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Abstract
Skeletal muscle and fat tissue show distinct pathophysiological roles and
pivotal functions. The culmination of muscle wasting and fat accumula-
tion represents an opposite terminal of each state. Specifically, this
situation has been designated as sarcopenic obesity. However, sarcopenic
obesity still lacks a unanimous definition, diagnostic criteria, and
generalized modalities for assessment in the context of versatile liver
diseases. Moreover, the underpinning mechanisms by which a combina-
tion of abnormal skeletal muscle and fat tissue leads to the progression of
liver disease and impairs health‐related consequences are still elusive.
Additionally, the interplay between skeletal muscle and fat, and the
driving factors that shift different body compositions are not well
understood. Therefore, in this review, we discuss skeletal muscle and
fat components, with the purpose of conceptualization, as well as
interpret their roles in liver diseases. We focus on the definitions,
diagnostic criteria, and currently available measurements for sarcopenic
obesity in the literature. We comprehensively discuss recent data and
evidence regarding the potential role of sarcopenic obesity in the
development and progression of numerous liver diseases and associated
conditions, including nonalcoholic fatty liver disease, chronic viral
hepatitis, cirrhosis, and liver transplantation. Furthermore, explicit
information related to the pathogenesis of sarcopenic obesity from basic
research is also provided in this narrative review. Finally, we discuss,
from the clinical perspective of view, how to manage sarcopenic obesity
using nutritional, physical, and pharmacological methods.
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Highlights
• Sarcopenic obesity may contribute to the development and progression of
various liver diseases.

• The pathogenesis of sarcopenic obesity in the context of liver diseases is
multifactorial and complicated.

• Potential avenues for therapeutic intervention by modifying sarcopenic
obesity are urgently required.
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1 | INTRODUCTION

Body composition, which refers to the proportion and
distribution of bone, skeletal muscle, and fat tissue in
the human body, has attracted attention in the
medical field.1,2 The body mass index (BMI) is widely
used to assess body composition in daily clinical
practice, but it is unable to discriminate between
skeletal muscle and fat tissue. Notably, the potential
role of BMI in the context of liver diseases appears to
be enigmatic. A study using the National Health and
Nutrition Examination Survey (NHANES) database,
with a mean follow‐up of 13 years, identified obesity
(BMI ≥ 30 kg/m2) as a risk factor for cirrhosis‐related
mortality or hospitalization.3 Intriguingly, Li et al.4

found that a lower BMI was associated with a higher
liver‐related mortality rate and shorter survival time
among patients with hepatocellular carcinoma (HCC).
In contrast, BMI was not an independent risk factor in
post‐transplant patients or graft survival after correc-
tion for ascites, which counteracts findings in other
series.5 Taking into account the limited applicability
of BMI for prognostication, more reliable, replicable,
and reproducible metrics aiming at risk stratification
and the prediction of outcomes need to be developed.
Accordingly, the assessment of other body composi-
tion abnormalities, such as skeletal muscle depletion
or visceral adiposity and their synergism, may lead to
an objective reflection of individual metabolic and
nutritional status.

The clinical implication and relevance of body
composition abnormalities, such as sarcopenia (low
skeletal muscle mass) or high visceral adiposity, on
poor outcomes in a number of pathological condi-
tions, have been extensively demonstrated by our
research laboratory and others.2,6 Recently, scientific
endeavors have focused on the synergistic effect of
sarcopenia in the context of coexisting obesity, known
as sarcopenic obesity, especially its relationship with
adverse health consequences. The concordance of
these two conditions may be greater than the sum of
the contribution of obesity or sarcopenia separately.1

Fat deposition leads to massive production of
adipokines and infiltration of proinflammatory mac-
rophages and other immune cells, leading to a
chronic low‐grade inflammatory milieu.7–9 However,
fat tissue can accumulate ectopically in skeletal
muscle tissue, promoting the excretion of detrimental
myokines responsible for an inflammatory cascade
and muscle dysfunction. These myokines then also
facilitate fat tissue inflammation by generating a
vicious circle.10 However, the abovementioned evi-
dence was predominantly derived from observational
studies or results in animal models. Therefore, the
validity of classifying sarcopenic obesity as a syn-
dromic entity remains hypothetical and warrants
further in‐depth investigation. In this narrative
review, we provide a conceptual framework of
definitions, diagnostic criteria, and applied method-
ologies for assessing sarcopenic obesity. The effect of
sarcopenic obesity in a versatile setting of hepatic
pathologies has been comprehensively demonstrated.

The mechanisms underlying the development and
progression of sarcopenic obesity based on findings
in vivo/vitro are discussed. We finally suggest a
management strategy and envision the potential to
consider sarcopenic obesity as a therapeutic target in
the context of liver diseases.

2 | DEFINITION, DIAGNOSTIC
CRITERIA, AND PREVALENCE OF
SARCOPENIC OBESITY

The majority of the scientific literature considers
sarcopenia and obesity as two distinct pathological
categories, which can be evaluated individually in each
patient. However, a lack of consensus on its definition
leads to inconsistent information regarding the esti-
mated prevalence, patient classification, clinical rele-
vance, and therapeutic strategy.

