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SUMMARY

Obesity and type 2 diabetes (T2D) are metabolic dis-
orders that are linked to microbiome alterations.
However, their co-occurrence poses challenges in
disentangling microbial features unique to each con-
dition. We analyzed gut microbiomes of lean non-
diabetic (n = 633), obese non-diabetic (n = 494),
and obese individuals with T2D (n = 153) from
German population and metabolic disease cohorts.
Microbial taxonomic and functional profiles were
analyzed along with medical histories, serummetab-
olomics, biometrics, and dietary data. Obesity was
associated with alterations in microbiome composi-
tion, individual taxa, and functions with notable
changes in Akkermansia, Faecalibacterium, Oscilli-
bacter, and Alistipes, as well as in serummetabolites
that correlated with gut microbial patterns. However,
microbiome associations were modest for T2D, with
nominal increases in Escherichia/Shigella. Medica-
tions, including antihypertensives and antidiabetics,
252 Cell Host & Microbe 26, 252–264, August 14, 2019 ª 2019 Publis
along with dietary supplements including iron, were
significantly associated with microbiome variation.
These results differentiate microbial components of
these interrelatedmetabolic diseases and identify di-
etary and medication exposures to consider in future
studies.

INTRODUCTION

The incidences of both obesity and type 2 diabetes are

increasing worldwide, and their comorbidities and medical re-

quirements incur high and rising healthcare costs. Obesity is a

risk factor for T2D, but while 86% of individuals with T2D are

overweight or obese, not all obese individuals develop T2D

(Daousi et al., 2006; Narayan et al., 2007). Multiple factors play

a role in the development of these diseases, including genetics,

lifestyle, and the gut microbiome, with an increasing body of ev-

idence supporting the microbiome’s role in obesity and in T2D

(Boulangé et al., 2016; Chobot et al., 2018; Peters et al., 2018;

Trøseid et al., 2013; Turnbaugh et al., 2006; Vrieze et al., 2012).

However, it remains difficult to disentangle the exact microbial
hed by Elsevier Inc.
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Figure 1. The Gut Microbiome in Obesity and Obesity-Associated type 2 Diabetes in Two Northern German Population Cohorts

We investigated 1,280 individuals from two cohorts (popgen, n = 436, and focus, n = 844) to assess the role of the gut microbiome in T2D and obesity. In addition

to extensive lifestyle, dietary, and environmental covariates recorded for these individuals, a stool sample from each participant was assayed using 16S rRNA

gene sequencing, and a subset of these samples (n = 201) were metagenomically profiled.

(A) Overview of study data and metadata; detailed information in Table S1.

(B) Ordination of genus-level taxonomic profiles from 16S rRNA gene sequencing, using multidimensional scaling (MDS) of Bray-Curtis dissimilarities.

(legend continued on next page)
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features associated with obesity and T2D while also ruling out

external confounders. Studies to identify distinguishing features

of the microbiome that uniquely characterize each of the two

conditions are needed in order to understand whether the pro-

gression from obesity to T2D is, in part, mediated by the gut

microbiome.

Obesity and diabetes are both metabolic conditions associ-

ated with a range of physiological functions closely related to

the gut and gut microbiota. Intestinal dysbiosis is a common

observation in obesity, while the observation is less consistent

in T2D (Aron-Wisnewsky et al., 2019; Le Chatelier et al., 2013;

Forslund et al., 2015; Karlsson et al., 2013; Qin et al., 2012; Turn-

baugh et al., 2009). Low-grade inflammation and altered levels of

lipopolysaccharides (LPS) and short-chain fatty acid (SCFA)

have also been associated with metabolic disease (Forslund

et al., 2015; Karlsson et al., 2013; Qin et al., 2012). Together,

these observations suggest that the development of obesity-

associated T2D, characterized by dysregulated glucose meta-

bolism and insulin resistance, could be related to progressive

disruption of the gut microbiome after initiation by obesity.

While there is general agreement that ecological diversity and

taxonomic composition of the gut microbiome are altered in

obesity and T2D, associations with single microbes or microbial

products have been inconsistent between studies. These devia-

tions may potentially be due to small sample sizes, differing

study designs, geography, and clinical factors (Falony et al.,

2016; Finucane et al., 2014; Sze and Schloss, 2016; Yassour

et al., 2016). The high inter-individual variability of the gut micro-

biome, and its sensitivity to environmental influences compli-

cates population-scale microbial research in complex diseases

generally, potentially explaining some of these inconsistencies

(Falony et al., 2016; Zhernakova et al., 2016). Despite the compli-

cations ofmicrobial studies, a number of consistent associations

have been observed among them, including an altered abun-

dance of butyrate producing bacteria (Le Chatelier et al., 2013;

Forslund et al., 2015; Karlsson et al., 2013; Qin et al., 2012; Vrieze

et al., 2012).

In the current study, we performed a detailed analysis of lean

non-diabetic (‘‘lean healthy’’, LH), obese non-diabetic (ObH),

and obese T2D (ObT2D) individuals to identify compositional

and functional features of the gut microbiome that associate

with obesity, as well as those which deviate between obese indi-

viduals with and without T2D. We included 16S rRNA gene (16S)

sequencing data for 1,280 samples and shotgun metagenomic

data for a subset of 201 samples, in addition to extensive cova-

riates describing anthropometrics, nutritional behavior, and

medications. All samples in the core analysis are from the north-

ern German cohorts PopGen (Krawczak et al., 2006) and FoCus

(M€uller et al., 2015), while key findings were replicated in 880

additional individuals from the North-Eastern German SHIP
(C and D) Family-level taxonomic abundances for 16S (C) and metagenomic (D) d

remaining detected families are indicated in gray. Samples are ordered accordin

(E) MetaCyc pathway abundances across 201 metagenomes (Caspi et al., 2014).

while the remaining core pathways (selected as top 50% mean abundant and to

(F) The phyloT-based (http://phylot.biobyte.de/) phylogeny of 31 genera well-det

generally agreed well (mean spearman r = 0.67). A total of 27 core genera from th

The remaining four genera, eggerthella, blautia, oscillibacter, and subdoligranulu

dominantly in the unclassified clostridiales. See also Figure S1; Table S1.
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(Study of Health in Pomerania) cohort (Völzke et al., 2011). We

identified several associations between the gut microbiome,

plasma metabolome, obesity and diabetes phenotypes, and

environmental factors. These comprised associations with gut

microbial taxa, including a decrease of Akkermansia, Oscilli-

bacter, and Intestinimonas in obesity, and a nominal increase

of Escherichia/Shigella specific to T2D, as well as circulating

metabolite changes [including branched-chain amino acids

(BCAA)]. Dietary supplements, including iron and magnesium,

and medications also covaried with microbial composition and

functional potential, such as the known strong association with

metformin, and we identified further effects of antihypertensive

and antiphlogistic medications on the gut microbiome. The ef-

fects of dietary iron on microbiome composition were confirmed

in a mouse feeding experiment, in which the difference between

high and sufficient iron intake recapitulated the diet-associated

microbiome divergence observed in human populations.

RESULTS

Overview of the German Metabolic Disease Cohort
The current study included 1,280 individuals from the Northern

German cohorts PopGen (Krawczak et al., 2006) and FoCus

(M€uller et al., 2015) (Figure 1; Table S1). The PopGen and Focus

cohorts have recorded information on medication, diet, and

dietary supplement usage, together with an extensive pheno-

typic characterization including values of age, gender, BMI,

and fasting glucose levels (from the PopGen/P2N biobank; see

STAR Methods, Table S1). Furthermore, untargeted serum me-

tabolomic profiles were generated for 400 study participants

using the Metabolon platform, comprising 390 identified metab-

olites (STAR Methods). Data and specimens from both cohorts

were handled by the same biobank using the same study proto-

col. Compatibility of the 16S microbiome data between the

two cohorts is good as described previously (Wang et al.,

2016). All individuals were grouped into three phenotypes: (a)

lean (BMI % 25) without diabetes, inflammatory bowel disease

(IBD), or irritable bowel syndrome (IBS), with fasting glucose

level below 125 mg/dl (‘‘lean healthy’’, LH, n = 633); (b) obese

(BMI > 30) with same criteria as LH except for BMI (‘‘obese

healthy,’’ObH, n = 494); and (c) obese (BMI > 30) with diagnosed

T2D or fasting glucose level above 125 mg/dl, and without IBD

and IBS, respectively (ObT2D, n = 153; Table S1).

A subset of 201 samples was selected for shotgun metage-

nomic sequencing. These were targeted to exclude several po-

tential confounders during comparisons of the three populations

(LH n = 95, ObH n = 55, and ObT2D n = 51), notably to achieve

uniformity of cardiovascular measures (see STAR Methods,

Table S1). The ObH group was selected to be generally healthy

(despite being obese) as reflected by the uniformity of mean
ata. The top 10 abundant families are annotated in the panel legend, while the

g to increasing relative abundance of bacteroidaceae.

The top 10 abundant pathways are colored and annotated in the panel legend,

p 50% variant) are indicated in gray.

ected in both the 16S and metagenomic profiles. The two measurement types

e shotgun data matched best with taxonomically identical taxa in the 16S data.

m, showed highest correlation with a genus from the clostridiales order, pre-

http://phylot.biobyte.de/


Figure 2. Functional and Microbial Deviations in Obesity and Type 2 Diabetes

(A) Alpha-diversity (total unique phylogenetic branch length) was significantly reduced in obese subjects (compared to LH) (p = 3.20310�11 by robust regression,

16S data) while not significantly different between obese with and without T2D (p = 0.92, ObH versus ObT2D).

(legend continued on next page)
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fasting glucose level and blood pressure between the lean and

obese non-diabetic subjects. We identified both age and gender

as significantly associated with microbiome composition (adonis

PERMANOVA, p < 0.001, 16S data, STAR Methods and Supple-

mental Information), in agreement with previous findings (Falony

et al., 2016; Oksanen et al., 2015; Wang et al., 2016; Zhernakova

et al., 2016). Accordingly, we corrected for age and gender

where possible in the following analyses. In initial comparisons

of amplicon- and metagenome-based taxonomic profiles, abun-

dances of genera within subject agreed well across taxa (mean

Spearman r = 0.67, Figures 1 and S1). Exceptions to this

included a small number of taxa (n = 5, of 31 total) with Spearman

correlations below 0.5. Four of these five bacteria belonged to

the clade Clostridiales, which has been subject to extensive re-

classifications, potentially compromising consistent assign-

ments between the two measurement types’ taxonomies (Yutin

and Galperin, 2013).

