolite that had at least five 
measurements in control samples (961 metabolites), we subtracted the con-
trol’s median and divided it by its standard deviation. After merging the data 
from both runs, for every metabolite, we performed robust standardization 
(subtracting the median and dividing by the standard deviation) and  
clipped outlier samples that were farther than 5 s.d. To address the difference 
in storage times, we first regressed the normalized metabolite intensities 
against storage times using only samples of non-ACS individuals from the 
first run and excluded 25 metabolites that were significantly correlated with 
storage times from downstream analyses (P < 0.05/961; Spearman  
correlation P value). To correct the remaining metabolite levels to storage 
times, for every metabolite with at least 100 non-missing values  
(all but eight metabolites), using all samples, we regressed its levels against 
storage times (in days) while adding the participant’s age and an indicator 
variable marking the identity of the cohort as covariates. Then, for all metab-
olites for which the coefficient of the storage time variable had an estimated 
P value below 0.05 (143 such metabolites) we applied the correction. Finally, 
we imputed missing values as the minimum value per metabolite. This  
resulted in 936 metabolites in both runs which we used in further analyses 
(Supplementary Table 2).

	(2)	 The proton nuclear magnetic resonance (1H-NMR) platform of Nightin-
gale Health, for which the technical details and relevant epidemiological 
applications were previously reviewed46,47. A total of 1,178 serum samples 
were profiled in a single run, including 191 samples of ACS patients and 961 
samples of non-ACS individuals. This platform provides simultaneous quan-
tification for a total of 228 absolute-value-based (concentrations are estimates 
based on reference data) plasma metabolites and ratios, mainly expanding the 
detailed lipidomic profiles and adding measurements of clinically validated 
biomarkers, including routine lipids, lipoprotein subclass profiling with lipid 
concentrations within 14 subclasses (lipoprotein-derived variables), fatty-acid 
composition and various low-molecular-weight metabolites such as amino 
acids, ketone bodies and glycolysis metabolites (Supplementary Table 3). 
In cases where the value ‘TAG’ was provided, we replaced it with zero and 
added a corresponding binary indicator variable. No further normalization or 
imputation was used.

Microbiome preprocessing. Sample collection, DNA extraction and sequencing 
of the samples in this study were previously described11. Briefly, we used only 
samples that were collected using swabs, filtered metagenomic reads containing 
Illumina adapters, filtered low-quality reads and trimmed low-quality read edges. 
We detected host DNA by mapping with GEM48 to the human genome (hg19) with 
inclusive parameters and removed human reads. We subsampled all samples to 
have ten million reads.

Bacterial relative abundance estimation was performed by mapping 
bacterial reads to species-level genome bins (SGB) representative genomes49. 
SGBs were taxonomically labeled with the species label associated with the 
reference genome(s) present in the bin, considering the most common species 
label if multiple reference genomes with different assigned species were 
present (Supplementary Table 17). When no reference genomes were present 
in the species-level bins, a higher taxonomic level was assigned. We selected 
all SGB representatives from groups with at least five genomes, and for these 
representatives’ genomes, kept only unique regions as a reference data set. Mapping 
was performed using bowtie250 and abundance was estimated by calculating the 
mean coverage of unique genomic regions across the 50% most densely covered 
areas as previously described51,52.

