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Increases in traditional serum lipid profiles are associated with obesity, cancer, and cardiovascular disease. Recent lipidomic
analysis has indicated changes in serum lipidome profiles, especially in regard to specific phosphatidylcholines, associated with
obesity. However, little work has evaluated murine hepatic liver lipidomic profiles nor compared these profiles across age,
high-fat diet, or specific genotypes, in this case the lack of hepatic Cyp2b enzymes. In this study, the effects of age (9 months
old), high-fat diet (4.5 months old), and the loss of three primarily hepatic xeno- and endobiotic metabolizing cytochrome
P450 (Cyp) enzymes, Cyp2b9, Cyp2b10, and Cyp2b13 (Cyp2b-null mice), on the male murine hepatic lipidome were compared.
Hierarchical clustering and principal component analysis show that age perturbs hepatic phospholipid profiles and serum lipid
markers the most compared to young mice, followed by a high-fat diet and then loss of Cyp2b. Several lipid biomarkers such
as PC/PE ratios, PE 38 : 6, and LPC concentrations indicate greater potential for NAFLD and hypertension with mixed effects
in Cyp2b-null mice(less NAFLD and greater hypertension-associated markers). Lipid profiles from older mice contain greater
total and n-6 fatty acids than normal diet (ND)-fed young mice; however, surprisingly, young Cyp2b-null mice contain high n-
6 : n-3 ratios. Overall, the lack of Cyp2b typically enhanced adverse physiological parameters observed in the older (9mo) mice
with increased weight gain combined with a deteriorating cholesterol profile, but not necessarily all phospholipid profiles were
adversely perturbed.

1. Introduction

Obesity is a major risk factor for metabolic disorders such as
cardiovascular disease, diabetes, and fatty liver disease. Data
from the most recent National Health and Nutrition Exam-
ination Survey in 2015-2016 shows that 39.8% of adults and
18.5% of youth in the United States are obese [1]. Disease
susceptibility and overall health is greatly affected by
changes to the lipidome [2, 3]. High-fat diets, such as the
Western diet, cause obesity and drastically alter the hepatic
lipidome [4], and perturbed lipid profiles are associated with
specific liver diseases, such as nonalcoholic fatty liver disease

(NAFLD) and nonalcoholic steatohepatitis (NASH) [5, 6].
Age also alters the phospholipid profile of mitochondria in
the liver, brain, and skeletal tissue [7, 8]. Age transcended
the effect of a high-fat diet on alterations to the blood
lipidome in female mice (males were not investigated) [9];
however, little is known about changes that occur with age
to the hepatic lipidome.

Lipids provide membrane structure and energy storage
and act as signaling molecules that mediate lipid metabo-
lism, inflammation, and progression of chronic diseases such
as insulin resistance [10]. For example, the polyunsaturated
fatty acid (PUFA), linoleic acid, is the endogenous ligand
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for hepatic nuclear factor 4α (HNF4α), a key regulator of
multiple metabolic pathways [11]. Several fatty acids are per-
oxisome proliferator-activated receptor (PPAR) ligands [12]
and fatty acids released by lipolysis during fasting trigger
hepatic PPARα-mediated β-oxidation while inhibiting lipo-
genesis through the liver X receptor (LXR) [13]. During
inflammation, PUFAs found in hepatic membrane phospho-
lipids are cleaved by phospholipase A2 [14]. These available
PUFAs are then oxidized by cyclooxygenase, lipoxygenase,
or cytochrome P450s (CYP) to form physiologically signifi-
cant metabolites. The CYP pathways typically metabolize
PUFAs to fatty acid epoxides, called oxylipins, that have bio-
active effects [15]. CYPs including CYP1A, CYP1B, CYP2B,
CYP2C, CYP2D, CYP2J, CYP3A, CYP4A, and CYP4F all
metabolize PUFAs [15–17].

Cyp2b enzymes are key detoxification enzymes as are
most of the CYPs found in families 1-3 [18]. Cyp2b enzymes
are involved in the metabolism of numerous environmental,
pharmaceutical, and endobiotic chemicals including organo-
phosphate pesticides, several neuroactive drugs, fatty acids,
and steroids [19–25]. Mice with repressed Cyp2b expression
such as RNAi-mediated Cyp2b-knockdown (KD) and
Cyp2b-null show greater toxicity to several chemicals,
including parathion, zoxazolamine, and perfluorooctanesul-
fonate (PFOS) [26, 27].

