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Statins are the cornerstone of the prevention and treatment of atherosclerotic cardiovascular disease (ASCVD). However, even 
under optimal statin therapy, a significant residual ASCVD risk remains. Therefore, there has been an unmet clinical need for 
novel lipid-lowering agents that can target low-density lipoprotein cholesterol (LDL-C) and other atherogenic particles. During 
the past decade, several drugs have been developed for the treatment of dyslipidemia. Inclisiran, a small interfering RNA that tar-
gets proprotein convertase subtilisin/kexin type 9 (PCSK9), shows comparable effects to that of PCSK9 monoclonal antibodies. 
Bempedoic acid, an ATP citrate lyase inhibitor, is a valuable treatment option for the patients with statin intolerance. Pemafibrate, 
the first selective peroxisome proliferator-activated receptor alpha modulator, showed a favorable benefit-risk balance in phase 2 
trial, but the large clinical phase 3 trial (PROMINENT) was recently stopped for futility based on a late interim analysis. High dose 
icosapent ethyl, a modified eicosapentaenoic acid preparation, shows cardiovascular benefits. Evinacumab, an angiopoietin-like 3 
(ANGPTL3) monoclonal antibody, reduces plasma LDL-C levels in patients with refractory hypercholesterolemia. Novel anti-
sense oligonucleotides targeting apolipoprotein C3 (apoC3), ANGPTL3, and lipoprotein(a) have significantly attenuated the levels 
of their target molecules with beneficial effects on associated dyslipidemias. Apolipoprotein A1 (apoA1) is considered as a poten-
tial treatment to exploit the athero-protective effects of high-density lipoprotein cholesterol (HDL-C), but solid clinical evidence is 
necessary. In this review, we discuss the mode of action and clinical outcomes of these novel lipid-lowering agents beyond statins.
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INTRODUCTION

The goal of lipid-lowering therapy is to reduce the risk of ath-
erosclerotic cardiovascular disease (ASCVD). Low-density li-
poprotein (LDL) is a well-known causal factor of ASCVD [1]. 
Statins are administered as first-line agents to lower plasma 
LDL cholesterol (LDL-C) levels [2]. A number of outcome tri-
als have demonstrated that statins have a consistent benefit in 
reducing the risk of ASCVD in primary and secondary pre-
vention [3]. Therefore, current guidelines on the management 
of blood cholesterol recommend statin administration in all 

patients treated for secondary prevention, patients with famil-
ial hypercholesterolemia, patients aged 40 to 75 years with dia-
betes and plasma LDL-C ≥70 mg/dL, and patients treated for 
primary prevention without diabetes and with estimated 10-
year ASCVD risk ≥7.5% [4,5]. However, despite optimal statin 
therapy, a significant residual ASCVD risk remains [6,7]. 
Therefore, there is a clinical need for novel agents which will 
help in lowering plasma LDL-C and other atherogenic parti-
cles effectively.

During the past decade, there has been a significant innova-
tion in lipid-lowering agents [8]. The present review will focus on 
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novel agents which target LDL, triglyceride (TG), lipoprotein(a) 
(Lp(a)), and high-density lipoprotein (HDL) (Table 1, Fig. 1).

LDL-C LOWERING AGENTS

Several clinical and genetic studies have shown that LDL 
causes ASCVD, and ASCVD risk decreases in proportion to 
the degree and duration of LDL-C reduction [9-11].

PCSK9 inhibition by monoclonal antibodies
Proprotein convertase subtilisin/kexin type 9 (PCSK9), an en-
zyme predominantly produced in the liver, binds to the LDL 
receptor (LDLR) present on the surface of the hepatocytes, 
leading to its degradation and a subsequent increase in plasma 
LDL-C levels [12]. Thus, inhibition of PCSK9 causes an in-
crease in LDLR number and a subsequent decrease in plasma 
LDL-C levels. Among the several monoclonal antibodies de-
veloped against PCSK9, evolocumab and alirocumab have 
been approved for clinical use and extensively evaluated in nu-
merous clinical trials. 