Identification of differential metabolites. To identify which metabolites 
significantly differ between the ACS and the control cohort, we applied a logistic 
regression over the normalized intensities of every metabolite, with age and sex 
as covariates. This was performed using data following a 1:1 matching for age, 
sex, BMI, DM and smoking status, resulting in 83 samples of ACS and controls 
in each cohort (Supplementary Table 4). After matching, there was no significant 
difference in age (P = 0.36), sex (P = 1), BMI (P = 0.24), smoking (P = 0.31), DM 
(P = 0.84), treatment for DM (P = 0.84), HbA1C% (P = 0.14), hypertension (P 
= 0.21) and treatment of hypertension (P = 0.21). Dyslipidemia (P = 0.043) and 
treatment for dyslipidemia (P = 0.022) were significantly unbalanced between the 
two groups. P values were computed with the Fisher exact test for binary variables, 
and a two-sided Mann–Whitney U-test for continuous parameters. Standardized 
differences of the matched parameters are given in Supplementary Table 18. Out of 
the 936 metabolites, we tested 892, for which we previously obtained estimates of 
their prediction potential (represented as EV), based on genetic and environmental 
factors, in a control cohort19.
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Identification of differential microbial species. To identify the microbial 
genomes that significantly differ between the ACS and the control cohort, 
we applied a logistic regression over the log-transformed (10 based) relative 
abundances of every bacterial species, with age and sex as covariates. This was 
performed using data following a 1:1 matching for age, sex, BMI, DM and  
smoking status, resulting in 64 samples of non-ACS and ACS in each cohort  
(Supplementary Table 5). After matching, there was no significant difference in 
age (P = 0.25), sex (P = 0.44), BMI (P = 0.33), smoking (P = 1), DM (P = 0.8), 
treatment for DM (P = 0.076), HbA1C% (P = 0.34), hypertension (P = 0.86), 
treatment of hypertension (P = 0.52), dyslipidemia (P = 0.37) and treatment 
for dyslipidemia (P = 0.85). P values were computed with the Fisher exact test 
for binary variables, and a two-sided Mann–Whitney U-test for continuous 
parameters. Standardized differences of the matched parameters are given in 
Supplementary Table 19. We only tested 766 bacterial species which were present 
in at least 5% of all samples.

Explained variance of metabolites. We estimated the EV of individual serum 
metabolites based on a set of environmental and genetic factors, in a healthy 
cohort, as previously described19. Briefly, we used GBDT from the LightGBM 
(v.2.3.1) package34, to predict the levels of serum metabolites based on 
demographics, diet, microbiome, lifestyle, human genetics and clinical data. In 
this study, we have expanded these analyses to include a set of parameters that 
represent traditional risk factors of CAD. These include age, sex, waist and hip 
circumference, waist-to-hip ratio, BMI, sitting systolic and diastolic blood pressure, 
smoking status and a dummy variable binning HbA1C into normal (<5.7), 
prediabetes (5.7–6.4) and diabetes (>6.4). To estimate the EV of each metabolite 
group, we ran a fivefold cross-validation (CV) model, and evaluated the results 
using the coefficient of determination (R2).

Treatment de-confounded analysis. To assess the extent to which observed 
differences between ACS subjects and controls with regards to the microbiome 
and metabolome features are confounded, in the sense of, being consequences of 
other (treatment or risk factor) variables different between the groups more so 
than characteristic of ACS itself, we additionally employed a post-hoc filtering 
approach introduced in the work by Forslund et al.17. Full details are available in 
Supplementary Note 2.

The individual-level metabolic signature of ACS. For each ACS patient, we 
matched a non-ACS control subgroup of individuals by age, sex and BMI, such that 
all controls will have the same sex, an age difference of not more than five years, 
and not more than three BMI points. This results in a median of 11 controls per 
ACS sample; 21 ACS patients did not match at least 3 controls and were discarded 
from further analysis. Next, we separated all metabolites for which explained 
variance estimates were available into two distinct subsets: ACS-enriched (n = 338) 
and ACS-depleted (n = 555) metabolites, and considered these for further analyses. 
For every ACS patient, we weighted every metabolite by the number of s.d. from 
its mean, as calculated in the designated control. We only considered deviations 
of metabolites when they aligned with their general trend as ACS-enriched or 
depleted. In reverse cases, we assigned the metabolite with a value of zero. Then, 
for the top 100 deviating metabolites, we multiplied their weight with a binary 
variable that indicates whether each metabolite had EV >5%, as we previously 
estimated based on diet, microbiome, traditional risk factors and genetics in 
the control cohort. Finally, for every individual, we averaged these values per 
feature group, to obtain a vector of eight scores, four for either ACS-enriched and 
ACS-depleted metabolites (Supplementary Table 12).