2.1 | Definition and diagnostic criteria of
sarcopenia

Although three decades have passed since the
proposal of sarcopenia, a universal concept of
sarcopenia has not been achieved.11 As a generic
physical syndrome, sarcopenia refers to a gradual
decline and impairment in skeletal muscle mass,
strength, and functional performance. In light of
pathophysiological similarities between the aging
process and chronic advanced diseases, such as
persistent low‐grade inflammation, insulin resistance,
oxidative stress, and metabolic and hormonal distur-
bances, the conceptual model of sarcopenic obesity
proceeds to numerous disorders, including liver
diseases. The European Working Group for the Study
of Sarcopenia 2 (EWGSOP2) has released and updated
its diagnostic criteria of sarcopenia by considering
muscle strength as a fundamental determinant com-
pared with skeletal muscle mass because of its better
capacity for prognostication.12,13 This working group
suggested screening subjects with sarcopenia for
decreased hand grip strength (HGS), which serves as
a primary feature of sarcopenia. Additionally, health-
care providers may verify the diagnosis of sarcopenia
by subsequently measuring muscle quantity and
quality, whereas the severity of sarcopenia can be
judged according to a physical performance‐based
metric such as usual gait speed. In 2019, the Asian
Working Group for Sarcopenia (AWGS) proposed a
revised diagnostic algorithm and criteria based on
accumulating evidence from clinical practice.14 This
working group proposed diagnosing sarcopenia in
people with concurrent low muscle strength (HGS <
28 kg in men and <18 kg in women) and decreased
muscle quantity, or in those with a decreased physical
performance (e.g., 6‐m gait speed < 1.0 m/s). Other
international initiatives have suggested identifying
sarcopenia among high‐risk populations by evaluat-
ing HGS, appendicular lean mass adjusted for BMI/
height2, or gait speed.15,16
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2.2 | Measurement techniques of
sarcopenia in patients with liver disease

In hepatology, the majority of published studies have
defined sarcopenia as a reduced skeletal muscle
mass.6,17 Accordingly, numerous direct and indirect
techniques have been developed to quantitively
assess the loss of muscularity. Measurement tools
comprise anthropometric metrics, bioelectrical
impedance analysis (BIA), and radiological method-
ologies, which include computed tomography (CT),
magnetic resonance imaging (MRI), ultrasonography,
and dual‐energy X‐ray absorptiometry (DEXA).18,19

Because of the specificity of decompensated cirrhosis
and HCC, using CT/MRI‐based cross‐sectional imag-
ing is more accurate and reliable in the context
of advanced and end‐stage liver disease. In these
subgroups, cross‐sectional imaging is a routine
examination required for regular surveillance, close
monitoring of disease progression, and early detec-
tion of malignant transformation. The confounding
effect of fluid retention (ascites and edema), which is
a major complication due to portal hypertension, can
be more effectively eliminated using CT than using
BIA or DEXA. In other settings, such as fatty liver,
performing nonradiative and reproducible ap-
proaches is feasible and applicable. In the setting of
cirrhosis, our research group constructed a mortality
cutoff by calculating the skeletal muscle index (SMI)
of the third lumbar vertebra (L3) on CT scans in a
cohort of 414 patients as follows: SMI < 46.96 cm2/m2 in
men and <32.46 cm2/m2 in women.20 Other commonly
used thresholds include an L3 SMI < 50 cm2/m2 in
men and <39 cm2/m2 in women among Western
populations,21 while a Japanese guideline suggests
<42 cm2/m2 and <38 cm2/m2 in men and women,
respectively.22 Because of the considerable variability
regarding the body habitus, quality of life, dietary
regimens, and eating behavior between Western and
Eastern populations, the estimation of SMI values as
a continuous variable may be superior to a single
global cutoff.

2.3 | Definition and diagnostic criteria
of obesity

The World Health Organization regards obesity as the
largest chronic health problem globally in adults.
Notably, the worldwide prevalence of obesity approx-
imately doubled between 1980 and 2008, when 50% of
the European population were overweight and nearly
20% were obese.23 Recently, the European Society for
Clinical Nutrition and Metabolism proposed a con-
sensus definition of overweight and obesity as abnor-
mal or excessive fat deposition.24 Moreover, adipocyte
dysfunction secondary to fat accumulation may result
in metabolic disturbance, potentiating the risk of
various chronic diseases and malignancies. Most
guidelines define obesity as a BMI of ≥30 kg/m2 in
Western populations and ≥25 kg/m2 in Asian popula-
tions. However, there are no universally accepted and

firmly established diagnostic criteria for obesity,
especially in the context of several pathological
conditions (e.g., metabolic, cardiovascular, and liver
diseases). An example of this situation is that the
utility and validity of using the BMI for classifying the
obese phenotype in advanced liver disease have been
impeded because a large proportion of these patients
have a fluid imbalance. Fukuda et al.25 showed that
patients with sarcopenia, type 2 diabetes mellitus
(T2DM), and a high android‐to‐gynoid ratio, which is
an index strongly related to the visceral fat area (VFA),
had a risk of cardiovascular disease, but significance
was lost if the BMI was used instead of the VFA.
Collectively, these findings suggest that the use of BMI
is limited because of its incapability in assessing
different body compositions and discerning lean mass
from fat depots.