In subsequent analyses, six microbiome feature types were

studied (additional details in STAR Methods): taxonomic abun-

dances from 16S rRNA gene sequencing [VSEARCH (Rognes

et al., 2016)]; species-level taxonomic profiles from metage-

nomes [MetaPhlAn2 (Truong et al., 2015)]; functional profiles

[HUMAnN2 (Franzosa et al., 2018)] summarized as MetaCyc

(Caspi et al., 2014) and informative Gene Ontology (iGO) path-

ways (STAR Methods) and as KEGG Ontology (KO) (Kanehisa

et al., 2014) and Enzyme Commission (EC) (Bairoch, 2000)

gene families. For each of these six feature types, only the subset

of features with the greatest overall mean abundance and stan-

dard deviation were analyzed (see STAR Methods), and the

dimensionality of functional features (pathways and gene fam-

ilies) was further reduced prior to testing by hierarchical clus-

tering. This resulted in 39 MetaCyc pathway groups, 35 iGO

term groups, 38-EC groups, and 78 KO groups used for all sub-

sequent tests (Table S1).

Obesity Is Associated with Specific Gut Microbial Taxa
and Functional Capacity, while the T2D Status within
Obese Individuals Is Associated with Lower Effect Size
To identify individual microbial features (taxa and functions)

associated specifically with obesity and/or with T2D, and not

with other covariates (e.g., diet, medications), we assessed

each feature’s abundances comparing (a) LH with ObH and (b)

ObH with ObT2D using generalized linear models in MaAsLin

(Multivariate Association with Linear Models; Morgan et al.,

2012), with automatic variable selection using boosting as a uni-

variate prescreen (see STAR Methods). For the first analysis

(LH versus ObH), covariates were selected from age, gender,
(B) Microbial dispersion was significantly increased in obese subjects as compa

Table S2). The illustration was generated using all subjects with 16S data and th

(C) Analysis of individual taxa for association with ObT2D identified limited taxono

no genera remained significantly associated after correcting for multiple testing.

with a nominal increased abundance (p = 0.025) that however was not robust af

(D) Analysis of individual taxa for association with obesity identified 17 genera, inc

were detected using 16S-based genera abundance profiles and MaAsLin genera

(E) Analysis of microbial processes (MetaCyc, iGO, EC, and KO) identified 22 cluste

plots are used for optimal visualization of all features (top and bottom). One feature

the cluster-representative feature. See Table S1 for a full overview of functional c

model and metagenomic functional profiles (STAR Methods). Boxplots were made

terquartile range). ***: q < 0.01, **: 0.01% q < 0.05, *: 0.05% q < 0.1. Summary statis
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fasting glucose levels, total iron intake (estimated from FFQ

and dietary supplements), and medications summarized to the

antihypertensive and analgesic classes. For the second analysis

(ObH versus ObT2D), covariates were selected from age, gender

and BMI, analgesics, antihypertensives, metformin and insulin

medications, and the nutrients magnesium and iron intake.

These analyses used transformed relative abundance data and

implements corrections for sparse, compositional microbial

feature data. Sparse (zero-inflated) models were used for taxo-

nomic features with more than 30% zero elements.

One of the simplest summary statistics analyzed as a micro-

biome feature was alpha-diversity, which was significantly

reduced specifically in obesity (p = 3.20310�11 by robust regres-

sion, ObH versus LH) and not for ObT2D (p = 0.92, ObH versus

ObT2D; Figure 2). This was also the case for composition

(beta-diversity) of taxonomic and functional profiles (genera,

GO, EC, KO, and MetaCyc pathways; adonis q < 0.1) in obesity,

and for taxonomic evaluation of dispersion (genera, betadisper

q < 0.1), although not that of functional features (GO, EC, KO,

and MetaCyc pathways; betadisper q > 0.1; Figure 2; Table

S2). In contrast, when comparing obese subjects with and

without T2D, composition was not significantly different across

microbial taxonomic profiles or functional features (genera,

GO, EC, KO, and MetaCyc pathways; all adonis q > 0.1) after

adjusting for diabetic medications. To avoid confounding from

metformin and insulin usage, we next evaluated association of

compositional variation with fasting glucose levels across all

subjects not using metformin or insulin (subsampling from 561

samples). Neither taxonomic profiles nor functional capacity

associated significantly with fasting glucose levels (GO, EC,

KO, and pathways; adonis q > 0.1). Thus in our cohort, obesity

(with normal fasting glucose levels) had a striking association

both with taxonomic and functional features of the microbiome,

while T2D (in contrast to non-diabetic obesity) had a weak asso-

ciation with microbiome features once diabetic medications

were properly considered (Table S2).

When analyzing the association of individual microbial genera

(from 16S rRNA gene sequencing) with obesity or T2D, a total of

17 genera were significant with respect specifically to obesity

(q < 0.1), including decreased Akkermansia, Faecalibacterium,

Oscillibacter, and Alistipes (Table S3). The abundant anti-inflam-

matory species Faecalibacterium prausnitzii was decreased in

obese individuals (q = 5.29310�3) while unassociated with T2D

(q > 0.1). Faecalibacterium prausnitzii, together with Bacteroides

thetaiotaomicron (itself also obesity-associated), harbor most

of the microbial functional features associated with obesity

and may therefore be drivers of functional variation (Table S3).
red to LH (q = 0.023), but not significant between ObH and ObT2D (q = 0.16;

e betadisper function in R package vegan.

mic variation in T2D (Table S3). After adjusting for insulin and metformin usage,

Escherichia possesses properties functionally relevant for T2D, and presented

ter multiple testing correction.

luding prevotella and alistipes (LH versus ObH, q < 0.1, Table S3). Associations

lized linear model (STAR Methods).

rs, comprising 97 features (see Table S3), associated with obesity (q < 0.1). Two

from each associated cluster was selected to annotate the panel and may not be

lusters. Associated processes were detected using MaAsLin-generalized linear

with R function boxplot with default settings (whiskers extend 1.5 times the in-

tics and full lists of associated functional features and taxa are found in Table S3.



Table 1. Association of Commonly Used Medications and Dietary Supplements with Gut Microbiome Composition

A) Medication classes B) Dietary supplements

Medication class p value q value Dietary supplement p value q value

Genera Genera

Antihypertensives 3.85 3 10�4 9.13 3 10�4 (1.12 3 10�6) Magnesium 3.54 3 10�4 5.90 3 10�4

Analgesics 5.48 3 10�4 9.13 3 10�4 (3.12 3 10�5) Multivitamins and mineral 1.15 3 10�4 3.86 3 10�4

Antidepressants 6.88 3 10�3 8.60 3 10�3 (3.33 3 10�2) Iron 1.56 3 10�4 3.86 3 10�3

Antiphlogistics 1.25 3 10�2 1.25 3 10�2 (8.83 3 10�5) Vitamin C 7.68 3 10�3 7.68 3 10�3

Antidiabetics 6.73 3 10�5 3.37 3 10�4 (2.75 3 10�5) Calcium 1.02 3 10�3 1.28 3 10�3

Pathways Pathways

Antihypertensives 3.31 3 10�7 8.28 3 10�7 Magnesium 3.16 3 10�3 3.07 3 10�3

Analgesics 4.73 3 10�6 7.88 3 10�6 Multivitamins and minerals 1.01 3 10�3 2.15 3 10�3

Antidepressants 2.02 3 10�4 2.53 3 10�4 Iron 3.85 3 10�2 3.85 3 10�2

Antiphlogistics 2.55 3 10�4 2.55 3 10�4 Vitamin C 5.32 3 10�4 2.53 3 10�3

Antidiabetics 3.21 3 10�11 1.61 3 10�10 Calcium 2.69 3 10�2 3.36 3 10�2

Linear discriminant analysis (LDA) was performed to evaluate the ability of the gut microbiome to discriminate between users and non-users of (A) five

commonly used medication classes and (B) five dietary supplements. P values and q values are given for analyses of samples in the Northern German

cohorts (PopGen and FoCus) for medication classes and dietary supplements, for both bacterial abundance (genera) and functional capacity here

represented by MetaCyc pathways. In brackets, q values are given for analyses of bacterial abundance in the supporting SHIP cohort (medication

only). See STAR Methods for details on the LDA analyses. See also Tables S1 and S4.
Of the 17 associations identified here, 15 were among the

analyzed taxa in the independent SHIP cohort, and of these, 7

retained a significant association with obesity (q < 0.1)

(Table S3).These obesity-associated taxa include replications

of previous studies, thus lending further weight to a small but sig-

nificant ‘‘core’’ of obesity-associated clades that are common

among population contexts (in addition to more variable, popu-

lation-specific associations). In contrast to obesity, no genera

retained a significant robust association with T2D after incorpo-

rating the covariates above (i.e., remained differential between

ObH and ObT2D individuals, q < 0.1, Figure S2; Table S3). Pre-

vious studies have found a positive association between Escher-

ichia and both metformin usage and T2D, which we reproduced

here in direction (i.e., enrichment) but without statistical signifi-

cance (Pedersen et al., 2016; Qin et al., 2012; Table S3).

To understand how microbial functional capacities further

relate to obesity and T2D, we first tested a group of pathways

[from MetaCyc (Caspi et al., 2014) and the informative Gene

Ontology, iGO (STAR Methods)] and gene families [as summa-

rized by KO (Kanehisa et al., 2014) and ECs (Bairoch, 2000)]

for association specifically with obesity (LH versus ObH).