Our lab previously produced a Cyp2b9/10/13-null
(Cyp2b-null) mouse model, lacking the primary hepatic
Cyp2b members; Cyp2b9, Cyp2b10, and Cyp2b13 on a
C57Bl/6J (B6) background [28] and the Cyp2b-null males
are diet-induced obese (DIO) with development of NAFLD
[29]. Similarly, human CYP2B6 is the only human detoxifi-
cation CYP associated with obesity; low liver CYP2B6
expression is associated with obesity [30]. In addition, the
Cyp2b-null males develop nonalcoholic steatohepatitis
(NASH) after treatment with a choline-deficient amino acid
defined high-fat diet methionine-choline-deficient
(CDAHFD) diet probably because of increased NAFLD
compared to WT mice [31]. However, Cyp2b-null females
are protected from CDAHFD-mediated NASH and NAFLD
in comparison to WT mice in association with lower inflam-
matory and diabetic markers [32]. Increased hepatic lipid
accumulation was also observed in male Cyp2b-KD mice
on a FVB/NJ background as the mice aged [26]. However,
the hepatic phospholipid profile has not been investigated
in Cyp2b-null mice. Phospholipids are predominantly syn-
thesized in the liver and responsive to dietary changes [33,
34]. Phospholipids are also key molecules in the structure
of cells, development, signal transduction, immune and
inflammatory responses, repair, and lipoprotein synthesis,
and profile changes are associated with metabolic disease
[4, 35, 36]. The previously referenced studies with Cyp2b-
KD and Cyp2b-null mice showed few adverse differences
between genotypes in female mice, but significant
differences in obesity in male mice, most likely because sev-
eral strains of mice are less susceptible to obesity in females
[37, 38]. Therefore, in this study, we compared the hepatic
lipidome of male Cyp2b-null and WT mice in healthy,
diet-induced obese, and older mice.

2. Materials and Methods

2.1. Treatment of Experimental Groups. Animal care proce-
dures were approved by Clemson University’s Institutional
Animal Care and Use committee. Cyp2b-null mice were
developed using CRISPR/Cas9 as previously described [28],
and wild-type (WT) B6 mice were purchased from The Jack-
son Laboratory (Bar Harbor, ME, USA) at 3 weeks of age
and acclimated for 6 weeks prior to treatment. WT and
Cyp2b-null male (9 weeks old) mice were divided into
groups (n = 9) and fed either commercially available diets,
either a normal chow diet (ND; 2018S-Envigo Teklad Diet,
3.1 Kcal/g: 18.6% protein, 6.2% fat, and 44.2% carbohy-
drates; Madison, WI USA) or a high-fat diet (HFD; Envigo
TD.06414, 5.1 Kcal/g: 60.3% fat (37% saturated, 47% mono-
unsaturated, and 16% polyunsaturated fat), 18.4% protein,
and 21.3% carbohydrates; Madison, WI USA) for 10 weeks
[29]. Mice were 4.5 months old at the end of the HFD study
and referred to as ND-fed young or HFD-fed young WT or
Cyp2b-null mice. An additional experimental group of WT
(Jackson) and Cyp2b-null male mice (n = 5) were fed a ND
until they reached 9 months (termed old WT and old
Cyp2b-null mice). At the end of the studies, mice were fasted
4 hours (from 08 : 00–12 : 00) and then weighed, anesthe-
tized, and blood collected by heart puncture prior to eutha-
nasia and serum preparation. Serum biomarkers and liver
triglycerides (TAG) were measured as described [29].
Liver and inguinal white adipose tissue (WAT) were excised,
weighed, and divided by total body weight to determine the
hepatosomatic index (HSI) and white adipose somatic index
(WSI). The tissues were immediately snap frozen in liquid
nitrogen and stored at -80°C.

2.2. Standards. Synthetic standards were obtained from
Avanti Polar Lipids (Alabaster, AL, USA) for use internal
standards. These include di-17 : 0 phosphatidylcholine (PC)
(x : y where x indicates number of carbons and y indicates
number of double bonds in fatty acid constituents), di-
17 : 0 phosphatidylethanolamine (PE), 17 : 0 lysophosphati-
dylcholine (LPC), and 17 : 0 lysophosphatidylethanolamine
(LPE). Working concentrations of spiked internal standards
were 0.91mg/ml, 0.36mg/ml, 0.36mg/ml, and 0.91mg/ml,
respectively.