Evolocumab reduced plasma LDL-C levels by 53% to 75% 
whether administered as a monotherapy, used in conjunction 
with statin therapy, administered to patients with statin intol-
erance, or to patients with heterozygous familial hypercholes-
terolemia (HeFH) [13-17]. In patients with homozygous famil-
ial hypercholesterolemia (HoFH) who have defective LDLRs, 
evolocumab reduced plasma LDL-C levels by 31% [18]. In the 

Further Cardiovascular Outcomes Research With PCSK9 In-
hibition in Subjects With Elevated Risk (FOURIER) trial in-
volving patients with ASCVD, LDL-C ≥70 mg/dL or non-
HDL-C ≥100 mg/dL while receiving statin therapy, evolocum-
ab reduced the cardiovascular risk by 15% (hazard ratio [HR], 
0.85; 95% confidence interval [CI], 0.79 to 0.92) [19].

Alirocumab reduced plasma LDL-C levels by 45% to 53% 
whether administered as a monotherapy, used in conjunction 
with statin therapy, or administered to patients with statin in-
tolerance [20-23]. Depending on the genotype of the patient, 
alirocumab reduced plasma LDL-C levels by 39%–58% in pa-
tients with HeFH and by 11.9%–34.3% in patients with HoFH  
[24-26]. In the Evaluation of Cardiovascular Outcomes After 
an Acute Coronary Syndrome During Treatment With Ali-
rocumab (ODYSSEY OUTCOMES) trial involving patients 
with an acute coronary syndrome, plasma LDL-C ≥70 mg/dL, 
non-HDL-C ≥100 mg/dL or apolipoprotein B (apoB) ≥80 
mg/dL while receiving statin therapy, alirocumab reduced car-
diovascular risk by 15% (HR, 0.85; 95% CI, 0.78 to 0.93) [27].

Current guidelines recommend the administration of 
PCSK9 inhibitors in patients with plasma LDL-C ≥70 mg/dL 
and high risk of ASCVD, while on maximally tolerated statin 
and ezetimibe therapy [4].

PCSK9 inhibition by RNA silencing 
Inclisiran is a synthetic small interfering RNA (siRNA), which 
works by targeting the PCSK9 and is conjugated to triantenna-

Table 1. Novel and emerging treatments for dyslipidemia

Name Target Mechanism of action Stage Effect

Inclisiran PCSK9 siRNA targeting PCSK9 Phase 3 ↓ LDL-C
Bempedoic acid ACLY Small molecule targeting ACLY Phase 2-3 ↓ LDL-C
Pemafibrate PPARα Selective PPARα modulator Phase 3 ↓ TG
Icosapent ethyl PPAR Activation of PPAR Phase 3 ↓ TG
Volanesorsen ApoC3 ASO targeting ApoC3 Approved (EU)/Phase 3 ↓ TG
Evinacumab ANGPTL3 ANGPTL3 monoclonal antibody Phase 2-3 ↓ TG, LDL-C, and HDL-C
Vupanorsen ANGPTL3 ASO targeting ANGPTL3 Phase 2 ↓ TG, LDL-C, and HDL-C
IONIS-APO(a)Rx Apo(a) ASO targeting Lp(a) Phase 2 ↓ Lp(a)
IONIS-APO(a)LRx Apo(a) ASO targeting Lp(a) Phase 2-3 ↓ Lp(a)
Olpasiran Apo(a) siRNA targeting Lp(a) Phase 1 ↓ Lp(a)
SLN360 Apo(a) siRNA targeting Lp(a) Phase 1 ↓ Lp(a)
CSL-112 ApoA1 ApoA1 Phase 3 ↑ HDL-C

PCSK9, proprotein convertase subtilisin/kexin type 9; siRNA, small interfering RNA; LDL-C, low-density lipoprotein cholesterol; ACLY, ATP 
citrate lyase; PPAR, peroxisome proliferator-activated receptor; TG, triglyceride; ApoC3, apolipoprotein C3; ASO, antisense oligonucleotide; 
EU, European Union; ANGPTL3, angipoietin-like 3; HDL-C, high-density lipoprotein cholesterol; Apo(a), apolipoprotein(a); Lp(a), 
lipoprotein(a); ApoA1, apolipoprotein A1.
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ry N-acetylgalactosamine carbohydrates (GalNAc), which tar-
gets the siRNA to the liver [28]. In the Trial to Evaluate the Ef-
fect of Inclisiran Treatment on Low Density Lipoprotein Cho-
lesterol (LDL-C) in Subjects With Heterozygous Familial Hy-
percholesterolemia (HeFH) (ORION)-9 trial involving pa-
tients with HeFH and plasma LDL-C ≥100 mg/dL while re-

ceiving statin therapy, a 300-mg dose of inclisiran sodium 
(corresponding to a 284-mg dose of inclisiran free acid) was 
administered on Days 1, 90, 270, and 450. On Day 510, incli-
siran reduced plasma LDL-C levels by 47.9%. The inclisiran 
group reported a higher rate of injection-site reaction com-
pared with the placebo group (17.0% vs. 1.7%). The majority of 