In the analysis shown in Fig. 3 we computed similar scores for: (1) ACS 
participants (n = 135) versus non-ACS controls; (2) non-ACS controls with 
metabolic impairment (defined as either: diagnosed with T2DM, hypertension 
or dyslipidemia, or BMI > 35; n = 102) versus non-ACS controls; (3) a random 
set of non-ACS individuals (n = 132) versus non-ACS controls. All samples were 
matched for age, sex and BMI. To compare these scores across the three groups, 
for every major source, we used the Kruskal–Wallis H-test (diet, P = 5 × 10−9; 
microbiome, P = 3 × 10−6; traditional risk factors, P = 2 × 10−7; genetics, P = 0.06). 
Here, we used the entire set of metabolites, mainly averaging the top 100 deviations 
out of the 893 metabolites included in this analysis.

Combined cardiovascular outcomes. Cardiovascular outcomes within 12 months 
of recruitment (exact dates unknown) include: acute myocardial infarction,  
acute stroke, unplanned percutaneous coronary intervention or cardiovascular- 
related death.

Serum metabolomics-based prediction models of BMI. We trained a GBDT 
algorithm (LightGBM) to predict BMI, based on the serum metabolome profiles of 
298 control individuals, and applied it over a held-out test set, containing both 156 
control and 156 ACS subjects. The serum metabolome profiles we used as input for 
the model included the set of 936 metabolites measured by the mass spectrometry 
platform. During training, we ran a random hyperparameter search consisting of 
five iterations in a threefold CV using the module RandomizedSearchCV from 
sklearn (v.0.24.2) and chose the best model for prediction.

We applied the same procedure to replicate the prediction of BMI based on 
metabolomics data from the Nightingale platform. Here, the model was trained, 
based on the serum metabolome profiles of 763 control individuals, and was 
applied and evaluated on two held-out test sets, including one of 179 control and 
another of 179 ACS subjects. In training and prediction based on the NMR data, 
we excluded the measurements of albumin, glucose and creatinine.

Feature attribution analysis. We used SHAP53, a framework for interpreting 
predictions, which assigns each feature an importance value for a particular 
prediction. Briefly, for a specific prediction, a feature’s SHAP value is defined as the 
change in the expected value of the model’s output when this feature is observed 
compared with when it is missing. It is computed using a sum that represents 
the impact of each feature being added to the model, averaged over all possible 
orderings of features being introduced. Individual SHAP values were computed 
for held-out subjects with ACS using the module TreeExplainer (v.0.35.0)36. To 
identify the metabolites that were the main drivers of the overprediction of BMI, 
we regressed ΔBMI against each metabolite’s SHAP value, adjusting for BMI and 
T2DM status. We then corrected the regression p values for the metabolite’s SHAP 
value using the FDR procedure.

Replications in the independent MetaCardis study. Technical details regarding 
sample collection, DNA extraction, metagenomic sequencing and initial QC 
are available in our companion manuscript (Fromentin et al., unpublished). 
Metagenomics data from the MetaCardis study went through an identical QC 
and mapping pipeline as the control and ACS cohorts to produce estimates of the 
relative abundances of bacterial representative genomes.

To test whether the CAD-related depletion of SGB 4712 replicates in the 
MetaCardis study, we applied the two-sided Mann–Whitney U-test over the 
relative abundances of SGB 4712, comparing individuals with IHD with each of 
the three other sub cohorts (HC, MMC, UMCC). To replicate the associations 
of the 15 serum metabolites mentioned in Supplementary Table 10 with SGB 
4712, we computed the Spearman correlation between their levels and the relative 
abundance of SGB 4712 within the healthy cohort (n = 273; Supplementary Table 
11). The sign of the correlation coefficient for all 15 metabolites with SGB 4712 
replicated, with ten of these associations remaining significant (FDR <10%).

Full technical details regarding serum sample collection, preparation and 
metabolomics analyses in the MetaCardis study are available in our companion 
manuscript (Fromentin et al., unpublished). The metabolomics data considered 
for replication in this study included normalized intensities of 859 metabolites 
measured by the untargeted LC–MS platform of Metabolon that overlapped with 
the measured metabolites in our study.