2.3. Lipid Extraction. For targeted lipidomics assays, liver
samples were extracted using a modified Bligh and Dyer
lipid extraction protocol [39], whereby a ratio of chloroform
and methanol was used to ensure robust extraction of all
major lipid classes. Briefly, 100mg liver was homogenized
in 500μl phosphate-buffered saline (PBS, pH7.4). To the
homogenate, 2ml of methanol/chloroform (2 : 1 v/v ratio)
was added, and the samples were vortexed to ensure homo-
geneity of sample. To aid in the complete recovery of zwit-
terionic lipids, 100μl 0.1mM sodium chloride was added.
The organic phase was recovered and dried under nitrogen
gas, and the lipid weight was recorded. Recovered lipids were
then reconstituted in 1ml of 1 : 1 v/v chloroform/methanol
prior to analysis by LC/MS.
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2.4. Mass Spectrometry. Targeted lipidomics experiments
were conducted using Sciex AC LC system and Sciex
QTrap5500 mass spectrometer (Framingham, MA, USA).
Phospholipid species were identified and quantified from
the livers of mice (n = 3 for young (4.5 mo) ND- and
HFD-fed mice; n = 5 for old (9 mo.) mice) from each exper-
imental group by LC-MS/MS at the Emory Integrated Meta-
bolomics and Lipidomics Core (EIMLC). Ten microliters of
resolvated lipids were deposited onto Thermo Scientific
Accucore C18 column (4:6 × 100mm, 2.6μm) with a col-
umn temperature of 40°C and mobile phases of (A) 40 : 60
water/acetonitrile and (B) 90 : 10 isopropanol/acetonitrile
both with 0.1% formic acid and 1mM ammonium formate
at a flow rate of 0.5ml/min. Lipids were resolved on an 18-
minute linear gradient using these solvents and gradients
that are recorded in Table 1. Instrumental parameters, such
as electrospray voltage, declustering potential, and collision
energies, were optimized using the internal standard and
held constant during the course of the experiment. Subse-
quent to the optimization of instrumental parameters, the
linear range of detection was determined using the same
synthetic standards. A table of instrumental parameters is
shown in Table 2.

Polyunsaturated fatty acids (PUFA) were selectively tar-
geted in extracted liver samples by performing precursor ion
scans in the negative ion mode. These include linoleic acid
(LA; 18 : 2), α-linolenic acid (ALA; 18 : 3), arachidonic
acid (ARA; 20 : 4), and docosahexaenoic acid (DHA; 22 : 6).
The resulting precursor ion scans, corresponding to the
molecular weights, are m/z 279, m/z 277, m/z 303, and m/
z 327, respectively. All peaks above signal to noise ratio of
5 were fragmented for identification. The area under the
curve for all precursors were used to calculate relative per-
centages and used to compare changes in lipid distribution
between cohorts. For total quantification, the area under
the curve is calibrated against the area of an internal stan-
dard of known concentration.

2.5. Lipid Quantification. Relative percentages of targeted
lipids were quantified by first summing all lipids with the
same precursor and then by dividing individual species by
that sum and multiplying that digit by 100. This allows for
comparison of select lipids between subjects in a cohort.
For total quantification, the area under the curve is cali-
brated against the area of an internal standard of known
concentration. For this, the area of the lipid in question is
multiplied by the concentration of the spiked standard and
then divided by the area of the spiked standard. This single
point calibration is used to determine molar concentration
as well as to adjust for matrix affects not seen in the external
calibration curve used to determine limits of detection and
quantification. For annotation of quantified lipids, standard
lipidomics nomenclature was used, where acyl linkages are
standard and ether linked lipids were denoted as p=plas-
malogen subclass and e= alkyl ether subclass. Aliphatic
groups in lipid classes were also denoted as x : y, where
x is the number of carbons and y is the number of double
bonds (e.g., 20 : 4 (arachidonic acid) has 20 carbons and 4
double bonds).

2.6. Lipid Annotation. Raw lipidomics data was analyzed
using dedicated Sciex instrument software Analyst 1.5 and
LipidView. Analyst was used to visually inspect peaks to
ensure reproducible retention times and peak shape and
also to manually extract ions for confirmation of putative
lipid identifications. LipidView, a lipid database containing
over 25,000 lipid species from more than 50 lipid classes,
was used to for putative lipid assignments. Lipid profiles
were then created in Excel using peak areas to visualize
changes in the abundance of lipid species. Raw signal,
observed in counts per second, that are five times the back-
ground noise threshold are considered quality data and used
to create profiles.

2.7. Statistical Analysis. Data are presented as mean ± SEM.
Statistical significance was determined (p value < 0.05) by
unpaired Student’s t-tests when comparing two groups, a
one-way ANOVA followed by Fisher’s LSD as the post hoc
test when comparing more than two groups with GraphPad
Prism 7.0 (GraphPad Software, San Diego, CA, USA). Hier-
archical cluster analysis was performed on lipidomic data
and visualized in heat maps with MetaboAnalyst 3.6 [40]
to compare lipid species content across treatment groups.
Random forest (http://www.r-project.org/) was used to rank
phospholipid species as a prediction of the significance of an
effect each lipid species has on differences between treatment
groups [41]. The tuneRF() function was used to determine
the best number of predictor (mtry) value to get the lowest
out-of-bag (OOB) classification error as trees are added to
the forest. The number of trees to be built (ntree) was set
to 350 for all experimental groups to achieve the lowest
OOB error. The larger the mean decreased accuracy
(MDA) value, the more important the phospholipid species
are for the accuracy of the association between variable
and response. Lipid species with importance scores less
than or equal to zero are likely to have no predictive ability.
Principal component analysis (PCA) was performed and a
biplot drawn using the ggbiplot package in R to compare
the relationship between multiple variables and treatment
groups. Variables included total body weight, WSI, serum
lipids, and phospholipid species. The factoextra R package

Table 1: Solvent gradient for resolution of polar lipids.