Sixteen gene family clusters and six pathway clusters, together

comprising 97 functional features, were associated with

obesity (q < 0.1, Table S3). This included a decreased capacity

for unidirectional conjugation (Gene Ontology: GO:0009291,

q = 3.79310�4) and superoxide reductase (KEGG Orthology:

K05919, q = 1.84310�2). Conjugation is an important mecha-

nism for bacteria, and the mechanism has been shown

to play an important role for the gut microbiome (Sitaraman,

2018). Superoxide reductase catalyzes the conversion of

the reactive oxygen species superoxide into the less toxic

hydrogen peroxide. A reduction in this capacity indicates a

microbiome-induced increase in reactive oxygen species in

the intestine of obese subjects. Induction of oxygen stress by

microbial dysbiosis has previously been suggested as one of
the mechanisms by which the microbiome can cause weight

gain and insulin resistance (Qin et al., 2012). Interestingly, while

these functionally specific perturbations suggest microbial

mechanisms contributing to weight gain, no pathways or

gene families significantly differed in abundance between

obese subjects with andwithout T2D after adjusting for multiple

testing (q < 0.1, Table S3; Figure S2). This remained true with

and without including metformin and insulin in the list of cova-

riates. Thus, we detected little variation in either microbiome

functional capacity or in the taxonomic profiles during T2D,

after accounting for the separate effects of diabetic medica-

tions and of obesity itself.

Commonly Used Medications and Dietary Supplements
Associate with Gut Microbiome to the same Extent as
Nutritional Variables
Medication intake is increasingly being linked to microbiome

composition, often to a degree as much or more than dietary

components, highlighting the importance of considering these

exposures in microbiome population studies (Falony et al.,

2016; Forslund et al., 2015). We thus evaluated the associations

of medication, dietary supplements, and dietary intake with mi-

crobiome structure in our cohort (STAR Methods, Figure S4;

Table S1). Five main medication classes, comprising analgesics,

antidepressants, antihypertensives, antiphlogistics, and antidia-

betics, were evaluated and all five were found to be associated

with bothmicrobiome structure and functional capacity (summa-

rized as MetaCyc pathways, using linear discriminant analysis

(LDA) q < 0.1, see STAR Methods and Table 1). To ensure as

equal sample sizes of users and non-users as possible in the

analysis, antihypertensives were tested in ObH, while the re-

maining 4 medication classes were tested in ObT2D subjects

(see percent users per group in Table S1). All associations

with microbiome structure were supported by the additional in-

dependent cross-sectional cohort from North-Eastern Germany
Cell Host & Microbe 26, 252–264, August 14, 2019 257



Figure 3. Overall Microbiome Composition and Functional Capacity Associate with Diet, Dietary Supplements, and Medication Intake

(A) Evaluation of associations between external factors, comprising dietary nutrients, dietary supplements and medication classes, and the gut microbiome

(metagenomic data), showed clear associations albeit with small effects. The percentage of variation explained and the significance of the associations between

the gut microbiome (x axis) and external parameters, together with age, gender and bmi (y axis), was evaluated using adonis (top three rows). Furthermore, the

correspondence between diet and medication profiles (four drug classes, dietary nutrients, and dietary supplements) and the microbiome, was evaluated using

mantel (fourth row). Finally, the effect of high (500 ppm) and sufficient (50 ppm) iron diets on the microbiome composition was evaluated under controlled cir-

cumstances in a mouse study using a linear mixed model (fifth row). For adonis, variance explained was calculated using u instead of r2 to limit overfitting, and

significance was estimated using permutation of samples (see STAR Methods). Percentage variance explained was calculated for mantel analyses as mantel(r)-

squared. Both mantel and adonis was performed across all non-diabetic subjects. ***q % 0.001; **0.001 < q % 0.01; *0.01 < q % 0.05.

(B) Schematic overview of the mouse study and collected data. Three groups of eight mice were fed chow for one week (time-point (TP) 0, baseline), after which

eight mice were started on an iron diet of 50 ppm ferrous sulfate and another eight mice were started on 500 ppm ferrous sulfate iron. Mice were kept on the

respective diets for seven weeks during which stool was collected weekly for microbiome profiling (except week five, week of GTT). Furthermore, extensive

phenotypic information was collected on a weekly basis.

(C)Non-linear dimensionality reduction of themice stoolmicrobiome (Rtsne function in r packageRtsne v0.15 based onOTU tableswithBray-Curtis dissimilarity and

perplexity = 10) show clustering ofmice on chow and the two iron diets [50 ppm and 500 ppm; (Krijthe, 2015)]. Points are colored by diet and numbered according to

time-point (six time-points where mice were kept on different diets and stool collected). The microbiome of mice on different diets are clearly distinct, with the

strongest separation between mice on chow versus the iron diets. For one mouse on chow, and one mouse on 50 ppm iron, the second timepoint cluster with the

opposite diet group, suggesting that sample IDs for these two samples were swabbed during processing. ppm: parts per million; nmr: nuclear magnetic resonance;

DOS: day of sacrifice; iGO: informative gene ontology; KO: kegg ontology; EC: enzyme commission. Figure relates to Figures S3 and S4, Tables 1 and S6.
(SHIP; LDA q < 0.1). For the analysis of dietary supplements,

usage (or not) of multivitamins; the minerals magnesium, iron,

and calcium; and vitamin C was evaluated in all non-diabetic

subjects. The LDA showed that overall gut microbiome taxo-

nomic and functional profiles significantly associated (q < 0.1)

with all tested dietary supplements (Table 1). Evaluation of spe-

cific taxa and microbial processes (MetaCyc, KO, EC and GO)

identified very little specific variation associated with the evalu-

ated dietary supplements and medications, potentially reflecting

limited power for such stratified analyses (Table S4).
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Evaluation of diet, comprising dietary supplements and nutri-

tional variables obtained from food frequency questionaries

(FFQ) data, showed a significant association between any mea-

sure of the gut microbiome, taxonomic or functional, and diet

across the non-diabetic subjects (PERMANOVA, q < 0.05); how-

ever, only a small proportion of variance in the microbiome could

be explained by long-term dietary factors, on the order of

1%–10% (Figure 3), in agreement with previous studies (Falony

et al., 2016; Wang et al., 2016; Zhernakova et al., 2016). This is

also in agreement with our own validation experiments in mice,



in which iron supplementation corresponded with an 8.98% mi-

crobiome variation in effect size (see Figure 3; Table S6). Thus

under this controlled setting in which mice were fed high or suf-

ficient iron diets over seven weeks, the detectable effect of the

change in a single dietary variable was substantially more pro-

nounced. In previous work on the gut microbiome and inflamma-

tion, dietary iron intake has been shown to have a unique effect;

this is often pro-inflammatory, and increased body iron storage

is a risk factor for T2D (Bao et al., 2012; Jaeggi et al., 2015). How-

ever, neither total body mass nor glucose tolerance were

associated with iron intake in the mice (linear mixed model

q > 0.1, Table S6; Figure S3). In the more complex setting of

our human population, nutrients, dietary supplements, and

medication together corresponded to a similar extent with mi-

crobiome taxonomy and function, with limited variation ex-

plained by each individual variable (Figure S4). Importantly,

these medication classes and dietary supplements are not

unique to our cohort; nearly half of adults in similar populations

receive at least one prescribed medication per month (CDC,

2017), making any effects on the microbiome of particular

interest.

Microbial Associations with Obesity Are Reflected in
Serum Metabolite Profiles
The gut microbiome contribute to a range of metabolites that are

detectable in serum, providing a direct link between variation in

the gut microbiome and the profile of circulating compounds (Liu

et al., 2017; Pedersen et al., 2016). Relatedly, a number of serum

metabolites have been associated with the development and

severity of metabolic diseases (Butte et al., 2015; Libert et al.,

2018; Liu et al., 2017). We thus integrated serummetabolite pro-

files (comprising 390 identified metabolites from a subset of 638

curated peaks, STAR Methods) with microbiome profiles for a

subset of the study participants (LH = 228, ObH = 145, and

T2D = 27). Overall composition of serum metabolite profiles

was significantly associated with that of the gut microbiome in

non-diabetic subjects, albeit surprisingly with an extremely low

effect size (Mantel test, r = 0.064, r2 = 0.41%, and p = 0.027).

The limited gut microbial taxonomic variation explained by

serum metabolites was less than the variation explained by

environmental factors (i.e., diet and medication; r = 0.18,

r2 = 3.43% in the 150 non-diabetic subjects with metagenomic

data). These same environmental factors themselves also had

a small direct effect on serum metabolites (r = 0.10, r2 = 1.0%,

and p = 0.016), confirming significant but mainly indirect associ-

ations between serum metabolites and both the gut microbiome

and dietary and medication factors.

Overall, obesity and T2D were both significantly associated

with overall serummetabolome composition (adonis, LH versus

ObH p < 1.00 3 10�4, ObH versus ObT2D p = 1.5 310�3;

Figure 4). Of the 390 identified metabolites, those with <50%

prevalence across subjects were considered rare (n = 62) and

the remaining abundant (n = 328). A total of 105 individual

metabolites (of the 390 tested) were associated with obesity

(100 abundant, five rare, q < 0.1; see STAR Methods, Figure 4;

Table S5). Among rare metabolites (those with <50% preva-

lence), three specifically derived from hypertension treatments

(oxypurinol, metoprolol, and hydrochlorothiazide) were signifi-

cantly increased, likely due to comorbidity with obesity (Feig
et al., 2008; Papademetriou et al., 2006). Among the abundant

metabolites, glutamate was increased in obese individuals, of

interest due to the association between free glutamate and

appetite regulation ((Delgado, 2013; Ottosson et al., 2018),

Table S5). The concentrations of 19 metabolites (18 abundant,

one rare) were significantly different in ObT2D (in contrast to

ObH subjects), where all but one were increased (Table S5).

Of these metabolites, nine were specific to ObT2D. One metab-

olite, 3-hydroxyoctanoate, was significantly higher in ObT2D

than in ObH, and significantly lower in ObH compared to LH

(q < 0.1) (Table S5). 3-hydroxyoctanoate has been assigned

anti-lipolytic activity, and found in fasting or diabetic ketoacido-

sis conditions to reach levels adequate to activate its receptor

HCA3, indicating that 3-hydroxyoctanoate plays a role in regu-

lating release of FFA from adipose tissue (Ahmed et al., 2009;

Costa et al., 1998; Suzuki and Kaneko-Kawano, 2016). Further

associations occurred within BCAA pathways, supporting pre-

vious observations associating them with insulin resistance

((Klein and Shearer, 2016; Newgard et al., 2009), Table S5).