2.4 | Definition of sarcopenic obesity and
other candidate terminologies

The confluence of sarcopenia and obesity leads to a
unique body habitus (i.e., sarcopenic obesity), where
individuals reach the opposite ends of skeletal
muscle and fat mass distribution (Supporting Infor-
mation: Table S1). In line with the ambiguous
definition of sarcopenia and obesity as mentioned
above, no explicit or standardized criteria for
sarcopenic obesity have been proposed. Notably,
the literature suggests the coexistence of excess fat
mass and wasting skeletal muscle mass as a diagnos-
tic clue by using various methodologies across
distinct settings of populations. In hepatology,
studies have always lacked muscle functional param-
eters, such as HGS or usual gait speed. Therefore, the
term sarcopenic obesity is inappropriate. Intrigu-
ingly, recent data have suggested visceral fat as a
potential link between sarcopenia and insulin resist-
ance triggered by obesity.26 Accordingly, our findings
have indicated that “myopenic obesity” as deter-
mined by the VFA (L3 VFA ≥ 100 cm2 and a low SMI)
rather than the BMI (≥25 kg/m2) can stratify patients
with cirrhosis who have a short survival time.27 We
found that the estimated prevalence rate of obesity
greatly varied when using BMI or VFA. A total of 30%
of enrolled subjects were defined as having obesity
according to the BMI compared with 67.5% as having
obesity according to the VFA. We speculate that the
BMI cannot recognize more than half of individuals
with accumulative fat mass because this parameter
fails to accurately delineate the distribution of fat.
Furthermore, an increasing amount of data have
implied that a low HGS is associated with non-
alcoholic fatty liver disease (NAFLD) and metabolic
disorders.28 A longitudinal study that enrolled
5953 older patients showed an association between
“dynapenic obesity” (determined by HGS and BMI)
and a higher risk of T2DM.29 Taken together, these
findings suggest that more effort is necessary to seek
more valid and suitable metrics for identifying this
pathological trait.
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3 | CONTRIBUTING EFFECT OF
SARCOPENIC OBESITY IN VARIOUS
LIVER DISEASES

3.1 | Effect of sarcopenic obesity in
NAFLD

NAFLD comprises a wide spectrum of manifestations
ranging from nonalcoholic fatty liver (NAFL) to non-
alcoholic steatohepatitis (NASH) and ultimately prog-
resses to advanced conditions consisting of progressive
fibrosis, cirrhosis, and HCC.30 Almost all patients with
obesity will develop NAFLD and sometimes NASH to a
greater extent, which is severe comorbidity of obesity
leading to acute liver failure.31,32 The advent of NAFLD
is considered an early indicator of obesity‐associated
diseases and pathological entities, such as myocardial
dysfunction, atherogenesis, and insulin resistance.33 A
meta‐analysis of 8.5 million participants showed that
>80% of patients with NASH tended to be overweight or
obese.34 The interplay between ectopically accumulated
fat tissue and the liver may be responsible for
perpetuating liver function per se. Two recent review
articles stated the potential role of sarcopenic obesity in
the context of NAFLD.19,35 In this review, we aim to
further summarize the current knowledge regarding the
interaction between these two separate, but intimately
relevant, disorders.

Data on the relationship between sarcopenic obesity
and NAFLD were initially derived from a prospective
cohort study that recruited 452 apparently healthy
subjects, known as the Korean Sarcopenic Obesity
Study.36 This study showed that individuals with a
reduced skeletal muscle mass were more prone to
having NAFLD than the control group. Moreover,
sarcopenia may predispose individuals to more compo-
nents of metabolic syndrome (MetS), a higher level of
chronic inflammation, and a greater body mass in both
manner relative to the total amount (sarcopenia: 20.0 kg
vs. normal: 15.2 kg, p < 0.001) and percentage (sarcope-
nia: 32.3% vs. normal: 24.2%, p < 0.001). Poggiogalle
et al.37 enrolled 427 subjects in whom they identified
NAFLD and sarcopenic obesity by the fatty liver index
and truncal fat mass to appendicular skeletal muscle
ratio, respectively. They observed a significant inverse
correlation between the fatty liver index and truncal fat
mass/appendicular skeletal muscle ratio after adjusting
for insulin resistance. Impaired growth hormone and
insulin‐like growth factor 1 may contribute to the
development of sarcopenic obesity and ectopic fat
depots in the liver. A study showed a concurrent
reduction in skeletal muscle and visceral fat mass
accumulation, which were responsible for a higher risk
of developing NAFLD and pathological evolution to liver
fibrosis.38 Similarly, Choe et al.39 showed a significantly
higher prevalence of NAFLD in participants with
sarcopenia and obesity than in those without sarcopenia
and obesity (76.6% vs. 63%, p = 0.003). Importantly, a
low skeletal muscle should be appropriately measured
by CT scanning. In another large cross‐sectional study
that enrolled 5132 participants, Gan et al.40 evaluated
muscle mass, muscle strength, and obesity using the