To replicate the exceeded prediction of BMI in subjects with IHD, we applied 
the same procedure as in the cohort. Here, the model was trained, based on 
the normalized serum samples of a random subset of 383 out of 702 non-IHD 
individuals (from the HC, MMC and UMCC subgroups). We then applied and 
evaluated the model on two held-out test sets, including one of 319 subjects 
with IHD and another of the remaining 319 non-IHD controls. In addition, we 
replicated the feature attribution analysis of the main metabolite contributors to the 
overprediction of BMI in individuals with IHD. To that end, we applied the same 
procedure and identified the metabolites, whose SHAP values were significantly 
associated with ΔBMI (FDR 1%; Supplementary Table 20; adjusted for BMI and 
T2DM status).

Additional replications are reported in our companion manuscript (Fromentin 
et al., unpublished). These include validation of MetaCardis’ ACS-specific markers 
in our study subjects using two approaches: (1) significant correlation between the 
ACS-specific markers identified in the MetaCardis study exhibiting comparative 
effect sizes in our study samples (p = 2 ∙ 10−8); (2) effective performances of 
classifier models (orthogonal projections to latent structures discriminant analysis) 
built using MetaCardis’ ACS-specific biomarkers. Models were trained in the 
MetaCardis population and tested in our study samples (area under the  
curve = 0.851).

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The raw metagenomic sequencing data per sample of the controls are available 
from the European Nucleotide Archive (ENA; https://www.ebi.ac.uk/ena): 
PRJEB11532. The raw metabolomics data and phenotypes per sample of the 
controls are available from the European Genome-phenome Archive (EGA; https://
ega-archive.org/): EGAS00001004512. The raw metabolomics data and full clinical 
phenotypes for the cohort of individuals with ACS are available from the EGA: 
EGAS00001005342. Additional data regarding SGB 4712, including the genome 
sequence, gene annotation and closest references are available at https://github.
com/noambar/ACStudy/tree/master/SGB_4712.