Intriguingly, the smaller number of specifically T2D-associated

compounds corresponds with our findings for the gut micro-

biome, and may reflect a more restricted or specific molecular

alteration overall between obese individuals with and without

T2D. However, since our sample size for this comparison is

limited to a group of 172 subjects, we acknowledge that power

may also be more limited (see Discussion). Instead, we next

focused on potential interactions between obesity-associated

taxa and small molecules, as both BCAA and glutamate are

recognized bacterial metabolites (Ottosson et al., 2018).

We first tested for direct associations of 19 medication-

derived serum metabolites with gut microbial composition (as

captured by Bray-Curtis dissimilarity). The levels of all three anti-

hypertensive derivatives above were significantly associated

with the microbiome among their respective users, as well as

those of the analgesic metabolite salicylate (adonis q < 0.1,

see STAR Methods, Table S5). Next, to assess whether individ-

ual microbes were detectably responsible for the associations

during obesity (since few taxa were specifically associated

with T2D), we directly performed correlation analyses for the

17 taxa and 100 abundant metabolites that were individually dif-

ferential with respect to obesity (q < 0.1). We first did this,

conservatively, only within the LH population using MaAsLin

with metabolites as dependent variables (STAR Methods). Nine-

teen associations passed correction for multiple hypothesis

testing (q < 0.1), including ten metabolites from the amino acid

superpathway, glutamine, and four lipids. Nine of the metabo-

lites associated with abundance of two taxa in the ‘‘anti-inflam-

matory’’ Clostridium clusters IV and XlVa (Table S5). Of interest,

the association pattern within the ObH individuals differed from

the pattern within lean: while the associations in the lean individ-

uals were dominated by Clostridium, this taxon was not found

among associations within the obese subjects. Instead, fifteen

metabolite-microbe associations were significant within obese

subjects, predominantly related to lipid metabolism (n = 8) and

amino acids (n = 5) (Table S5). Together, these microbe-metab-

olite associations in obesity thus suggest a series of specific

routes by which taxa and their associated functional roles in

the gut might influence systemic signaling, nutrient uptake, and

weight gain.
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Figure 4. Serum Metabolite Profiles Associated with Obesity and Type 2 Diabetes

(A) Ordination of 400 metabolite profiles across lean non-diabetic (LH), obese non-diabetic (ObH), and obese T2D (ObT2D) individuals, reflecting a shift in the

profiles along the first ordination axis, using multidimensional scaling (MDS) based on gower’s index (capscale function in r package vegan).

(B) Correlation of four metabolites with single taxon abundance. All genera and metabolites tested for correlations were found in pre-analysis to associate with

obesity. The results fromMaAsLin analysis provide intercept and slope for the red line and association statistics are given over each plot. Samples are filtered as

by maaslin (STAR Methods).

(C andD) A total of 105metabolites were found to associatewith obesity and 19with T2D (linear model and chi-square test, q < 0.1, Table S5). (C) and (D) show the

top five metabolites found by MaAsLin to associate with obesity (LH versus ObH) and T2D (ObH versus ObT2D), respectively. X axes show metabolite residuals

after adjusting for age and gender. Boxplots weremadewith R function boxplot with default settings (whiskers extend 1.5 times the interquartile range). Summary

statistics are in Table S5.
DISCUSSION

Ample evidence has shown the gut microbiome to be associated

with obesity in humans, and studies inmice suggest that aspects

of this association could be causal in its development and persis-

tence. The gut microbiome has also been linked to insulin resis-

tance and physiological parameters related to diabetes, but

since these phenotypes are inevitably intertwined with each

other and with concomitant medications in humans, the details

have been difficult to establish. Here, we analyzed 1,280 gut

microbiomes from a defined population in northern Germany to

differentiate microbiome links to obesity, obesity-associated

T2D, dietary supplements, medication usage, and serummetab-

olites. This design was uniquely able to determine components

of the microbiome associated uniquely with T2D versus non-
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diabetic obesity. Comparing obese individuals with and without

T2D showed only modest associations between the microbiome

and T2D once medication and diet were also factored out,

mostly characterized by a nominal increased abundance of

Escherichia/Shigella. In contrast, comparing lean and obese in-

dividuals specifically without diabetes showed compositional

differences, as well as differences in functional capacity. Finally,

dietary factors, supplements, and medications were individually

associated only weakly with components of the microbiome, but

in aggregate accounted for a significant amount of variation; they

thus have the potential to substantially affect a wide variety of

additional microbiome population studies.

Human obesity has proven to be a particularly complex

phenotype with respect to the microbiome (Finucane et al.,

2014; Le Roy et al., 2018; Sze and Schloss, 2016). This may be



due to the many factors that can influence BMI in human popu-

lations, including diet, medication, genetics, and systemic meta-

bolism, which lead to heterogeneity of both clinical outcomes

and comorbidities. This multifactorial character of obesity, com-

bined with interpersonal variation in microbial composition and

the small effect sizes of single-taxon associations, impede mi-

crobiome-obesity studies (Finucane et al., 2014; Sze and

Schloss, 2016). A recent meta-analysis, for example, highlighted

consistent obesity associations only at the level of whole-com-

munity alpha-diversity, and feature-specific classifiers trained

on one cohort could not classify obesity in others (Sze and

Schloss, 2016). In spite of this, some consistency is emerging,

e.g., a decrease inmembers of Ruminococcaceae andClostridia

in obese subjects, across seven large cohorts including the cur-

rent study (Peters et al., 2018; Le Roy et al., 2018). The same

challenges hold true in associating T2D with the microbiome

(Supplemental Information), and any such complex phenotype

presents many of the same power, population structure, covar-

iate, and statistical issues as do genetic association studies for

complex traits (Falony et al., 2016; Zhernakova et al., 2016).

This particularly affected our diabetic obese population, which

numbered only 153, in contrast to a greater number of lean or

obese non-diabetic subjects. The limited overlap in results

among microbiome obesity population studies may both reflect

factors such as insufficient power, phenotypic heterogeneity,

microbial ecological variability, confounders such asmedication,

particular susceptibility to geographic or environmental factors

(e.g., diet), as well as a broad instability of the disturbed micro-

biome of obese individuals.

A striking finding from this and several previous studies is the

critical role of commonly usedmedications in modulating gut mi-

crobiome structure and function (Falony et al., 2016; Forslund

et al., 2015; Imhann et al., 2016; Maier et al., 2018; Zhernakova

et al., 2016). While the effects of any single non-antibiotic medi-

cation tend to be modest, the aggregate effect of several com-

mon medications per individual—and many such medications

across a population—can be substantial. Similarly, while single

dietary elements appears to be weakly associated with microbial

variation (Falony et al., 2016; Zhernakova et al., 2016), in agree-

ment with our study (adonis, 0.1%–0.3%, Figure S4), the

combined association of overall diet with vitamin and mineral

supplements with microbial variation becomes sizeable. In this

space, the notable effect of dietary iron on the microbiome,

and its known link with diabetes, prompted us to evaluate its ef-

fect in a controlled setting, specifically supplementary feeding in

mice (Bao et al., 2012; Lee et al., 2017; Zhao et al., 2017). While

direct comparison of affected taxa is not possible between spe-

cific-pathogen-free mice and humans, the results confirmed a

causal effect of iron intake on the gut microbiome (effect size

from linear mixed model, comparing 50 ppm to 500 ppm iron di-

ets, 8.98%), providing support for the observed effect of long-

term dietary iron in the human cohort. Thus, larger population

studies enable the detection of significant, consistent associa-

tions, albeit with small effect sizes for individual compounds,

as shown in the current study.

Obesity and T2D are alarming public health issues due to their

rapid and continuing increase worldwide, and their etiologies are

complex independently of the (also complex) gut microbiome. If

host-microbiome interactions are to be targeted as an additional
route of understanding these metabolic diseases, the scientific

community must continue to study them in greater detail in

larger, well-phenotyped cohorts and through additionally well-

designed mechanistic studies. This will help to disambiguate

the overlapping—but sometimes distinct—microbial effects of

the two conditions, in addition to characterization of inter-indi-

vidual variation in the microbiome as it relates to diet, medica-

tions, and other environmental exposures. Key microbial

changes may ultimately prove to be context-specific, with

distinct functional consequences depending on the host envi-

ronment, genetics, and stage of temporal progression from

health through obesity to T2D.
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Boulangé, C.L., Neves, A.L., Chilloux, J., Nicholson, J.K., and Dumas, M.E.

(2016). Impact of the gut microbiota on inflammation, obesity, and metabolic

disease. Genome Med. 8, 42.

Butte, N.F., Liu, Y., Zakeri, I.F., Mohney, R.P., Mehta, N., Voruganti, V.S.,
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Chow Diet LabDiet PicoLab Rodent Diet 20,

St. Louis, MO

Cat #5R53*

50 ppm Ferrous Sulfate Diet

AIN93M Defined Diet with Microcrystalline

Cellulose as the Fiber Source.

Dyets, Bethlehem, PA Cat #115838

500 ppm Ferrous Sulfate Diet

AIN93M Defined Diet with Microcrystalline

Cellulose as the Fiber Source

Dyets Cat #115839
LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Andre

Franke (a.franke@mucosa.de). This study did not generate new unique reagents.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Study and Data Overview
The current study considered 1,280 individuals from the northern German cohorts PopGen (n=436; (Krawczak et al., 2006)) and

FoCus (n=844; (M€uller et al., 2015)). 16S rRNA amplicon sequencing data were generated for the total population, while 201 individ-

uals were selected for shotgun metagenomic sequencing. The study further included data on medication, dietary intake and supple-

ment usage, nutrition and a phenotypic characterization (Table S1). For analysis, samples were divided into three phenotypic

groups: a) lean (BMI % 25) without diabetes, (‘‘lean healthy,’’ LH); b) obese (BMI >30) without diabetes (‘‘obese healthy,’’ ObH);

and c) obese (BMI >30) with T2D (ObT2D). To asses overall microbiome differences between the phenotypic groups, as well as as-

sociation with fasting glucose levels and the role of antidiabetic medication, the PERMANOVA-like approach available through the

adonis function and the betadisper function for evaluation of difference in dispersion between groups was used, both available in the

R package vegan. To identify individual microbial features (taxa and processes) associated specifically with obesity and/or with

obesity-associated T2D phenotypes, we assessed each feature’s abundance across (a) LH versus ObH and (b) ObH versus

ObT2D using generalized linear models in MaAsLin (Multivariate Association with Linear Models) while controlling for clinical cova-

riates (e.g. medication and age) (Morgan et al., 2012).