DEXA‐based skeletal muscle mass index, weight‐
adjusted HGS, and BMI/waist circumference (WC),
respectively. They found that the presence of sarcopenic
obesity was associated with a higher risk of NAFLD
(BMI: odds ratio [OR] = 10.42; WC: OR = 11.64) than
sarcopenia or obesity alone. Therefore, the intervention
of increasing skeletal muscle mass and strength may be
pivotal for the prevention of NAFLD, especially in obese
populations. In another study on 156 patients with
biopsy‐proven NAFLD with abnormal transaminase
concentrations, the ratio of skeletal muscle mass to
body fat mass was superior to other parameters
reflecting pathological changes longitudinally (steatosis,
lobular inflammation, hepatocellular ballooning scores,
and hepatic fibrosis stage).41 Moreover, two other
studies further investigated the relationship between
NAFLD and sarcopenic obesity, defined by the skeletal
muscle mass to visceral fat area ratio (SVR). Shida
et al.42 reported a progressive decline in the SVR during
the clinical course, which exacerbated the hepatic
condition characterized by fibrosis (a determinant
relevant to the prognosis of NAFLD). In the T2DM
setting, a lower SVR level is related to a higher risk of
NAFLD‐related complications.43 Additionally, the SVR is
independently associated with NAFLD in women,
suggesting that sarcopenic obesity may be useful to
predict hepatic steatosis in T2DM. A cross‐sectional
study (1925 individuals) using the 2017−2018 NHANES
database showed that participants with sarcopenic
obesity had a two‐fold higher prevalence of NAFLD
and NAFLD‐associated fibrosis as determined by Fi-
broscan than those without sarcopenic obesity.44

NAFLD has been persistently reported in lean indivi-
duals, especially in Asian populations.45 Cheng et al.46

showed that lean participants with NAFLD had less fat
mass and skeletal muscle mass, which mainly constitute
lean tissue than those with obesity and NAFLD.
Attention should be paid to distinct body composition
profiles between lean and obese NAFLD.

However, the true prevalence of sarcopenic obesity in
the context of NAFLD is still controversial. Himoto et al.47

showed that the frequency of sarcopenic obesity appeared
to be low among Japanese patients with NAFLD because
none of them fulfilled the diagnostic criteria. In contrast,
another study showed a high prevalence of sarcopenic
obesity (70.3%) in 128 patients with NAFLD, which was
likely due to a discordant classification system indicative
of the HGS/BMI ratio (<1.001 for men and <0.56 for
women).48 By defining sarcopenic obesity using the
DEXA‐based SMI (<7.0 kg/m2 for men and <5.4 kg/m2

for women) and the percentage of total body fat mass
(≥25% for men and ≥30% for women), 13.9% (78/563) of
patients in a study cohort were diagnosed with sarcopenic
obesity.49 Patients with sarcopenic obesity were at an
approximately 137% higher risk of developing nonobese
NAFLD after adjustment for metabolic confounders, such
as hypertension, diabetes, hyperlipidemia, and homeosta-
sis model assessment of insulin resistance. In the
following investigation, the same research group found
that 8.8% (54/614) of the recruited population had
sarcopenic obesity, and lean NAFLD could be a predictor
of sarcopenic obesity.50 Furthermore, the sarcopenic
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obesity phenotype may progress into the osteosarcopenic
obesity phenotype in women >50 years. Data from the
NHANES, which was a population‐based study that
enrolled 14,015 adults, showed that a high non‐exercise‐
based estimation of cardiorespiratory fitness (reflecting
better ability of the respiratory and circulatory systems)
synergistically ameliorated the detrimental effect of
sarcopenia and obesity on NAFL.51 This evidence
collectively supports lifestyle intervention as a therapeutic
strategy for patients with NAFL.

A study conducted on children and adolescents with
obesity, who were diagnosed with NAFLD also, showed
that a small number of subjects had sarcopenic obesity
(4/38, 10.5%) in terms of BMI and the percentage of
body fat simultaneously.52 Recently, Pacifico et al.53

analyzed the association between NAFLD/NASH and a
low skeletal muscle mass in 234 youths who were
overweight/obese using the DEXA‐derived relative
muscle mass. They concluded that youths with over-
weight/obesity and a coexisting lowest tertile of relative
muscle mass had a greater risk of NAFLD than those in
the other two tertiles (OR = 2.80, p = 0.001). In a biopsy‐
confirmed NAFLD subclass, skeletal muscle mass was
inversely associated with NASH manifested by steatosis
with necroinflammation and hepatocyte ballooning
(Table 1).

3.2 | Effect of sarcopenic obesity in
chronic viral hepatitis

Chronic hepatitis C virus (HCV) infection is a
problematic health issue. HCV is endemic in numer-
ous countries/regions, thus resulting in a heavy
burden on society and the healthcare system.
Chronic HCV leads to persistent inflammation in
the liver, which results in slow, but occasionally
severe and ultimately irreversible, fibrotic injury to
the liver. Approximately 15%–30% of patients with
chronic HCV without effective treatment develop
cirrhosis over a span of 20 years. Approximately
290,000 deaths can be attributed to complications
due to HCV infection, including HCC and cirrhosis.62

Chronic hepatitis B virus infection is also a major
public health problem worldwide, despite the
development of potent antiviral treatment and an
effective vaccine.63 There are still high morbidity and
mortality rates of hepatitis B virus infection, as
shown in recent Global Burden of Disease estimates,
although a marked decrease has been achieved over
the past decades.64,65