Gradient
Time %A %B

Initial 80 20

1.00 80 20

2.10 60 40

8.00 30 70

10.00 30 70

12.00 0 100

14.00 0 100

14.10 80 20

15.00 80 20

Solvent A: 40 : 60 water/acetonitrile. Solvent B: 90 : 10 isopropanol/
acetonitrile.
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(https://cran.r-project.org) was used to obtain the percent
contributions of each measured variable in principle
components 1-3.

3. Results

3.1. Increase in Obesity due to a High-Fat Diet or Age Is
Exacerbated in Cyp2b-Null Mice. ND-fed old Cyp2b-null
male mice weigh more than all other groups (Figure 1).
Cyp2b-null mice also weigh more than their WT counter-
parts after a HFD (Figure 1). WAT weight is usually associ-
ated with the increased body mass as determined by WSI.
Old WT mice are the only group whose body mass rises at
a greater rate than the measured WAT or WSI. Cyp2b-null
mice fed a HFD or old Cyp2b-null mice showed further
increases in WAT/WSI and liver weight/HSI compared to
their WT counterparts (Figure 1). Interestingly, HSI went
down in the HFD mice because of an increase in weight that
was not concomitant with an increase in liver size. Only age
caused increased liver weight in the B6 mice, which was also
exacerbated by the lack of Cyp2b. In summary, age is associ-
ated with increased weight and WAT with similar trends fol-
lowing a HFD. A lack of Cyp2b exacerbated this observation.

Serum cholesterol increased in old Cyp2b-null mice
compared to old WT mice, but total cholesterol levels were
highest in HFD-treated groups (Figure 2(a)). The relatively
healthy HDL levels were highest following a HFD and exac-
erbated in Cyp2b-null mice. HDL significantly decreased as
mice aged (Figure 2(a)). Diets high in cis-unsaturated fatty
acids have also been found to increase HDL levels in humans
in addition to serum cholesterol and LDL [42]. Conversely,
LDL, VLDL (Figure 2(a)), and serum TAG (Figure 2(b))
levels were higher in old Cyp2b-null mice compared to all
other groups. Age clearly had an adverse impact on these
parameters. Liver TAG increased with diet but aging did
not affect liver TAG compared to young mice
(Figure 2(b)). Interestingly, alanine aminotransferase
(ALT) (Figure 2(c)), a marker of liver damage, shows a spike
with the combination of age and a Cyp2b-null genotype.
Taken together, these results indicate a TAG-cholesterol
profile, lower HDL, higher LDL, and VLDL that deteriorates
with age and to a lesser degree, HFD. Often, this decline is
greater in Cyp2b-null mice.

3.2. Hepatic Phospholipid Data Distribution and
Perturbations by Age, Diet, and Loss of Cyp2b. Seventy-seven
total hepatic phospholipid species were identified by LC-
MS/MS from ARA, LA, ALA, and DHA. Hierarchical clus-

tering was performed on all 77 lipid species identified to
evaluate the effects of age, diet, and Cyp2b-null genotype
on hepatic lipid species content (Figure 3 and data in Suppl
File 1[43]). Age has a powerful effect on lipid profiles, more
so than HFD or loss of Cyp2b based on the hierarchical clus-
ter analyses (Figure 3).

3.3. Specific Lipid Species Are Associated with Adverse
Physiological Events. To determine associations between
physiological parameters, serum lipids, and hepatic phos-
pholipid profiles in the different treatment groups (geno-
type, age, and diet), PCA analysis was performed
(Figure 4(a) and data in Suppl File 2 [43]). The 10 parame-
ters that predominantly informed principle component dif-
ferences are shown in Figure 4(b). These included
predominantly ARA- and LA-based lipids with several being
incorporated into PC, PE, or LPC. In general, treatment
groups segregated primarily by age and diet; genotype
caused lesser differences between groups as age in combina-
tion with genotype had a greater effect than a HFD in com-
bination with genotype.