Further analyses were performed to assess the association of medication, nutrition and dietary supplements with features of the

gut microbiome. This included evaluating if gut microbiome taxonomic and functional profiles could discriminate between users and

non-users of commonly usedmedications and dietary supplements, including iron, magnesium, antihypertensives and antidiabetics.

The evaluation was performed using LDA, and supported identification of covariates for the analysis of obesity and T2D. To further

evaluate the associations between iron intake and the gut microbiome that we observed in the human cohorts, we performed a diet

intervention study in 24 C57BL/6J mice. All 24 mice were fed a chow diet for 4 weeks and then separated into groups of 8 as they

started on study diets; one group continued on the chow diet, another 8 mice were started on a 50 ppm ferrous sulfate diet, and the

remaining 8 mice were started on a 500 ppm ferrous sulfate diet. The mice were kept on these diets for an additional seven weeks.

Mouse body composition measurements and stool were collected just prior to starting the mice on the study diets and then weekly

thereafter. The collected stool was subjected to 16S sequencing to further evaluate the associations between iron intake and the gut

microbiome.

As the effect of a dysbiotic gut microbiome on the host may in part be reflected in serum metabolite profiles, and as many serum

metabolites has previously been related to obesity and T2D, we further profiled the serum metabolome and related the profiles to

health states and the associated microbial variations. Finally, 16S rRNA amplicon sequencing data for 880 individuals in a second

independent cohort, SHIP, was included to evaluate the robustness of associations where data availability allowed. As combining

different cohorts can be a source of confounding, all analysis of the SHIP cohort has been kept separate from the analysis of the

main study population selected from the PopGen and Focus cohorts. In particular, no analyses rely on data that simultaneously spans

PopGen/FoCus and SHIP; instead, primary analyses are carried out only in PopGen/FoCus, with validation tests run separately within

SHIP. SHIP is an independent cohort recruited in the area of Greifswald (North-Eastern Germany), using the same protocol for

sequencing however with deviations in preprocessing of samples as for PopGen/FoCus (Frost et al., 2019).

Kiel FoCus and PopGen Cohorts
Study sampleswere selected from the second examination cycle of the PopGen cohort (n=436) (Krawczak et al., 2006) and the cross-

sectional and clinical subset of the FoCus cohort (n= 844) (M€uller et al., 2015). Samples were collected as described in Wang et al.

(Wang et al., 2016). Information on subjects age, sex, BMI etc. can be found in Table S1.
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Samples were selected for 16S rRNA amplicon sequencing as follows. Samples with missing data for age, gender and BMI were

excluded. From among the remaining samples, non-diabetic lean samples were selected by requiring individual BMI% 25, no diag-

nosis of IBD or IBS, fasting glucose level %125 mg/dl and no self-reported physician diagnosis of diabetes. Non-diabetic obese in-

dividuals were filtered by the same filtering criteria except a BMI >30. Finally, obese individuals with T2D had no IBD or IBS diagnosis,

BMI >30 and were diagnosed with T2D or has fasting glucose levels above >125 mg/dl. Medication data were curated, manually

checked for spelling and consistency, and grouped into analgesics, antihypertensives, antidepressants, antibiotics, antiphlogistics,

and antidiabetics (details provided in Supplemental Information).

A subset of samples from each group was selected for shotgun metagenomic sequencing as follows. To minimize potential con-

founding effects, individuals reporting chronic diarrhea, use of hormone replacement therapy, coronary heart disease, cardiac or

venous insufficiency, or thrombotic embolism were excluded. Additional individuals were excluded if they reported a current illness,

with the exception of a common cold lacking antibiotics treatment. For individuals where data on CRP was available, non-diabetic

samples were selected for normal CRP levels (<5 mg/l). The resulting LH and ObH health groups had compatible fasting glucose

levels, and all groups had compatible diastolic and systolic blood pressure levels with slightly lower systolic blood pressure in the

LH group (Table S1).

Written, informed consent was obtained from all study participants, and all experiments were approved by the institutional ethical

review committee in adherence with the Declaration of Helsinki Principles.

SHIP
Participants of SHIP (the Study of Health in Pomerania) (Völzke et al., 2011) were selected from among the 1,904 individuals with

available fecal 16S rRNA amplicon sequencing data from both the SHIP-TREND and SHIP2 arm of the SHIP cohort. A subset of these

samples that included medication data and the phenotypic variables age, gender, weight and height was selected for further study.

Samples were grouped as obese or lean using the BMI-based definition introduced above. Samples were grouped as diabetic or not

diabetic based on information from two variables in SHIP-TREND (T0) (‘nn_diab_01’ which informs whether diabetes has been diag-

nosed, and ‘diabetes_typ2_t0’ which informs whether T2D can be diagnosed based on the data) and one variable for SHIP (S2)

(‘nn_diab_01’). We note that the variable ‘nn_diab_01’ does not distinguish between type 1 and T2D, however with the additional

requirement of a BMI > 30 we anticipate the majority of individuals will have T2D and not type 1 diabetes. Three samples were

removed due to antibiotic usage. These criteria resulted in the selection of 880 samples: 399 lean non-diabetic, 408 obese non-dia-

betic and 73 obese diabetic. All participants provided written informed consent and the study was approved by the ethics committee

of the University Medicine Greifswald.

Mouse Iron-Feeding Study
All animal experiments were approved by the UCLA Animal Care and Use Committee, in accordance with PHS guidelines. The pro-

tocol number is ARC #1992–169 (Approval Period from 6/6/2016 through 11/25/2018). Twenty-four male C57BL/6J mice were ob-

tained by the Lusis lab at UCLA from The Jackson Laboratory (Bar Harbor, ME) at 3 weeks of age. The mice were housed four per

cage and fed a chowdiet (LabDiet PicoLabRodent Diet 20, cat #5R53*, St. Louis,MO) for oneweek. During this time, the bedding and

feces were mixed together at the end of each day and redistributed among all the cages, in order to minimize variation in baseline

intestinal microbial composition.

At 4 weeks of age, 2 cages of mice (8 mice in total) were continued on the chow diet, while 2 cages (8 mice total) were started on a

50 ppm ferrous sulfate diet, and 2 cages (8 mice total) were started on a 500 ppm ferrous sulfate diet. These latter two diets were

AIN93M defined diets with microcrystalline cellulose as the fiber source (Dyets, cat #115838 and cat #115839, Bethlehem, PA).

Mice were kept on these diets for an additional seven weeks. Mouse body composition measurements and stool were collected

just prior to starting the mice on the study diets and then weekly thereafter. Body composition (total fat, muscle, and free fluid)

was measured by MRI in a Bruker Minispec with software from Echo Medical Systems, Houston, TX. Total body weight (g), and per-

centage of fat, muscle and free fluid were calculated. For the stool collection, each mouse was placed in an individual cleaned cage

with no bedding for ~5-10 minutes. Feces dropped in each cage were collected for each mouse and snap frozen. Stool and body

composition measures were again collected the day before sacrifice (DBS).

After four weeks on the study diets, a glucose tolerance test (GTT) was performed. For the GTT, mice were fasted in clean cages

with free access to water for six hours from 7am-1pm. The tip of a mouse’s tail was then nicked with a razor blade and the second

blood drop was analyzed using an AlphaTrak2 blood glucose test strip with an AlphaTrak glucometer (Abbott laboratories). The

mouse was then dosed IP with 1g glucose per kg mouse body weight with a sterile 10% solution of Beta-D(+) glucose in phosphate

buffered saline (PBS). At 15, 30, 60, and 120 minutes after dosing, an additional blood sample from the nick was analyzed as

described above. The GTT was performed on 3 mice per group on day 1, 3 mice per group on day 2, and 2 mice per group on

day 3 after 4 weeks on the study diet). The week of the GTT, neither stool nor body composition measures were collected.

At the day of sacrifice (DOS), mice were anesthetized by inhaled isoflurane, and then body weight was measured. Blood was

collected from the retroorbital plexus into lithium heparin tubes (BD Microtainer, catalog # 365971) to measure plasma insulin and

glucose levels. Blood samples were centrifuged, and plasma was removed and snap frozen. The cecum was excised and weighed.

Plasma insulin was measured using an ELISA insulin kit (Alpco catalog #80-INSMSU-E10). Plasma glucose was measured by an

enzymatic assay (Stanbio, catalog # 1070-125).
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METHOD DETAILS

Medication Variables for SHIP
Medication variables were defined based on ATC codes. The ATC codes usedwere: ’Analgesic’ (N02 andM01A); ’Antihypertensives’

(C02, C09 and C07); ’Antidepressant’ (N06A); ’Antibiotics’ (A07AA, G01AA, G01BA, J02AA, J04AB, L01DC, R02AB and S01AA);

’Antiphlogistics’ (A07E, S01B, V10A and L04A); ’Antidiabetics’ (A10).

Medication Variables for PopGen and FoCus
Information on medication usage was obtained for each study subject as free text. To convert this information into a data format that

could be implemented in the statistical analyses, a classification tool was constructed and used to classify medication for samples

with 16S rRNA gene sequencing data. The classification tool consists of scripts written in PERL and Visual Basic for Applications

(VBA) in MS Excel.

Curation of free text and annotation of drug names: In the first step, PERL scripts were used to extract and to annotate relevant data

from the free text on medication usage. Stop words, abbreviations and other irrelevant words (e.g. names of pharmaceutical com-

panies) were filtered out by several process steps. The remaining text was parsed through the German ABDA database to find drug

names. Each hit was annotated by further information fromABDA and KEGGDRUGS, and resulting summaries saved in Excel sheets

divided in three quality categories. The three categories were defined as a) ‘‘exactmatches’’ givenwhen the complete drug namewas

found in the free text, b) ‘‘matches’’ given when the main, relevant part of the drug name was found and c) ‘‘approximate matches’’

found by similarity search in order to correct words caused by typos in the origin text.