Bering et al.66 defined sarcopenic obesity as a
concurrent presence of a low appendicular skeletal
index (appendicular skeletal muscle mass [ASM]/
height2), low muscle strength, and body fat percent-
age >27% in men and 38% in women in 104 HCV‐
infected patients. Sarcopenic obesity was observed in
four (3.8%) patients. Their findings suggested the
clinical significance of detecting body composition
abnormalities, even in the early stage of hepatic
diseases before cirrhosis. Han et al.67 performed a
study using data from 506 in the NHANES database

from respondents with hepatitis B virus. They found
that the prevalence of considerable liver fibrosis,
according to the NAFLD fibrosis score and fibrosis‐4
index, was significantly higher in patients with
sarcopenia than in those without sarcopenia with
central obesity and a BMI ≥ 25 kg/m2. Notably,
sarcopenia may have an unfavorable effect on the
fibrotic burden, especially among metabolically
unhealthy individuals with fatty liver, insulin resist-
ance, MetS, and obesity. A prospective cohort study
was performed on community‐dwelling adults (≥55
years) with a positive HBsAg.68 In this study, 37
(7.4%) patients were categorized into the sarcopenic
obesity group. Patients with sarcopenic obesity had a
7.5‐fold greater odds of being in the poor physical
health trajectory group (p < 0.001), 3.1‐fold greater
odds of being in the declining physical health
trajectory group (p = 0.028), and 4.3‐fold greater odds
of being in the poor mental health trajectory group
(p = 0.010).

3.3 | Effect of sarcopenic obesity in liver
cirrhosis

Liver cirrhosis, which is characterized by the histo-
pathological progression of fibrosis, is a terminal
pathway because of chronic and persistent liver
damage of various etiologies.69 Cirrhosis accounts for
39% of death globally and represents a life‐threatening
condition with limited therapeutic strategies, leaving
transplantation as the only curable option.70 The 5‐year
mortality rate is nearly 85% without transplantation in
case of decompensation.71

There have been two review articles on the relation-
ship between sarcopenic obesity and cirrhosis.18,72

Despite the fact that these reviews intended to provide
an overview specific to cirrhosis, information is still
limited because of the paucity of data in this field. The
original evidence of this relation can be traced back to a
study conducted by Montano‐Loza et al.54 with the
largest sample (678 patients) to date. They found that
patients with cirrhosis with concurrent sarcopenic obesity
(defined by the BMI and SMI in terms of a CT‐based
mortality threshold) had a worse median survival than
those with normal body composition (22 ± 3 months vs.
95 ± 22 months, p < 0.001). Hara et al.55 set the cutoff of
the VFA at 100 cm2 for visceral obesity, and the threshold
of upper limb skeletal muscle mass by BIA at 1.7 kg/m2

for men and 1.2 kg/m2 for women in 161 patients with
cirrhosis. Notably, the prognosis was significantly worse
in patients with sarcopenic obesity, followed by those
with sarcopenia and visceral obesity during a mean
observation time of 1005 days (67% vs. 48% vs. 36%,
p < 0.05). Taking into account the limitations described
above, especially fluid overload in the majority of patients
with cirrhosis, our research team compared the predic-
tive capability between the BMI‐based and VFA‐based
definitions of sarcopenic obesity in 200 participants.27 In
fact, we preferentially use myopenic obesity when
functional proxies of muscularity are missing (Figure 1).
We found that myopenic obesity as determined by the
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VFA rather than the BMI could clarify a specific subclass
representing a worse outcome. Individuals with myope-
nic obesity had a 149% higher risk of 2‐year mortality
than the reference group (p = 0.130). Additionally, we
highlighted the interactions regarding the muscle–
liver–fat axis partially driving the pathogenic pathway of
myopenic obesity in male patients.

3.4 | Effect of sarcopenic obesity in liver
transplantation

Because of the considerable clinical implications of body
composition disturbances and constantly changing etiolo-
gies of end‐stage liver disease, NASH is expected to be the
leading cause of liver transplantation by 2030 in the United
States.73 A recent meta‐analysis (1515 subjects) showed that
patients with sarcopenic obesity had worse survival after
liver transplantation.74 The presence of preoperative
sarcopenic obesity appears to be associated with an
approximately two times higher mortality rate during
short‐ and long‐term follow‐up. In 2011, Schütz et al.75

showed that changes in body composition in transplant
recipients were characterized by excess body fat and
obesity, which were accompanied by a deficit in skeletal
muscle mass. A study that recruited 207 adult patients with
cirrhosis who underwent liver transplantation showed
sarcopenic obesity in 27 (13%) patients who had a poor
survival rate at 5 years.56 After controlling for confounders,
NASH was associated with an increased risk of developing
sarcopenic obesity (OR= 6.03, p = 0.014). Choudhary et al.57

reported a strikingly high prevalence of sarcopenic obesity
detected by BIA (72/82, 88%) in a cohort of living donor
liver transplantation (LDLT) recipients. Patients with
sarcopenic obesity had a significantly higher BMI, WC,
and MetS than those without sarcopenia and obesity. Kamo
et al.58 analyzed 227 patients who underwent LDLT and
showed that patients with sarcopenic obesity, as deter-
mined by a low SMI and a high BMI had significantly worse
survival after LDLT. Similarly, Itoh et al.59 found that a low
SVR, representing an increased VFA and decreased skeletal
muscle mass, was an independent predictor of recurrence‐
free and overall survival in patients with HCC who
underwent LDLT. However, this negative effect of

sarcopenic obesity on survival after LDLT was not found
in a retrospective study by Hammad et al.76 In their study,
preoperative sarcopenic obesity did not confer an additional
marked morbidity or mortality risk than sarcopenia alone.
Furthermore, recipients with sarcopenia and obesity had a
significantly lower incidence rate of postoperative bactere-
mia and major complications than those with only
sarcopenia.

