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The challenges of interrogating
adipose tissue extracellular vesicle
functions in physiology
Clair Crewe 1,2✉

Adipose tissue-derived extracellular vesicles (EVs) are at the center of the
budding field of EV signaling in metabolic regulation for their strong regulatory
effects on local and systemic metabolism. This essay will highlight seminal
studies in adipose tissue EV research, critically assess current adipose tissue EV
research strategies and discuss the obstacles the field faces moving forward.

Adipose tissue (AT) EVs are sourced by directly isolating EVs from adipose tissue or from
harvesting culture media from incubating AT explants. This highly heterogeneous population of
EVs derives mainly from adipocytes1 but also endothelial cells, fibroblasts, macrophages and
other immune cells. Like all EVs, AT EVs are phospholipid-enclosed vesicles loaded with
bioactive molecules spanning miRNAs, mRNAs, DNA, proteins, lipids, and metabolites. As such,
these EVs can have potent signaling effects on receiving cells. Pioneering studies demonstrated
that EVs isolated from human and mouse AT explants and immortalized adipocytes induced
inflammation and insulin resistance in myocytes and hepatocytes, with more pronounced effects
if the AT came from obese subjects2–5. This data has held up over time as a recent study has
shown that both human plasma- and subcutaneous AT-derived small EVs (sEVs) from obese
humans with nonalcoholic fatty liver disease induce insulin resistance in primary myotubes and
hepatocytes6. Although early studies did explore the effect of AT EVs on systemic metabolism by
injecting purified EVs into mice2, it was not until the study by Thomou et. al. that a significant
role for circulating adipocyte-derived EVs was established in vivo7. This study used a mouse
model where dicer was knocked out specifically in adipocytes to suppress miRNA processing.
The result was a significant reduction in the level of most EV-associated miRNAs in circulation.
Furthermore, these adipocyte-derived miRNAs were shown to regulate gene expression in the
liver. AT tissue macrophages were also found to release miRNA-containing EVs that effect
systemic metabolism when injected into mice8. Soon after, the first studies to demonstrate EV-
mediated crosstalk between cells in adipose tissue in vivo were published. The first used
genetically labeled adipocyte membranes and tagged endothelial cell caveolin-1 to demonstrate a
robust exchange of cellular material between cells within adipose tissue in mice9. This was found
to be through EVs and was regulated by feeding and fasting. The second study demonstrated that
adipocyte EVs are lipid-filled and are taken up by local macrophages in vivo1. These EVs
functioned as a source of lipid for macrophages but also promoted differentiation of bone
marrow stem cells into adipose tissue macrophage-like cells. Together, these studies made a
strong case for the existence of an unexplored network of signaling that regulates metabolism
within the AT and between the AT and other organs.

The unique challenges of isolating adipose tissues EVs
There are important aspects of AT EV research that should be considered when assessing data
that demonstrates a physiological effect of EVs. Firstly, adipose tissue has unique biophysical
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properties that contribute to challenges for clean tissue EV iso-
lation. Adipose tissue is a soft connective tissue that is primarily
composed of lipid-filled adipocytes surrounded by a dense but
mailable extracellular matrix. Support cells like endothelial cells,
fibroblasts and immune cells contribute to this specialized
microenvironment that allows for remodeling of the extracellular
matrix and rapid expansion or contraction of the tissue
depending on the nutrient supply. In the obese state adipocytes
become engorged with lipid and prone to apoptosis. Obese adi-
pose tissue is characterized by excessive collagen deposition and
inflammation that makes for a rigid and less dynamic tissue.
Isolation of EVs from tissues in general requires a collagenase
digestion step to liberate the cells and solubilize the interstitial
fluid where the EVs are found10. The digested sample is cen-
trifuged to pellet stromal cells and float adipocytes so that the
interstitial fluid can be harvested (Fig. 1). The key to a pure EV
isolation is to ensure the cells remain unbroken during the pro-
cess so that no intracellular vesicles contaminate the EV pre-
paration. Adipocytes are fragile when separated from the
extracellular matrix and so they tend to rupture, particularly if the
sample is from obese mice where adipocytes are severely hyper-
trophied (Fig. 1). Evidence of ruptured adipocytes is oil floating
on the top of the sample after centrifugation, which appears
distinctly different from the floating, intact adipocytes. Special
care must be taken to optimize the digestion conditions to
maximize the trade-off between EV yield and purity. This concept
is also true for the culturing of primary adipocytes for EV har-
vesting. Because adipocytes float on the surface of the culture
media they are unstable and prone to de-differentiating or
rupturing11. This should be a serious consideration in studies that
use these EVs to demonstrate functional outcomes. A measure of
adipocyte viability at the end of the culture period would be a
beneficial standard practice. Primary floated adipocyte culture
does have value because the in vivo physiological state of the cell
may be maintained in culture such as obese or insulin resistance
phenotypes. This is unlike the alternative, which is to differentiate
adipocytes in vitro from the stromal vascular fraction. In the
differentiated culture the adipocytes adhere to the culture plate
and tend to be healthy and more resilient, but any in vivo phe-
notypes would likely be lost. In this scenario, the differentiated
adipocytes are a reliable tool for EV collection under treatment
conditions. If the in vivo phenotype is the desired readout for the
culture experiment, it may be required to implement a ceiling

culture or membrane culture to maintain adipocyte integrity11.
However, one should assess the potential utility of each option by
how many EVs are needed for downstream applications.