Assignment of drug classes: In the next step, a VBA script was used to further classify the drug names according to a set of rules

and the obtained annotations. The rules were generated in two steps. First, information from the manually classified medication data

was used (medication data for samples with shotgun metagenomic data was manually classified), then the list of rules was extended

by ‘training the tool’ - rules were added for unclassified drugs after each run. The rules were based on the annotations obtained from

the searched databases andwere designed as follows: An output field froma databasewas specified together with a search term e.g.

‘‘Look for the term ‘Analgesic’ in the field ‘Activity’ in the database ‘KEGGDRUGS’’’. If amatchwas found, a result termwaswritten to

the field ‘High Level’ (HL). A similar rule, extended to include the content assigned to HL, assigned a term to the field ‘Low Level’ (LL).

HL rules would assign a higher drug class such as ‘Antihypertensives’ or ‘Hormones’, while the LL rules would assign a subclass such

as ‘Diuretics’ or ‘Thyroid hormones’.

Manual evaluation of classification tool: Each drug was assigned a HL and LL term using each rule resulting in multiple result rows

per drug. Identical rows were automatically concatenated into a single row, while drugs assigned deviating results was left for the

subsequent manual evaluation. Output from the automated classification tool was manually evaluated by looking through rows

for errors and unassigned drugs which were then assigned a HL and LL term by searching the databases manually. Based on this

tool all drugs listed in the medication data which belonged to the drug classes of interest were identified, and each sample was as-

signed ‘1’ for ‘using’ if one or more of the drugs were reported for that sample, and ‘0’ if no match was found.

16S and Shotgun Metagenomic Sequencing
Fecal samples were subjected to 16S rRNA amplicon sequencing as described in Wang et al. (Wang et al., 2016) for FoCus and

PopGen. In summary, bacterial genomic DNA was extracted using the QIAamp DNA Stool Mini Kit from QIAGEN and the V1-V2 re-

gion of 16S rRNA gene was sequenced on the MiSeq platform with MiSeq Reagent Kits V3. Stringent demultiplexing was carried out

by allowing no mismatches in either index sequence. For a subset of 201 individuals, the same DNA extracts were subjected to

shotgun metagenomic sequencing as described in Wang et al. (Wang et al., 2016). Briefly, these samples were prepared following

the Illumina Nextera DNA Library Preparation Kit and sequenced on the HiSeq Platform as 23125 bp paired-end reads. Preprocess-

ing of SHIP sampleswas performed as described in (Frost et al., 2019) andwith the same protocol for 16S rRNA amplicon sequencing

as for the FoCus/PopGen samples.

16S rRNA Gene Data Processing
Raw 16S rRNA amplicon reads for the Focus and PopGen samples were end-trimmed using sickle in PE mode with a sliding window

of 0.13 read length tomaintain average qualityR20. Reads <100 nts after trimming were discarded. Paired reads were then stitched

using VSEARCH (Rognes et al., 2016) with minimum length 280 and maximum length 350bp. VSEARCH was further used to filter

reads with more than 1 expected error and FastX-Toolkit::fastq_quality_filter was used to filter reads with more than 5% of nucleo-

tides with a quality score below 30. Remaining reads were converted to FASTA format and subjected to chimera filtering using

VSEARCH and the gold.fa database. Remaining reads were classified using the UTAX algorithm with RDP database and reads clas-

sified as either chloroplast or not classified at domain level were removed.

OTU tables were generated using the UPARSE algorithm (Edgar, 2013) implemented in VSEARCH software and all reads across

samples. For reads with multiple exact sequence copies (replicates) only one copy was kept, and read only occurring once across all

samples (singletons) were removed, as they were considered likely to be sequencing artefacts. The remaining reads were then clus-

tered at 97% similarity. OTU representative sequences were again checked for chimeras using VSEARCH in de-novomode. All reads

per sample were then mapped to representative sequences using VSEARCH to generate OTU abundance tables. Representative

sequences were additionally taxonomically annotated using the RDP database and the RDP classifier (Wang et al., 2007) to the
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lowest possible level with minimum 80% bootstrap confidence. OTUs with identical taxonomic annotations were then grouped into

taxonomic bins. Samples with fewer than 10,000 reads were removed. Overgrowth of oxygen-tolerant Proteobacteria was quality

controlled by excluding samples which fell above the third quartile plus three times interquartile range (IQR) of phylum abun-

dance (n=26).

Raw 16S rRNA amplicon reads for the SHIP cohort were processed as described above except that SINTAX (Edgar, 2016) was

used for annotating sequences, and samples were rarefied to 10,000 reads per sample.

Shotgun Metagenomic Processing
Metagenomic sequencing data were quality controlled by requiring a minimum of 4 M paired-end reads per sample after Nextera

library adaptor removal (Trimmomatic (Bolger et al., 2014)), trimming of low quality ends (Sickle (Joshi and Fass, 2011)), and removal

of host-reads (DeconSeq (Schmieder and Edwards, 2011)). Quality control methods were run with default parameters. Metagenomic

samples were taxonomically profiled usingMetaPhlAn2 (Segata et al., 2012) and functionally profiled using HUMAnN2 v0.11.1 (Fran-

zosa et al., 2018), both with default settings plus the addition of ‘–bt2_ps very-sensitive’ for the ‘—metaphlan-options’ provided to

HUMAnN2. Species from taxonomic profiles were retained for further analysis if their mean relative abundance exceeded 0.005

(0.5%) across the dataset with a minimum abundance of 0.05 (5%) in at least one sample and non-zero abundance in at least

60% of samples.

Tables of pathway and gene family abundance obtained using HUMAnN2 were normalized to relative abundance using

’humann2_renorm_table –units relab’ including unmapped and unintegrated (i.e. not assigned to a pathway) read mass. Samples

potentially affected by oxygen exposure were removed (identified as described below).

Pathway abundance files were joined into one abundance table and filtered to contain the pathways with top 50% mean abun-

dance and top 50% variance (final n=112). To reduce redundant testing, pathways were clustered using Ward hierarchical clustering

(R function hclust in package stats) with dissimilarity 1-Spearman correlation coefficient. Pathway clusters were defined at height 0.6

using the R function cutree in package stats and a representative pathway was selected for each cluster (defined as the pathway with

the median mean abundance, Table S1).

Gene family files were regrouped using the humann2_regroup_table command with ’uniref90_level4ec’ (Enzyme Commission),

’uniref90_infogo1000’ (informative Gene Ontology, iGO) and ’uniref90_ko’ (KEGG Orthology) terms. iGO is computed specifically

for HUMAnN2 as informative subsets of GO build on UniProt’s annotations and the structure of the GO hierarchy (Ashburner

et al., 2000). Regrouping was performed in order to join gene families with similar function or properties, and thereby reduce both

the number of low-abundance variables and the number of tests to be performed downstream. Regrouped, per-sample abundance

profiles were joined into three abundance tables and filtered to contain features with top 25% mean abundance and top 25% vari-

ance. This filtering returned 453 KO terms, 110 iGO terms and 132 EC terms. For KO, the terms with ‘subunit.ribosomal.protein’ were

removed before filtering in order to further reduce the multiple testing burden. Features from these tables were then clusters (and

representative features selected) following the procedures outlined above for metabolic pathways, resulting in 38 EC, 35 iGO and

78 KO clusters (Table S1).

Nutrition Data
Dietary intake during the year preceding examination was assessed in participants of the FoCus and PopGen cohorts via a validated,

self-administered food frequency questionnaire (FFQ) (Nöthlings et al., 2007). Nutrient intakes (e.g. dietary protein content) were ob-

tained using the German Food Code and Nutrient Database (vII.3) and provided by the Department of Epidemiology of the German

Institute of Human Nutrition Potsdam-Rehbr€ucke (Dehne et al., 1999). Vitamin and mineral intake from the dietary supplement data

was incorporated in downstream analyses in one of two ways: Alone as categorical variable (e.g. in the LDA analyses), and as contin-

uous variables of ‘‘total intake’’ obtained by combining dietary supplement data with the nutritional data derived from FFQ records of

intake of food groups (e.g. as covariates in the MaAsLin analyses). As there exists some uncertainty as to the reproducibility of some

nutrient groups when assessed with FFQs, and as many nutritional variables correlate, a subset of higher level variables were

selected for inclusion in the downstream analyses (Martinez et al., 2013; Nagel et al., 2007). Selected variables with summary sta-

tistics are shown in Table S1.

The nutritional variables for mineral and vitamin intake analyzed for association with the microbiome using MaAsLin and adonis

included intake originating from diet and supplements. Data on supplement usage was recorded as binary data, which we recoded

to amount per day by estimating the typical amount of each compound in commonly used supplementary products in Germany. The

supplements evaluated were multivitamin/mineral supplements, and individual supplements including folic acid, iron, zinc, magne-

sium, calcium, selenium, vitamin B6, vitamin B7 (biotin), vitamin B complex (containing all 8 B vitamins), vitamin E, carotene, vitamin

A and vitamin C. For each type of supplement, we selected five products which are sold over the counter for adults and not aimed for

treating any specific disease (except vitamin or mineral deficiency). We assumed users took the recommended amount, included all

reported sources of each component (e.g. if a subject used both vitamin C tablets and multivitamin we included vitamin C from both

sources) and added themedianmilligram to the amount obtained from nutrition. This resulted in the total (T) vitamin/mineral variables

used through the study.
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Serum Metabolites
Non-targetedmetabolomics profiling analysis was performed for n=855 samples from the control subset of the PopGen. Metabolites

in serum samples were extracted with 475 mL methanol and centrifugated. The supernatant was split into 4 aliquots of 100 mL, keep-

ing two as reserve. The other two aliquots were used for LC-MS/MS analysis in positive and negative electrospray ionization mode.

LC-MS/MS analysis was performed on a linear ion trap LTQ XLmass spectrometer (Thermo Fisher Scientific, Germany) coupled with

aWaters Acquity UPLC system (Waters, Germany). Two different columns (2.1 x 100mmWaters BEHC18, 1.7 mmparticle-size) each

optimized for the respective positive or negative electrospray ionization, were used. Metabolites were identified by comparing the

recorded LC-MS/MS spectra with spectra found in Metabolon’s proprietary spectra library (Metabolon, USA). Further details can

be found in Koch et al. (Koch et al., 2017). Of the 855 samples, 400 overlapped with the 1,280 study individuals (LH=228,

ObH=145, T2D=27). For eachmetabolite (totaling 638 in the subset of 400 subjects), the levels measured were divided by themedian

value of the samples’ run day to account for technical day-to-day variations, and missing values were imputed with the minimum

detected value.