Some authors studied holistic profiles with regard to
distinct body composition and its changes over time.
Vidot et al.77 showed that obesity coexisting with muscle
wasting was common in patients with cirrhosis who
were evaluated for liver transplantation. Muscle decline
was greatly exaggerated in individuals with obesity
regarding corrected total cross‐sectional psoas muscle
area. Anastácio et al.78 prospectively assessed changes
in body composition at two different times after liver
transplantation in 100 patients during a median period
of 7 years. They found that sarcopenia (19%–22%),
obesity (32%–37%), and sarcopenic obesity (0%–2%), as
defined by BIA, increased over the surveillance time.

3.5 | Effect of sarcopenic obesity in HCC

HCC is one of the most frequent liver malignancies
worldwide.79 Several risk factors for HCC have been found,
such as alcoholism, chronic viral infection, a family history,
the presence of NASH, and obesity.80 The effect of
sarcopenic obesity on health outcomes in the HCC setting
has been examined in several studies. Kobayashi et al.60

divided 465 patients who underwent primary hepatectomy
for HCC into four body composition categories according to
the SMI and VFA. They found that perioperative sarcopenic
obesity was an independent predictor for decease and HCC
recurrence. The conflicting results in the HCC setting were
addressed by Kroh et al.,81 where sarcopenia, obesity, and
sarcopenic obesity represented superior postoperative
overall survival. They compared the survival curves in 70
patients with HCC who planned to have hepatectomy.
Hopancı Bıçaklı et al.82 found that 30% of all geriatric
patients with gastrointestinal cancer had sarcopenic obesity.
Chemotherapy leads to a greater risk of developing
sarcopenic obesity.

F IGURE 1 Comparison of two patients with cirrhosis and obesity, with and without sarcopenia, according to our previous study. (A) One
patient had no sarcopenic obesity, whereas one patient (B) had sarcopenic obesity. Blue area: Visceral fat tissue; Green area: Skeletal muscle tissue;
Red area: Subcutaneous fat tissue.
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3.6 | Miscellaneous

Lodewick et al.83 classified 49 (28.7%) patients after an
operation for colorectal liver metastases (CRLM) into
the sarcopenic obese group and showed no detrimental
effect of sarcopenic obesity on overall or disease‐free
survival. These authors also suggested that there are no
disadvantageous consequences of sarcopenic obesity on
liver volume or function.84 However, patients with
obesity have larger, but less functional livers, than those
without obesity, which suggests that the dissociation of
function and volume is most likely due to fat deposition.
Another study showed that visceral obesity, sarcopenia,
and sarcopenic obesity were independently related to
overall complications after resection for CRLM.61 Early
recognition of extremes in body composition is impor-
tant to facilitate perioperative intervention and to
improve postoperative outcomes.

4 | PATHOPHYSIOLOGICAL
MECHANISM OF SARCOPENIC
OBESITY

The pathogenesis of sarcopenic obesity appears to be
multifactorial and complicated. Further research is
required to delineate the underpinning pathway from
clinical and molecular facets (Figure 2). We propose that
the involved mechanism is as follows.

Recently, researchers have attempted to dissect
the putative interrelation within the muscle–liver–fat
tissue axis as the leading cause of sarcopenic obesity in
the context of liver disease. Two principle and concur-
rent pathological machineries are involved, namely,
anabolic resistance and insulin resistance.85 In sarco-
penic obesity, muscle atrophy induced by anabolic
resistance and the deleterious effect of insulin resistance
on skeletal muscle and fat tissue appears to act
synergistically. Skeletal muscle can modulate energy
substrate homeostasis and synchronically partition with
the liver and fat tissue. Skeletal muscle produces various
myokines acting in an autocrine and paracrine manner
and participating in tissue cross‐talk. Therefore, skeletal
muscle is regarded as an endocrine organ per se.86 In

insulin resistance, glucose uptake via skeletal muscle
considerably decreases, which, in turn, leads to the
progression of MetS and evolution to T2DM.87 The
consequence of insulin resistance in skeletal muscle is
muscle loss, and a dysregulated insulin signaling path-
way leads to an imbalance between protein synthesis
and proteolysis through mammalian target of rapamycin
(mTOR) inactivation and enhanced transcription of E3
ubiquitin ligases.88,89 An inability of glucose uptake
further promotes the progression of MetS due to muscle
wasting, which perpetuates a vicious circle. In end‐stage
liver disease, such as cirrhosis, skeletal muscle is
required for excessive ammonia uptake. This enhances
the transcription of myostatin, which is a potent
negative regulator of muscularity belonging to the
transforming growth factor‐β superfamily.90

Fat tissue serves as a multifaceted organ, which
potentiates energy homeostasis and endocrine balance
by secreting paracrine adipokines to affect the surround-
ing cells and subsequently affect other metabolic organs.
Consistent with the progression of obesity, fat tissue
appears to be dysfunctional.91 Fat is incapable of storing
additional dietary and endogenous lipids and results in
higher lipid concentrations in the circulation, lipid
deposition in peripheral metabolic organs, and altered
skeletal muscle health.92 However, fat tissue may cause a
proinflammatory milieu, posing a detrimental effect on
adipocyte biology. As obesity develops, various immune
cells, such as T cells, mast cells, and adipose tissue
macrophages, are recruited in the vicinity of adipocytes.93