ND-fed young Cyp2b-null mice were drawn towards the
HFD-fed mice in the PCA plot, which is consistent with
the increased triglycerides in this group (Figure 2). Similarly,
significant changes in hepatic gene expression were observed
previously in ND-fed Cyp2b-null compared to WT mice
with these changes trending towards HFD-fed mice [29].
ND-fed young mice, especially WT, were associated with
several specific n-3 (ALA/DHA) fatty acid species s in the
PCA plots. More importantly, no adverse physiological or
serum parameters were associated with young ND-fed mice
(Figure 4), concurring with the previous data on the effects
of ALA and DHA on healthy lipid homeostasis in humans
[44, 45] and mice [46]. However, total n-6 : n-3 ratios were
not lower in the ND-fed young mice. Surprisingly, they
were lowest in the HFD-fed young WT mice, but highest
in the HFD-fed Cyp2b-null mice, indicating the importance
of diet and Cyp2b on fatty acid metabolism (Figure 5); HFD-
fed young mice were associated with greater cholesterol,
especially HDL and along with older mice showed an associ-
ation with WSI (Figure 4). The lack of phospholipids in the
HFD-fed mice quadrant is primarily caused by the domi-
nance of higher phospholipid concentrations within the
older mice (Suppl File 2, 3 [43]). Last, there was little separa-
tion between WT and Cyp2b-null mice following an HFD in
contrast with the differences observed between WT and
Cyp2b-null mice fed normal diets regardless of age.

Table 2: Mass spectrometry instrumental parameters during resolution of polar lipids.

Curtain gas (CUR) 25.00 Collision gas (CAD) Low
ESI voltage (IS) -3500 Gas source 1 (GS1) 55.00

ESI temp (TEM) 650°C Gas source 2 (GS2) 50.00

Declustering potential -90.00 Collision energy (CE) -40.00

Entrance potential (EP) -10.00 Collision energy spread 0.00

Q1 and Q3 resolution Unit Step size 0.2Da
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Changes in distinct lipid species are associated with obe-
sity or other adverse outcomes.

Further evaluation of lipid groups, ratios, and species
of interest associated with adverse outcomes showed some
interesting patterns. Total phospholipids were significantly
increased by age in both genotypes and decreased in WT-
HFD relatively to WT-young (Figure 6(a)); in some cases,

total phospholipids were inversely associated with liver
triglycerides (Figure 2). PE 38 : 6, a plasma marker of aging
[47], is clearly reduced in the old Cyp2b-null mice
(Figure 6(b)). Liver PC/PE ratios are associated with liver
disease [6]. WT-HFD mice demonstrated a clear drop in
PC/PE ratio relative to WT-young mice and were also
different than WT-old mice, indicating that the HFD had

W
T yo

ung

W
T old

W
T H

FD

Cyp
2b

-null y
oung

Cyp
2b

-null H
FD

Cyp
2b

-null o
ld

Li
ve

r w
ei

gh
t (

g)

3

2

1

0

A⁎⁎

A⁎⁎

C⁎⁎

G⁎⁎

C

W
T yo

ung

W
T old

W
T H

FD

Cyp
2b

-null y
oung

Cyp
2b

-null H
FD

Cyp
2b

-null o
ld

W
SI

0.10

0.08

0.06

0.04

0.02

0.00

A⁎⁎

D⁎⁎

D⁎⁎

G⁎⁎

G⁎

W
T yo

ung

W
T old

W
T H

FD

Cyp
2b

-null y
oung

Cyp
2b

-null H
FD

Cyp
2b

-null o
ld

W
A

T 
w

ei
gh

t (
g)

4

3

2

1

0

A⁎

A⁎⁎

D⁎⁎

D⁎⁎

G⁎⁎

G⁎⁎

H
SI

W
T yo

ung

W
T old

W
T H

FD

Cyp
2b

-null y
oung

Cyp
2b

-null H
FD

Cyp
2b

-null o
ld

0.06

0.04

0.02

0.00

C⁎

A⁎

C⁎⁎

D⁎⁎
D⁎⁎

G⁎

A
G

A⁎⁎

C⁎⁎

W
T yo

ung

W
T old

W
T H

FD

Cyp
2b

-null y
oung

Cyp
2b

-null H
FD

Cyp
2b

-null o
ld

To
ta

l b
od

y 
w

ei
gh

t (
g)