The ComBat function in R package sva v3.30.0 was applied to correct remaining batch variation, with settings par.prior=F and

mean.only = T (Leek et al., 2012). Prior to ComBat, metabolites with zero variance were removed. Among the 390 identified metab-

olites (based on included standards andmanual curation), low-prevalence ("rare") metabolites were separated for handling by appro-

priate models, specifically those with >50% zero values in non-imputed data, of which a subset of 62 were identified. The remaining

328 identified were considered "abundant".

Microbiome Data from Mouse Iron-Feeding Study
Fecal pellets were transported fromUCLA, USA, to Kiel, Germany, frozen on dry ice, processed and 16S sequenced as described for

the human samples. The raw 16S data was quality controlled and processed as for the human data to obtain OUT and taxonomic

abundance tables for statistical analyses. Following data processing and filtering, 167 samples remained (out of the initial 168).

QUANTIFICATION AND STATISTICAL ANALYSIS

Correcting for Multiple Hypothesis Testing
For all analyses described below and throughout the manuscript, nominal p-values are corrected for multiple hypothesis testing to

false discovery rates (q-values) using the Benjamini-Hochberg method (Benjamini and Hochberg, 1995).

Multivariate Linear Modeling Using MaAsLin
For most associations between microbiome and health outcomes we used a modified general linear model as implemented by

MaAsLin (Multivariate microbial Association with Linear Models, see for details (Morgan et al., 2012)), which combines an arcsine-

square root transformed analysis of relative abundances in a standard multivariable linear model with outlier removal, variable selec-

tion by boosting, and (for sparse features) zero inflation. Here, we required a minimum relative abundance of 10-10 for taxa and

functional features (dMinAbd), and outliers removed >3 inter-quartile ranges past the 1st/3rd quartiles (dOutlierFence).

The full list of covariates to select from in models contrasting healthy and obese subjects (not T2D) were age, gender, fasting

glucose levels, total iron intake, antihypertensive and analgesic medications. Only the covariate of health status was enforced.

The full list of covariates to select from for models contrasting obese with and without T2D (not lean) were age; gender; BMI; themed-

ications antihypertensives, analgesics, metformin and insulin; and the dietary variables total magnesium and total iron intake. Only

the covariates of health status and BMI were enforced. However, to evaluate the effect of metformin/insulin on individual taxa, two

models were applied to the taxonomic features that deviate from the above on the specification of metformin/insulin as follows: One

without metformin/insulin covariates and one enforcing metformin while keeping insulin and metformin among the full list of covari-

ates. Taxonomic features from 16S data were included as summed at the genus through phylum levels, and with features with >30%

zero valuesweremodeled as zero-inflated. The functional features assessedwere pathway and gene family group representatives as

defined above (using the default model). The specified models were further used to analyze the association between health states

and the facultative-to-obligate anaerobe ratio, as well as targeted butyrate metabolizing pathways.

To evaluate the genera associated with obesity in the independent SHIP cohort, MaAsLin was run with same settings across all

non-diabetic samples, with the covariates age, gender, antihypertensives and antidepressants (antihypertensives and antidepres-

sants were the most common medications across samples at 49% and 30% users, respectively).

Further, MaAsLin models were used for the analysis of dietary supplement and medication intake. Non-diabetic samples were

used except for analyses of antidiabetic medications (insulin and metformin), where only diabetic samples were used. Analyses of

medication usage included the covariates age, gender and BMI. For the PopGen and FoCus samples (where dietary supplement

data was available) the additional covariates total iron and total magnesium were included. Only the covariates medication and

BMI were enforced. Analyses of supplement usage included the covariates age, gender, BMI, analgesic and antihypertensives

(used by 22% and 30% of individuals, respectively), enforcing BMI and the evaluated supplement. Finally, MaAsLin was used to

analyze associations of microbial taxa and functional processes with age and gender (enforcing those two variables in their respec-

tive analyses, as well as health state). Non-diabetic subjects were included and settings were as described above, with covariates

selected as in the analysis of obesity.
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Variance Explained by Diet and Medication
The function adonis in the R package vegan (Oksanen et al., 2015) was used to calculate the overall variation in microbiome compo-

sition and functional capacity that could be explained by both the combined variables, and the variation in microbiome composition

that could be explained by any single nutritional variable. Analyses were performed for all non-diabetic subjects. The full list of nutri-

tional variables (n=38), including daily intake from the dietary supplements, is listed in Table S1. The variables diet fibers, proteins,

fats, carbohydrates andminerals, were excluded from the analysis of joined variance explained as they are summarymeasures of the

lower-level nutritional variables included in themodel. The adjusted coefficient of determination (u2) was used as ameasure of overall

variance explained instead of the coefficient of determination (R2) to avoid overestimation (Kelly et al., 2015). The coefficient of deter-

mination (R2) was usedwhen evaluating single nutritional variables.We used a permutated null distribution (n=999 samples) of overall

variance explained (u2) based on reshuffling of sample labels to estimate statistical significance. For calculation of the variance ex-

plained by each individual nutritional variable, each variable was analyzed in separate models while adjusting for BMI, age, gender

and total energy intake.

Selection of Nutritional Covariates
The inclusion of iron intake in the analysis of both obesity and T2D, and of magnesium intake in analysis of T2D, was based on the

difference in number of users and non-users between the health state groups (Table S1), these minerals’ overall effects as shown by

LDA, and prior knowledge linking them to the respective health states (see main text and Supplemental information). The limited

adjustment for nutrient and supplement covariates in the models described above were decided in part based on the analysis of

variance: the overall variance explained by dietary intake, including supplements, was estimated at ~1–10% for taxonomic and

functional abundance (Figure 3). While these results indicated a slightly greater potential for nutritional data to explain variation in

functional capacity (as compared to bacterial abundance), we found that the limited explanatory power argued against inclusion

of more dietary variables in the analysis of T2D. As diet is part of the obesity phenotype we also limited dietary covariates in this

analysis.

Beta Diversity Association Analysis
To evaluate whether overall bacterial composition or functional capacity associated with obesity (LH versus ObH), BMI, fasting

glucose levels or T2D (ObH versus ObT2D), the R function adonis in R package vegan was used with default settings except

perm=999, and 16S data at genera level or shotgunmetagenomic gene abundance data regrouped to iGO andKO terms, orMetaCyc

and GO pathways. To ensure compatible power of the analysis of each trait, data were subsampled to compatible sample sizes

(n=100 for metagenomic data, and n=300 for 16S data), and the analyses repeated 50 times to ensure robustness (using the sample

function in R with replacement). Furthermore, to ensure compatibility of results, the number of considered covariates were kept at six

for all adonis analyses except where diabetic medication was not included: Analysis of obesity and BMI included covariates age,

gender antihypertensives, analgesics, total iron intake and fasting glucose levels. Analysis of fasting glucose levels included age,

gender, antihypertensives, analgesics, total iron intake and BMI. Analysis of T2D included age, gender, BMI and total iron intake,

with or without metformin and insulin as specified with results. Analysis of fasting glucose levels excluded subjects using T2D medi-

cation. For the analysis of age and gender, the LH subjects were included, and the analyses were adjusted for covariates as in the

MaAsLin-based analysis of obesity. Finally, the function betadisper from the R package vegan was used with default settings to eval-

uate dispersion between groups of i) LH and ObH and ii) ObH and ObT2D subjects, subsampling and repetitions were used as

described for adonis, and the anova function was used to estimate significance.

Alpha-Diversity Association Analysis
Phylogenetic diversity (total unique phylogenetic branch length) was used as themeasure of alpha-diversity, and calculated using the

phylogenetic tree built on the aligned OTU sequences using FastTree v2 (Price et al., 2010) in nucleotide mode (–nt) and applying a

generally time-reversible model (–gtr). The resulting 16S OTU table and phylogenetic tree were used as input in mothur’s

phylo.diversity function (Schloss et al., 2009). The significance level of the difference in alpha-diversity between groups was esti-

mated using robust regression (function lmRob in R package robust v0.4 (Wang et al., 2017)) adjusting for the covariates listed for

MaAsLin.

Medication Association with Microbiome
The importance of medication consumption for bacterial composition (16S data) was evaluated for analgesic, antidepressant, anti-

phlogistic and anti-diabetic medications in obese T2D samples and for antihypertensives in non-diabetic obese samples. This selec-

tion was based on percent medication users within groups and the group with closest to 50% medication users were selected.

Individuals were grouped as users or non-users of the target medication classes, and linear discriminant analysis (LDA) was per-

formed as follows; MDS ordination axis were calculated for the relative abundance of genera (16S, excluding genera with zero abun-

dance in all selected samples) using capscale (R package vegan) with Bray-Curtis dissimilarity, and LDA was performed with the first

10 ordination axis, using the MASS package in R. The ordination axes were used instead of the microbial variables directly in order to

avoid over-fitting. The obtained linear discriminant function was compared between medication users and non-users with Wilcoxon

rank sum test. The same analysis approach was applied to pathway abundance data.
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To support the findings in PopGen and FoCus that the gut microbiome could significantly discriminate between users and non-

users of five commonly used medication classes, we repeated the LDA with the SHIP data. Analysis of antidiabetics was performed

with ObT2D, of antidepressants with ObH and the remaining 3 medication classes (analgesics, antiphlogistics, antihypertensives)

were evaluated with data from LH individuals.

Dietary Intake Association with Microbiome
We used LDA as described for medication usage above to evaluate the deviation in microbiome composition between supplement

users and non-users of the selected supplements across non-diabetic subjects. We considered age to be the most likely confound-

ing factor in this group of non-diabetic subjects as based on prior findings (see above) and prior publications of microbiome studies.

We therefore first considered the distribution of supplement usage across ages and, by visual inspection, found no patterns to

prompt the inclusion of age as a covariate.

Serum Metabolites’ Association Analysis
For analyses where covariates could not be specified (Mantel, Betadisper), metabolite residuals adjusted for age and gender were

used. Residuals were calculated for each metabolite using a linear regression. For all linear models each metabolite was scaled by

dividing by the metabolite standard deviation, and the covariates age and gender were included.