Many research groups have opted to use whole adipose tissue
explant culture for EV production and harvest. Tissue should be
cut into small pieces (~2–5 mm3) and only cultured short term to
avoid necrosis, apoptosis or loss of adipose tissue identity11.
Because adipocytes maintain their native microenvironment,
tissue explants may provide clean EV samples, however, these
EVs are derived from all cells in the tissue, not just adipocytes.
This should be clearly stated in published works to avoid con-
fusion. It is true that adipocyte EVs may constitute the majority of
EVs from adipose tissue explants1 but, EVs from other cells in the
tissue have robust signaling capacity that would confound
interpretation of a functional effect8.

The last challenge is of adipose tissue EV isolation is the
inefficiency of commonly used techniques to isolate adipocyte
EVs. At least a subpopulation of adipocyte-derived EVs contain a
substantial amount of neutral lipid and fatty acids, which causes
EVs to float to the top of the tube during ultracentrifugation
(Fig. 1)1,12. For this reason, Flaherty et. al. suggests the use of
ultrafiltration and/or size-exclusion chromatography for isolation
of EVs from adipocyte cultures or adipose tissue explant cultures.
Therefore, when interpreting functional data, it is important to
consider the method of EV isolation, as the isolated EV popula-
tion may only be the subpopulation that pelleted during
ultracentrifugation.

The barriers to studying EVs in physiology
Technical issues aside, the principal factor holding the field back
from a comprehensive understanding of all EVs in physiology is
our lack of in vivo model systems to track and modulate EV
production in a cell-type specific way. Ideally this would be done
in an inducible manner as to study the kinetics and dynamics of
EV production and signaling. Most of the EV functional readouts
in the field rely on injection of EVs into mice, or treatment of a
cell type with EVs purified from a donor cell type. One cannot
argue against the potential artifacts created by exposing cells or
organs to large doses of cell-type-specific EVs that may never
occur under physiological conditions. Without knowledge of the
cell type EV release dynamics, half-life kinetics, preference for
retention of EVs in the tissue of the producing cell versus entry

Fig. 1 Challenges of EV isolation from adipose tissue. Collagenase digestion is required to liberate cells from the extracellular matrix (ECM) and produce a
single-cell suspension. Adipocytes are fragile under these conditions and may burst, particularly if they are hypertrophied. If adipocytes are ruptured, the
infranatant, where tissue EVs are found, will be contaminated with intracellular vesicles. Once a clean infranatant is collected, EVs can be isolated through
various techniques, however if ultracentrifugation (UC) is used a population of triglyceride-containing EVs may not pellet and, instead, float. Images were
created with BioRender.com.
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into the blood, and cell targeting, it is challenging to estimate the
true physiological effect of a cell type-specific EV population. It is
important to note that EVs are considered a strong candidate for
therapeutic treatment of various diseases or drug delivery13.
Therefore, injections or treatments of what may be supraphy-
siological levels of EVs may provide valuable information about
the therapeutic potential (Fig. 2).

The biggest hurdle for manipulation of endogenous EV pro-
duction is finding a target protein or pathway that will do so with
minimal disruption to cellular processes unrelated to EVs. For
example, knocking out ESCRT proteins effectively suppresses EV
production, but these proteins are also involved in various other
intracellular trafficking processes in the cell14 making it challen-
ging to assign any effect to EVs and not disruption of cell func-
tion. Tools that are sensitive enough to track endogenous EVs are
also needed. Great strides have been taken to track EVs in zeb-
rafish models which have already offered insights into EV
dynamics15, however, establishing mammalian models are more
challenging. A common approach is to genetically label the
plasma membrane or an EV-enriched protein, like tetraspanins,
with a fluorescent tag. This approach seems to be effective for
tracking of EVs in the tissue1,9,16 but is not sensitive enough to
track endogenous EV targeting to other organs. Injections of
fluorescent, luminescent or radiolabeled EVs are effective for
biodistribution studies (Fig. 2), but again, the risk is artifacts
produced by injection of supraphysiological levels of EVs.

Outlook
These challenges are not trivial to solve, but with collaboration
and creativity the field will surmount these obstacles. Even now,
with the available tools there is exciting and foundational work
being done that is leading us closer to understanding how AT
EVs contribute to physiological and pathophysiological processes.
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Fig. 2 Experimental approaches for studying EV dynamics. EVs labeled
with radioactivity, luminescence or florescence are routinely injected to study
the kinetics and biodistribution of EVs. Unlabeled EVs are also injected to
study the signaling effects on organ. Endogenous EVs can tracked or
manipulated using genetic mouse models that enable cell-type specificity. In
general, high doses of exogenous EVs provide valuable insight into therapeutic
potential, whereas studying endogenous EVs provides the most physiologically
relevant information. Images were created with BioRender.com.
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