Code availability
Analysis source code is available at https://github.com/noambar/ACStudy.
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Extended Data Fig. 1 | Cohort selection and data acquisition pipeline. This study includes a total of 199 participants with ACS and 970 non-ACS 
individuals. Each cell shows the number of individuals who were profiled for the corresponding omic platform indicated on the left. Colored bars 
connecting cells represent the number of overlapping individuals. For example, there were 169 non-ACS individuals that were profiled both for serum 
metabolomics using the Metabolon platform and for microbiome composition. The 156 samples of individuals with ACS that were profiled using the 
Metabolon platform are the first to be enrolled in this study. The 473 samples of non-ACS individuals that were profiled using the Metabolon platform, 
were profiled as part of our previous study (Bar et al. 2020). All samples of individuals with ACS (n = 191) and of non-ACS individuals (n = 961) for which 
we had available serum obtained during their recruitment, were profiled using the Nightingale platform. While microbiome data were available for all 
individuals with and without ACS, we only considered samples for which the collection, DNA extraction and sequencing procedures were identical (n = 199 
for ACS; n = 340 for non-ACS). Differential abundance analysis was performed based on subcohorts resulting from 1:1 matching for age, sex, BMI, DM, and 
smoking status. ACS, Acute Corony Syndrome; BMI Body Mass Index; DM, Diabetes Mellitius.
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Extended Data Fig. 2 | Breakdown of ACS serum metabolomics pattern by the origin of metabolites and biological pathway. (a) Box plots (y axis: center, 
median; box, IQR; whiskers, 1.5×IQR) showing the explained variance of metabolites by different feature groups (x-axis) separated to metabolites enriched 
in ACS (N = 175; orange) and enriched in matched non-ACS controls (N = 358; blue). (b) explained variance of metabolites (y axis: center, median; box, 
IQR; whiskers, 1.5×IQR) by their super pathways (x axis) separated to metabolites enriched in ACS (orange) and enriched in matched non-ACS controls 
(blue). The number of metabolites per group is shown below each box. Trad., Traditional; C&V, cofactors and vitamins.
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Extended Data Fig. 3 | Depletion of ACS-related bacteria SGB 4712 replicates in an independent validation cohort. (a) Box plots showing the relative 
abundance of the unknown bacterial species SGB 4712 (y-axis: center, median; box, IQR; whiskers, 1.5×IQR; log scaled) in our ACS and matched controls 
(x-axis; n = 80 each). The P-value shown is computed using the two-sided Mann–Whitney U-test. (b) Relative abundance of the unknown bacterial 
species SGB 4712 (y-axis: center, median; box, IQR; whiskers, 1.5×IQR; log scaled) in four groups from the MetaCardis validation cohort (x-axis; HC, 
healthy controls, n = 275; MMC, metabolically matched controls, n = 218; UMCC, untreated metabolically compromised controls, n = 211; IHD, ischaemic 
heart disease, n = 319). The P-value shown is computed using the two-sided Mann–Whitney U-test. r.a., relative abundance.
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Extended Data Fig. 4 | Clinical data correlates with metabolic deviations. (a) The mean weighted R2 of genetics for ACS-enriched metabolites (y-axis) 
versus chronological age (x-axis). Dots are colored by sex. Spearman correlation is computed over all samples (Spearman ⍴ = 0.18; p = 0.032). (b) The 
mean weighted R2 of traditional risk factors for ACS-depleted metabolites (y axis) versus chronological age (x axis; Spearman ⍴ = 0.33; p = 7.7 × 10−5). (c) 
The mean weighted R2 of genetics for ACS-enriched metabolites (y axis: center, median; box, IQR; whiskers, 1.5×IQR) in ACS patients who had a combined 
CVD outcome (defined as either: acute myocardial infarction, acute stroke, unplanned PCI, or cardiovascular-related death; x axis) versus not (two-sided 
Mann–Whitney U-test, p = 0.002).
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Extended Data Fig. 5 | Replication of higher predicted BMI in ACS individuals based on NMR metabolomics. Figure panels refer to results of serum 
metabolomics-based prediction model of BMI trained in a non-ACS control cohort (n = 763) and evaluated on held-out test sets consisting of both 
controls (n = 179) and individuals with ACS (n = 179; Methods). (a) Measured (x axis) versus predicted (y-axis) BMI for both controls (blue) and ACS 
(orange) individuals. Line and shaded coloring represent the fitting of a linear model and the 95% confidence interval. (b) Difference between predicted 
and measured BMI (y axis: center, median; box, IQR; whiskers, 1.5×IQR) of individuals, binned into three BMI groups (<25, 25-30, >30; x-axis). The 
P-values shown are computed using the two-sided Mann–Whitney U-test. BMI, body mass index.
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Extended Data Fig. 6 | Replication of higher predicted BMI in IHD individuals in the MetaCardis study. Figure panels refer to results of serum 
metabolomics-based prediction model of BMI trained in a cohort of individuals without IHD and evaluated on held-out test sets consisting of both 319 
IHD and 319 non-IHD individuals (Methods). (a) Measured (x axis) versus predicted (y axis) BMI for healthy controls (HC; blue), metabolically matched 
controls (MMC; blue), and untreated metabolically compromised controls (UMCC; blue), and individuals with ischaemic heart disease (IHD; orange). Line 
and shaded coloring represent the fitting of a linear model and the 95% confidence interval. (b) Difference between predicted and measured BMI (y axis: 
center, median; box, IQR; whiskers, 1.5×IQR) of individuals, binned into three BMI groups (<25, 25-30, >30; x axis). (c) Same as in (b) only for individuals 
with IHD, and each bin is separated into normoglycemic versus T2DM patients. Higher predicted BMI is associated with an increased incidence of T2DM 
(OR = 1.13, 95% CI = 1.05-1.22, p = 0.002; a logistic regression model adjusted for BMI and age; Methods). The p values shown are computed using the 
two-sided Mann–Whitney U-test. BMI, body mass index; T2DM, type 2 diabetes mellitus; OR, odds ratio; CI, confidence interval.
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