The culmination of immune cell infiltration and the
associated proinflammatory milieu synergistically cause
the development of whole‐body glucose intolerance,
insulin resistance, and T2DM.94 Furthermore, adipose
tissue macrophages produce a wide array of proinflam-
matory mediators, such as IL‐1β, IL‐6, TNF‐α, MCP‐1, and
nitric oxide. Notably, necrosis of obese and dysfunctional
fat tissue leads to the generation of damage‐associated
molecular patterns and the activation of Nod‐like
receptor protein 3.95,96 Numerous fat tissue‐derived
signals, such as cytokines, adipokines, lipids, and lipid
derivatives, may negatively affect metabolism and
inflammation of skeletal muscle tissue, all of which
are interrelated in the context of sarcopenic obesity.97

F IGURE 2 Interplay regarding the muscle–liver–fat tissue axis may potentiate the onset and progression of sarcopenic obesity in the context of
versatile liver diseases. The underpinning mechanisms are multifactorial and complex, involving several mechanistic pathways, such as anabolic
resistance, insulin resistance, and persistently chronic inflammation. MetS, metabolic syndrome; NAFLD, nonalcoholic fatty liver disease.
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This pathophysiological trait is evident in patients with
sarcopenia and obesity who have high serum concentra-
tions of IL‐6, TNF‐α, and C‐reactive protein (CRP).98

Wåhlin‐Larsson et al.99 found that a chronic increase in
CRP concentrations was inversely associated with lean
muscle mass in older women. From a mechanistic
perspective, human myotubes exposed to CRP lead to a
reduction in their size and a decreased skeletal muscle
synthesis rate. Notably, decreased adiponectin concen-
trations result in insulin resistance and glucose
intolerance, which subsequently lead to liver damage
and, to a greater extent, fatty liver.100 The enhanced
fibrogenic process and inflammatory action in the liver
can in part be attributed to leptin stimulation.101

Several novel molecular mechanisms in relation to the
pathogenesis of sarcopenic obesity have recently been
discovered. Ryu et al.102 speculated that the dysregulation
of autophagy plays a pivotal role in the pathological
association between sarcopenic obesity and its comorbid-
ities, such as NAFLD. Mounting evidence has indicated
that reduced AMP‐activated protein kinase and peroxisome
proliferator‐activated receptor‐gamma coactivator‐1 alpha
with overactivated mTOR signaling are responsible for
deficient autophagic activity related to inflammation and
insulin resistance.103,104 Garcia et al.105 showed that liver‐
specific AMP‐activated protein kinase activation repro-
gramed lipid metabolism, mitigated steatosis, and inhibited
the expression of inflammation and fibrosis genes.
Furthermore, mitochondrial autophagy promotes mito-
chondrial fatty acid oxidation, represses hepatic fatty acid
accumulation, and alleviates insulin resistance.106

In recent decades, the gut microbiota has attracted
attention in the medical field, and gut dysbiosis appears
to negatively affect skeletal muscle health and hepatic
status via the gut–liver–muscle tissue axis. The intestinal
gut may lose tight junction integrity and exhibit increased
permeability with a massive pathological microbiome.
Lipopolysaccharide and short‐chain fatty acids can cause
a proinflammatory response through cytokines. A decrease
in the Firmicutes/Bacteroidetes ratio can trigger deleterious
inflammatory and metabolic pathways, such as short‐chain
fatty acid‐induced lipogenesis, an altered bile acid profile,
and lipopolysaccharide‐induced hepatic inflammation, all
of which promote NAFLD.107 Skeletal muscle can be
dysfunctional owing to gut dysbiosis‐induced inflammation
and dysfunctional mitochondria. Okun et al.108 found that
liver alanine catabolism driven by chronic glucocorticoid
and glucagon signaling enhanced hyperglycemia and
skeletal muscle loss in obese mice. Taken together, these
findings suggest that the underpinning mechanism of
sarcopenic obesity in liver disease is still unclear.

5 | PREVENTION AND TREATMENT
OF SARCOPENIC OBESITY

To our knowledge, there is no consensus guideline
regarding therapeutic strategies for sarcopenic obesity
in the context of liver diseases, likely due to the paucity
of evidence, especially data from randomized, con-
trolled trials. Taking account into the conceptual
framework of sarcopenic obesity, several critical issues

regarding its management should be addressed: (1)
enhancing muscle strength and improving physical
performance; (2) increasing muscle quantity; and (3)
decreasing excess fat accumulation and possibly fat‐
associated metabolic disorders and inflammation. How-
ever, available therapies are predominantly based on a
deficiency of replacement rather than on mechanistic
pathways or targets (Figure 3). A recent meta‐analysis
that included 15 studies (14 randomized, controlled
trials and 1 quasi‐experimental study) investigated the
effects of nutrition and exercise on body composition,
physical performance, and metabolic condition in
participants with sarcopenic obesity.109 This meta‐
analysis showed that exercise, in particular resistance
exercise, was important for improving body composition
and physical function. Furthermore, low‐calorie high
protein therapy results in the loss of fat mass, but may
not affect HGS or skeletal muscle mass. Compared with
exercise alone, no additional benefit is observed with
protein supplementation on body composition or
biomarkers in relation to metabolic disorders and
inflammation.