50

40

30

20

10

0

A⁎⁎

D

G⁎⁎

C

Figure 1: Comparison of total body, liver, and WAT weights between all treatment groups. Total body weight, liver weight, hepatic somatic
index (HSI), WAT weight, and WAT somatic index (WSI) were measured for all treatment groups. Data are presented as mean ðgÞ ± SEM.
Statistical significance was determined by one-way ANOVA multiple comparison test with Tukey’s multiple comparison test as the post hoc
test (n = 5 − 9). “a” (age) indicates age difference between young (4.5mo) and old (9mo) mice within the same genotype and diet group, “c”
(catch) indicates difference between HFD-fed young (4.5mo) and ND-fed old (9mo) mice within same genotype, “d” (diet) indicates diet
difference between ND-fed and HFD-fed mice within in same genotype and age, and “g” (genotype) indicates genotype difference between
WT and Cyp2b-null mice within same diet and age group. No asterisk indicates a p value < 0.05, ∗ indicates a p value < 0.01, and ∗∗
indicates a p values < 0.0001.
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Figure 2: Perturbations in serum lipids, liver triglycerides, and alanine aminotransferase (ALT) with age, diet, and genotype. Serum
cholesterol, HDL, LDL, and VLDL (a), serum and liver triglycerides (b), and serum ALT (c) were measured in all treatment groups using
standard methods. Data are presented as mean ± SEM. Statistical significance was determined by one-way ANOVA followed by Tukey’s
multiple comparison test as the post hoc test (n = 5 − 6). “a” indicates age difference comparing young (4.5mo) and old (9mo) mice
within the same genotype and diet group, “c” indicates difference between HFD-fed young (4.5mo) and ND-fed old (9mo) mice within
same genotype, “d” indicates diet difference between ND-fed and HFD-fed mice within in same genotype and age, and “g” indicates
genotype difference between WT and Cyp2b-null mice within same diet and age group. No asterisk indicates a p value < 0.05, ∗
indicates a p value < 0.01, and ∗∗ indicates a p values < 0.0001.
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an effect on PC/PE ratio in the WT mice only
(Figure 6(c)). Serum PC 34 : 3 is a putative biomarker of
hypertension in patients with fatty liver diseases [48] and
was increased with age (Figure 6(d)). Liver LPC levels
are associated with liver damage [49]. Both LPC and
LPC 18 : 2 were significantly increased by age and then
decreased in older Cyp2b-null mice relative to WT mice
(Figures 6(e) and 6(f)).

Because total phospholipids varied by treatment group,
we examined ratios between levels of each major PUFA
measured: LA, ARA, ALA, and DHA. Many of the signifi-
cant changes that occurred were genotype related, including
a significant increase in ARA in young Cyp2b-null mice
compared to young WT mice regardless of diet (Figure 7).
Age reduced the ARA/LA ratio in old Cyp2b-null mice com-
pared to young Cyp2b-null mice, which is considered a
putative protective marker for liver disease, but positively
associated with myocardial infarction [50]. Surprisingly,
the relative amount of n-3 PUFA increased in HFD-fed
WT mice relative to young WT mice and HFD-fed Cyp2b-
null mice (p < 0:001). HFD-fed Cyp2b-null mice showed
reduced n-3 PUFAs in comparison to old Cyp2b-null, young
Cyp2b-null, and HFD-fed WT mice (p ≤ 0:01 for all three
comparisons). In summary, changes in relative n-3 levels
were not steady across diet and genotype. ARA concentra-
tions were consistently increased relative to LA in young
Cyp2b-null mice regardless of diet with a large decrease in
relative LA levels in young Cyp2b-null mice.

3.4. Lipid Species and Outcomes Associated with Cyp2b-
Null Mice. To better define the phospholipid species most
predictive of differences between Cyp2b-null and WT mice,
random forest was performed (Figure 8(a) and Suppl File 3-
5 [43]). Very few lipid species were shared among the top 6

most predictive species between the different groups (young,
old, and HFD) with the exception of ARA-PtdCho (38 : 4)
(18 : 0-20 : 4 PtdCho (38 : 4)) found in ND- and HFD-fed
young mice. LA species were common in the top 6 of ND-
fed young and old mice; ARA species were much more com-
mon in the top 6 of HFD-fed mice when comparing WT and
Cyp2b-null mice. This is not surprising considering the sig-
nificant differences in ARA/LA ratios observed in the young
Cyp2b-null mice (Figure 7). Most of the species that were
different between WT and Cyp2b-null mice were decreased
in the Cyp2b-null mice, potentially because of the absence
of Cyp2b-mediated PUFA metabolism.

A PCA biplot was used to associate different hepatic
phospholipid species, serum parameters, and physiological
outcomes with age, diet, and Cyp2b status in the mice
(Figure 8(b) and data in Suppl File 5a). This closer look at
genotypic differences confirmed that despite few lipid spe-
cies associated with young mice, some n-3 fatty acids along
with a couple ARA and LA phospholipid species are associ-
ated with young ND-fed WT and Cyp2b-null mice, consis-
tent with better health in these mice. n-6 : n-3 ratios were
not as strong as predicted in the younger mice (Figures 5
and 7); however, individual n-3 species appear to make
strong associations.