Differences in metabolic composition between health states were evaluated using adonis with default settings except

method=’’gower’’ and perm=104, with the covariates age, gender, fasting glucose levels, antihypertensives and analgesics for anal-

ysis of obesity, and the covariates age, gender, BMI, metformin, antihypertensives and analgesics for analysis of T2D. Similarly,

dispersion between health states was evaluated using betadisper and significance calculated using permutest, both from R package

vegan. Correspondence between the metabolite profile and gut microbiome composition (genera) or environment (nutrition, dietary

supplements and medication) was evaluated using mantel.rtest in R package ade4 v1.7 (Chessel et al., 2004) across all non-diabetic

subjects with metabolite data. Gower distances was used for metabolites and environmental variables to accommodate the

mixed data.

The identified and abundant metabolites (n=328) were selected for analysis of single metabolite differences between health states

using a linear model in MaAsLin with covariates as above (for adonis), enforcing only the health state and with no data transformation.

The remaining 62 metabolites that were identified but with low abundance across the 400 subjects were evaluated for association

with obesity or T2D using a chi-squared test (chisq.test function in R package stats) on the scaled, but non-imputed non-adjusted

metabolites after conversion to presence/absence data. To obtain information on the direction of the association, e.g. increase or

decrease in obese, we applied the Wilcoxon rank sum test in R package stats was used with conf.int=T and the estimate multiplied

with -1.

The genera that associated with obesity (q<0.1) were selected and evaluated for association with the 100 abundant metabolites

found to associate with obesity. For these, we first tested for an association across all LH samples and then across all obese non-

diabetic samples (ObH). The analysis was performed using MaAsLin with covariates age, gender, antihypertensives and analgesics,

enforcing only the taxa being evaluated.

Among the 28 metabolites assigned as medication metabolites, 19 metabolites were likely to originate from one of the five medi-

cation classes evaluated above. For these 19 metabolites, a generalized linear model with binomial distribution (glm function in R

package stats) was applied across all subjects to detect metabolite-to-medication associations. Furthermore, adonis was applied

to detect associations between the gut microbiome (genera) and medication metabolite levels (including medication users only

and adjusting for health state).

Mouse Features Association with Iron Intake
To evaluate association between overall microbiome composition and iron intake, the microbiome of mice fed 50 ppm and 500 ppm

ferrous sulfate were compared. The analysis included data from all time points were mice where on different diets, and was per-

formed using a linear mixed model (function lmer in R package lme4 v1.1 (Bates et al., 2015), with the lmerTest v3.0.1 (Kuznetsova

et al., 2017) package to estimate significance and r.squaredGLMM function fromRpackageMuMln (Barto�n, 2018) to extract variance

explained by fixed effect terms). Dissimilarities were calculated for the OTU table using function vegdist with method=‘‘bray’’ in

R package vegan. The model included diet (same or different) as fixed effect and intercepts for subjects and cage as random effects

to consider dependence between time-points and cage effects, respectively. The same design, however includingmice fed chow for

the duration of the study, was used to evaluate the dissimilarity between mice on chow versus the respective iron diets.

Comparisons of body composition, glucose tolerance test results, and plasma glucose and insulin levels were performed using the

linear mixed model as described above. The area under the glucose curve (AUC) for each mouse was calculated using the formula:

AUC= 0.25 (fasting value) + 0.5 (30minute value) + 0.75 (60minute value) + 0.5 (120minute value) per the Schonfeld1 project protocol

(https://phenome.jax.org/projects/Schonfeld1/protocol).

R and Additional R-Packages Used
R environment v3.5, RStudio v1.1, grid v3.5 (R Core Team, 2018), gridExtra v2.3 (Baptiste and Antonov, 2017), gridBase v0.4 (Murrell,

2014), gridGraphics v0.3 (Murrell, 2015), reshape2 v1.4 (Wickham, 2007), metaphor v.2.0 (Viechtbauer, 2010), MASS 7.3 (Kafadar

et al., 2002), data.table v1.11 (Dowle and Srinivasan, 2019), ggrepel v0.8 (Slowikowski, 2018), plyr v1.8 (Wickham, 2011), dplyr 0,7
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(Wickham et al., 2019), stringr v1.3 (Wickham, 2015), caret v6.0, RColorBrewer v1.1 (Neuwirth, 2014), lattice v0.20 (Sarkar, 2008),

graphics v3.5 (Murrell, 2018).

DATA AND CODE AVAILABILITY

All data related to the Kiel cohorts (PopGen and FoCus) is available upon application from the PopGen biobank (http://www.uksh.de/

p2n/Information+for+Researchers.html). All data related to the Study of Health in Pomerania (SHIP) was obtained from the SHIP data

management unit and can be applied for online (https://www.fvcm.med.uni-greifswald.de/dd_service/data_use_intro.php). Data

related to the mouse study is available at the NCBI Sequence Read Archive (SRA). The accession number for the mouse data re-

ported in this paper is BioProject: PRJNA550303.
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Supplemental Figures 

 
Figure S1: Correlation of 31 genera found in both 16S rRNA gene sequencing data 
and shotgun metagenomic sequencing data for 201 samples (Related to Figure 1).  
Genera was separated by max relative abundance in shotgun metagenomic data into four 
groups as shown on y-axis (cutoff at 5,15 and 50). Shotgun metagenomic data abundance is 

 1



illustrated (y-axis) versus 16S rRNA gene abundance (x-axis). Spearman correlation ρ-
values are given on each panel (mean ρ=0.67, max=0.87, min=0.19). The genera are also 
shown on Figure 1 in a cladogram that illustrates their common ancestry.  
 

 
Figure S2: Relative abundance of microbial features and BMI across phenotypic 
groups (related to Figure 2 and Table S3). The Enterobacteriaceae branch is seen from 
order to genera level across lean non-diabetic (LH), obese non-diabetic (HOb) and obese 
individuals with type 2 diabetic (ObT2D) with 16S rRNA gene data (top panel, A–C) and 
shotgun metagenomic data (mid panel, D–F). The plots illustrate a higher abundance of this 
branch of bacteria in the ObT2D samples, and shows that the behavior is consistent 
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between methods. G–H) Relative abundance (as percentage) of two pathways producing 
butanoate from fermentation of acetyl CoA and pyruvate. We performed targeted analysis of 
the two main butyrate producing pathways with obesity and T2D in our data (fermentation of 
acetyl-CoA and pyruvate to butanoate), since our variance and abundance prefilters 
excluded these pathways from previous analyses (see Methods). These pathways showed 
a decreased abundance in obesity (MaAsLin with covariates as default, q<0.1, LH versus 
ObH), while there was no difference between obese samples with or without T2D (q>0.1). A 
more detailed understanding is still needed regarding the relationship between energy 
harvest and immune signaling in the gut, as it relates to short-chain fatty acids, and the 
functional association identified here indicate a disturbed butyrate production relates to the 
metabolic state of obese subjects more than T2D. However, as metformin has been found to 
both increase the level of SCFA and SCFA-producing bacteria, the power of the presented 
analysis is reduced by the high number of metformin users among the T2D subjects. I) BMI 
differences between the three health states: lean non-diabetic (LH), obese non-diabetic 
(ObH), and obese individuals with type 2 diabetes (ObT2D). Default settings are used for the 
function boxplots in R package graphics. 
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Figure S3: Body composition, blood measures and glucose tolerance of mice on high 
and low iron diets (relates to Figure 3, Table S6, and STAR methods). Twenty-four male 
C57BL/6J mice, in groups of 8, were fed one of three diets for a duration of seven weeks: 
chow, a 50 ppm ferrous sulfate diet or a 500 ppm ferrous sulfate diet. During the seven 
weeks, extensive evaluation of their body composition and blood measures was performed. 
A-D) show the development of fat, muscle, free fluid and total body mass (gram) over the 
study duration (x-axis for seven time points), including baseline (TP0) where all mice where 
kept on chow. Yellow boxes represent mice on 50ppm iron and orange boxes represent 
mice on 500ppm iron diets. Visual inspection indicated a trending increase in total body 
weight and muscle mass in mice on high iron diets, however statistical evaluations of the 
body composition measures between iron intake groups showed no significant differences 
(linear mixed model, q>0.1, Table S6). Free fluid mass decreased in both diet groups when 
first changed to iron diets, but then by visual inspection appeared to continue the decreased 
more in mice on high iron as compared to low iron diets (Figure S3), however there was no 
significant difference between the iron groups when evaluated across all six time-points with 
different diets. E-I) show results for the measurements of cecum weight, and levels of 
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cholesterol, HDL, glucose and insulin at the end of the study. Broad boxes show data across 
all eight mice in each diet group, and these boxes are overlaid with boxes showing data for 
mice in each cage (four mice per cage). Neither cecum weigh, nor any of the measurements 
of cholesterol, HDL, glucose or insulin at the end of the study duration was significantly 
different between the iron groups (q>0.1, Table S6). J) To further evaluate if the iron diets 
associated with physical differences related to obesity or diabetes, a glucose tolerance test 
(GTT) was performed after four weeks on the study diets. The plot shows the glucose levels 
pre-injection (0 minutes) and at four time-points following glucose injection. Boxplots are 
shown at each time-point, as well as a line for each diet group (yellow for 50 ppm, orange for 
500 ppm) showing the development in the mean glucose levels.   
 

 
Figure S4: Long-term nutritional variables explain limited variation in microbiome 
composition and functional capacity (related to Figure 3 and Table S1). Variance 
explained by single variables in A-B) gene families (metagenomes) and C-D) genera (16S). 
The variance explained (R2) calculated using adonis (in R package vegan) is shown for age, 
gender and total energy intake (A and C), and single nutrients, including dietary 
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supplements after adjusting for BMI, age, gender and total energy (B and D). Included 
variables were selected based on R2 values as top 25 variables from each analysis. The ‘T’ 
listed with a subset of variables indicate these variables are the joined intake from nutrients 
and dietary supplements. Significance of BH-adjusted p-values is indicated as follows: ‘***’ 
for q<0.01, ‘**’ for 0.01≤q<0.05, ‘*’ for 0.05≤q<0.1, ‘.’ for 0.1≤q<0.2. FA: Fatty acids, AA: 
Amino acids. See overview of nutritional variables in Table S1. 
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