5.1 | Nutritional intervention

As reviewed in detail elsewhere, the principles of
nutritional therapy based on published recommendations
on addressing body composition abnormalities, such
as sarcopenic obesity, are supposed to be followed.23,110,111

In NASH, weight loss is regarded as a cornerstone with the
purpose of improving histological changes.112,113 One of
the best therapeutic strategies is energy restriction, with a
low calorie, low fat, and low carbohydrate diet.114

However, an existing dilemma is that caloric restriction‐
induced weight loss in patients with overweight/obesity
may lead to concurrent skeletal muscle mass loss
(accounting for 25%) and fat mass loss (accounting for
75%). Therefore, aggressive energy restriction/very‐low‐
calorie diets (<1000 kcal/day) should be avoided in
patients with sarcopenia and advanced liver disease,
especially for cirrhosis. In this group of patients, the
energy intake should be justified by the BMI, which is
corrected for fluid retention (ascites/edema), small fre-
quent meals, and late‐night snacks to suppress skeletal
muscle proteolysis, decreasing lipid oxidation, and im-
proving skeletal muscle mass and nitrogen balance.115,116

To replenish muscle wasting, the use of branched‐chain
amino acids (BCAAs) can trigger tolerability to meat
protein and provide an adequate protein intake.117 Tsien
et al.118 showed that BCAAs enriched in leucine reversed
impaired mTOR1 signaling and increased autophagy in
skeletal muscle of patients with alcohol‐related cirrhosis.

5.2 | Exercise prescription

Physical activity and exercise are anabolic stimuli
capable of improving skeletal muscle mass and func-
tion. A meta‐analysis of 12 studies showed amelioration
in steatosis in NAFLD, despite an exercise level below
that recommended for the management of obesity, and
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even in presence of minimal or no weight loss.119

Another meta‐analysis reported that exercise showed
the most benefit in subjects who were severely obese,
and showed that this effect was not affected by the
intensity of the intervention or a change in diet.120 In
cirrhosis, the reversal of sarcopenia, a gain in skeletal
muscle mass and strength, improvement in health‐
related quality of life, and enhancement in aerobic
ability have been observed following adequate exer-
cise.121–124 Recent reviews and meta‐analyses in the field
of exercise prescription aiming at counseling and
delivering health care have been performed.125–127

5.3 | Pharmacological therapy

With regard to the pharmacological approach, further
investigation of the effect of lowering ammonia thera-
pies, such as L‐aspartate, L‐ornithine, and lactulose, on
muscle quantity in humans is required. Kumar et al.128

reported that ammonia‐lowering therapy led to an
improvement in the skeletal muscle phenotype and
function and molecular perturbations of hyperammo-
nemia. Myostatin and activin signaling is involved in
multiple pathways (e.g., muscle anabolism, liver disease,
and fibrosis).129–131 Some clinical trials developed
potential drug candidates for modulating the myosta-
tin/activin/follistatin system in patients with chronic
obstructive pulmonary disease and T2DM.132 Mounting

evidence has shown that rifaximin with treatment
ranging from 4 to 12 weeks decreases plasma IL‐6,
IL‐10, and/or TNF‐α concentrations in patients with
NAFLD and alcohol‐related cirrhosis.133,134 Additionally,
rifaximin improves insulin resistance and serum glucose
and aminotransferases concentrations in NAFLD after
6 months.133 However, alterations in the gut microbiota
composition can lead to chronic inflammation and
anabolic resistance, accompanied by impaired muscle
function/mass and adverse clinical consequences.135

6 | CONCLUSIONS

There is speculation on the role of sarcopenic obesity
in the development and progression of various liver
diseases. However, the actual prevalence and clinical
implications of this role remain elusive because of a
lack of a unified definition, diagnostic criteria, or
assessed methodologies in the literature. In NAFLD,
the onset of sarcopenic obesity appears to be indicative
of a dysregulated metabolic condition and histological
alterations. With the development of cirrhosis and
decompensation, the presence of sarcopenic obesity
has an additional detrimental effect on morbidity and
mortality. In patients undergoing liver transplantation,
sarcopenic obesity is associated with worse survival
and adverse outcomes, but conflicting findings have
been reported. The pathogenesis of sarcopenic obesity

F IGURE 3 Summary of currently available avenues for therapeutic intervention of sarcopenic obesity in various liver diseases. BCAAs,
branched‐chain amino acids; BMI, body mass index; NAFLD, nonalcoholic fatty liver disease; NASH, nonalcoholic steatohepatitis.
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in the context of liver diseases is multifactorial with
several pathophysiological pathways, such as anabolic
resistance, insulin resistance, and a persistent inflam-
matory response. Furthermore, the interplay of the
muscle–liver–fat tissue axis and the gut–liver–muscle
tissue axis may in part explain the evolution of different
body composition abnormalities. The currently availa-
ble therapies are predominantly based on a deficiency
of replacement rather than on mechanistic pathways or
targets, such as nutritional intervention, exercise
prescription, and pharmacological therapy. Potential
avenues for therapeutic intervention by stating this
area of unmet clinical need are urgently required.
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