Fewer associated lipids and a relatively higher percent of
them as n-3 may be a marker of health. ND-fed WT and
Cyp2b-null mice show significantly different PCA profiles
with no overlap potentially due to decreased metabolism;
however, these ND-fed young groups are positioned next
to each other within the plot. When considering the lipid
species and variables that contributed the most to this Cyp2b
status-based PCA plot, LA species made up 7 out of the 10
most dominant parameters, in addition to two ARA species
and WSI (Suppl File 5 [43]).
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Figure 5: Changes in n-6 : n-3 ratios between treatment groups. Data are presented as mean ðgÞ ± SEM. Statistical significance was
determined by one-way ANOVA multiple comparison test with Tukey’s as the post hoc test (n = 3 − 5). “a” indicates age difference
between young (4.5mo) and old (9mo) mice within the same genotype and diet group, “c” indicates difference between HFD-fed young
(4.5mo) and ND-fed old (9mo) mice within same genotype, “d” indicates diet difference between ND-fed and HFD-fed mice within in
same genotype and age, and “g” indicates genotype difference between WT and Cyp2b-null mice within same diet and age group. No
asterisk indicates a p value < 0.05, and ∗ indicates a p value <0.01.
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Figure 6: Comparison of distinct lipid groups or ratios between treatment groups. Total lipids, specific ratios, and lipid species were
compared between all treatment groups: Total phospholipids (a), phosphatidylethanolamine 38 : 6 (b), total phosphatidylcholines/
phosphatidylethanolamines ratio (c), phosphatidylcholine 34 : 3 (d), total lysophosphatidylcholines (e), and lysophosphatidylcholine 18 : 2
(f). Data are presented as mean ðgÞ ± SEM. Statistical significance was determined by one-way ANOVA multiple comparison test with
Tukey’s as the post hoc test (n = 3 − 5). “a” indicates age difference between young (4.5mo) and old (9mo) mice within same genotype
and diet group, “c” indicates difference between HFD-fed young (4.5mo) and ND-fed old (9mo) mice within same genotype, “d”
indicates diet difference between ND-fed and HFD-fed mice within in same genotype and age, and “g” indicates genotype difference
between WT and Cyp2b-null mice within same diet and age group. No asterisk indicates a p value < 0.05, ∗ indicates a p-value < 0.01,
and ∗∗ indicates a p values < 0.0001.
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Figure 8: Lipid species and measured variables associated with differences between Cyp2b-null and WT mice. (a) Random forest analysis of
key lipids predictive of differences between Cyp2b-null and WT mice. (b) Principal component analysis (PCA) biplot showing relationships
between treatment groups and measured variables such as physiological parameters, serum lipids, and phospholipid species. Variables
include serum lipids, WAT somatic index (WSI), body weight, and lipid species in order to associate specific biochemical parameters
with different treatment groups (diet and age) and genotypes (WT and Cyp2b-null).
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4. Discussion

Old mice clearly had the unhealthiest serum profiles, stron-
gest set of lipid species associations, and greatest difference
between genotypes compared to ND-fed or HFD-fed young
mice. The effect of age also superseded the effect of HFD on
the blood lipidome of female mice [9]; therefore, our work
further demonstrates the adverse effect of age on hepatic
lipid profiles. Age was heavily associated with more fatty
acids, larger fatty acids, n-6 fatty acids, and higher serum
LDL, VLDL, and TAG concentrations. Age has also been
found to increase total and LDL-cholesterol in both humans
and rodents in the previous studies [51, 52]. In addition,
increased hepatic phosphatidylcholine biosynthesis, as seen
in the older mice, has been proposed to stimulate the pro-
duction and secretion of VLDL and TAG [53]. Old Cyp2b-
null mice were associated with weight and to a lesser extent
WSI, while n-6 fatty acids showed a somewhat greater asso-
ciation with older WT mice. Greater dietary n-6 : n-3 ratios
have been found to increase HDL levels without suppressing
atherogenesis in mice [54]. Overall, old WT and Cyp2b-null
mice are associated with unhealthy physiological, serum, and
lipid profiles that contribute to an increased risk of meta-
bolic disease and obesity [55, 56].

Several individual lipid biomarkers of metabolic disease
were investigated from amongst the phospholipids mea-
sured. While there is significant information about disease
associations with serum lipids, there have been few studies
that associate specific liver phospholipids with metabolic
disease, NAFLD, obesity, or aging. Serum PC/PE ratios are
used as markers for potential liver disease with a lower ratio
indicative of liver disease and a greater potential for NASH
[36, 57]. However, recently murine liver studies indicate that
higher ratios, primarily caused by higher hepatic PC concen-
trations cause increase VLDL, TAG, NAFLD, and NASH [6,
49, 53][6, 49, 53] Interestingly, liver and serum lipids are
poorly correlated compared to liver and intestine, and in a
few cases, liver and serum levels are inversely correlated
[49]. PC/PE ratios trended higher with age, but did not pro-
vide a clear picture of disease state.

However, several other phospholipid biomarkers
provided insight into the health of the mice. Serum LPC
concentrations are typically inversely associated with obesity
[58], and specifically, LPC 18 : 2 is inversely associated with
childhood obesity, BMI, and metabolic risk factors in
humans [48, 58, 59]. Conversely, recent research with
murine livers indicates that greater liver LPC concentrations
are associated with NAFLD [49], but inversely associated
with NASH [6]. It is possible that reduction of serum LPC
may be at the expense of liver LPC. Hepatic LPC and
LPC 18 : 2 were significantly increased by age (Figure 6(e)).
LPC 18 : 2 was also lower in Cyp2b-null young mice com-
pared to WT young mice (Figure 6(f)); however, the inter-
pretation of this data depends on future work and its
associations with serum LPC 18 : 2 as to whether lower levels
suggest protection. Overall, our LPC data suggests that aging
is negatively affecting the liver and NAFLD may follow.
Serum PE 38 : 6 and PE 34 : 3 are associated with longevity
and hypertension, respectively [47, 48]. Both indicate the

adverse effect of aging; however, it is possible that these liver
markers are not correlated with the serum markers. Taken
together, phospholipid biomarkers indicate significant liver
damage in older mice with probable increases in hyperten-
sion, liver damage, and shorter lifespan. Cyp2b-null mice
show markers consistent with lower liver damage but also
reduced lifespan.

When examining parameters based strictly on differ-
ences in Cyp2b status by PCA, HFD-fed mice show greater
separation from ND-fed mice in comparison to analyses
with all parameters conducted together. This is primarily
because the lipid profile of ND-fed Cyp2b-null mice clus-
tered between ND-fed WT mice and HFD-fed groups, con-
sistent with their liver triglyceride concentrations. HDL
levels were also significantly higher in HFD mice, whose diet
provided nearly ten times more n-6 than n-3 PUFAs.
Greater HDL was also observed in Cyp2b-null mice than
WT mice regardless of diet; no differences in HDL were
observed between genotypes in older mice. In addition,
changes in fatty acid chain length were not observed in
Cyp2b-null mice, as observed in HFD-fed Cyp3a-null male
mice [60]. Older mice demonstrated more differences
between genotypes with a higher association with weight,
WSI, and LDL in Cyp2b-null mice and more phospholipids
clustering with old WT mice. In general, findings are consis-
tent with lower metabolism of some PUFA species in
Cyp2b-null mice, which was also observed in hepatic P450
reductase- and Cyp3a-nullizygous mice [60, 61].

Low expression of human CYP2B6 is associated with
obesity. It is the only detoxification CYP to be associated
with obesity in humans [30]. Furthermore, CYP2B enzymes
show lower expression in rats as they age [62], and CYP2B6
shows lower expression in humans as they age [63]. Higher
expression of Cyp2b enzymes is also associated with longev-
ity in dwarf mice [64]. Therefore, age-dependent loss of
CYP2B enzymes could affect lipid metabolism, perturb lipid
depuration, and increase aging. There are also some key
CYP2B6 polymorphisms that effect drug metabolism with
CYP2B6∗4, CYP2B6∗5, and CYP2B6∗6 the most common
[65, 66]. In turn, these variants show clinically significant
adverse outcomes because of slow or ineffective metabolism,
including metabolism of propofol, efavirenz, BDE-47, keta-
mine, and bupropion [67–72]. Ketamine also shows reduced
metabolism and clearance in older humans [63]. The effect
of age or CYP2B6 polymorphisms on lipid metabolism has
not been studied.

In summary, the data indicates that age>HFD>Cyp2b-
null genotype compromises the hepatic phospholipid profile
the most with lipid profiles and other parameters providing
biomarkers of health status. ND-fed old Cyp2b-null and
HFD-fed young mice show significant changes in several
phospholipids and physiological parameters such as serum
cholesterol and WAT compared to ND-fed young mice,
which have significantly lower lipids. Interestingly, the lipid
profile of ND-fed Cyp2b-null mice clustered between ND-
fed WT mice and HFD-fed groups, indicative of increasing
lipid concentrations and reduced health in ND-fed Cyp2b-
null mice even without additional fats in their diet. Total
body and liver weight, serum LDL, VLDL, TAG, and ALT
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levels are all significantly higher in old Cyp2b-null mice
compared to their WT counterparts as well as several fea-
tured groups. The combination of age and lack of Cyp2b is
more harmful than age alone, as it resulted in dyslipidemia
and liver injury. Overall, aging and a HFD are associated
with weight gain, WAT, LDL, and VLDL; however, global
n-6 : n-3 ratios are only affected in the HFD group, and
DHA/LA ratios were perturbed by the loss of Cyp2b. Over-
all, phospholipidomic profiles are age-dependent > diet
dependence and further exacerbated in Cyp2b-null mice,
suggesting accelerated aging or metabolic disease symptoms
with the lack of Cyp2b in male mice.
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(https://cran.r-project.org) was used to obtain the percent
contributions of each measured variable in principle compo-
nents 1-3. (Supplementary Materials)
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