Fig. 1. Sites and targets of new lipid-lowering agents. In the small intestine, lipids and apolipoprotein B48 (ApoB48) are packaged 
into chylomicron (CM) particles. In the liver, bempedoic acid inhibits an enzyme ATP citrate lyase (ACLY), which is responsible 
for the conversion of citrate and coenzyme A (CoA) to oxaloacetate and acetyl-CoA. Pemafibrates are selective peroxisome prolif-
erator-activated receptor alpha (PPARα) modulators, which initiate β-oxidation, reduce triglyceride (TG) content, and enhance li-
poprotein lipase (LPL) activity. Omega-3 fatty acids also exhibit their effects through the PPAR-mediated pathway. Recycling of 
low-density lipoprotein receptors (LDLRs) is increased by the inhibition of proprotein convertase subtilisin/kexin type 9 (PCSK9). 
In the plasma, TGs within the CM and very-low-density lipoprotein (VLDL) are hydrolyzed by LPL, inhibitors of which include 
apolipoprotein C3 (ApoC3) and angiopoietin-like 3 (ANGPTL3). Volanesorsen is an antisense oligonucleotide (ASO) targeting 
the ApoC3. Evinacumab is a monoclonal antibody which targets ANGPTL3. Vupanorsen is a triantennary N-acetylgalactosamine 
carbohydrates (GalNAc)-conjugated ASO which targets ANGPTL3 mRNA. Binding of apolipoprotein (a) (Apo(a)) to apolipo-
protein B100 (ApoB100) an LDL-like moiety forms lipoprotein(a) (Lp(a)). IONIS-APO(a)Rx and IONIS-APO(a)LRx are ASOs tar-
geting the Apo(a). Olpasiran and SLN360 are small interfering RNAs (siRNAs) targeting the Apo(a). In the peripheral cells, apoli-
poprotein A1 (ApoA1) present in small high-density lipoprotein (HDL) mobilizes intracellular cholesterol (C) and is assisted by 
ATP-binding cassette protein A1 (ABCA1) and ATP-binding cassette protein G1 (ABCG1), after esterification by lecithin choles-
terol acyl transferase (LCAT). ApoA1 peptide induces C efflux. CMR, chylomicron remnant; FA, fatty acid; HMGCR, 3-hydroxy-
3-methylglutaryl-coenzyme A reductase; IDL, intermediate-density lipoprotein.



Kim K, et al.

520 Diabetes Metab J 2022;46:517-532 https://e-dmj.org

events were graded as mild and none were graded as serious 
[29]. In the United States-based ORION-10 trial involving a 
total of 1,561 patients with ASCVD, a 284-mg dose of inclisir-
an free acid was administered on Days 1, 90, 270, and 450. On 
Day 510, inclisiran reduced plasma LDL-C levels by 52.3%. 
The prespecified exploratory cardiovascular end-point oc-
curred in 58 patients (7.4%) in the inclisiran group and 79 pa-
tients (10.2%) in the placebo group [30]. In the non-United 
States based ORION-11 trial involving a total of 1,617 patients 
with ASCVD or an equivalent, inclisiran reduced plasma LDL-
C levels by 49.9% on Day 510. The prespecified exploratory 
cardiovascular end-point occurred in 63 patients (7.8%) in the 
inclisiran group and 83 patients (10.3%) in the placebo group 
[30]. A meta-analysis of major cardiovascular events (MACE) 
studies involving PCSK9-inhibiting monoclonal antibodies or 
inclisiran showed that the results of the ORION 10-11 trials are 
in concordance with the results of 7 trials involving PCSK9-in-
hibiting monoclonal antibodies [31]. The ongoing phase-3 trial 
(ORION-4, NCT03705234) will help to further clarify the car-
diovascular benefits of inclisiran.

Bempedoic acid
ATP-citrate lyase (ACLY) catalyzes the ATP-dependent con-
version of citrate and coenzyme A (CoA) to oxaloacetate and 
acetyl-CoA. Acetyl-CoA, the precursor of 3-hydroxy-3-meth-
ylglutaryl-CoA (HMG-CoA), is crucial for the biosynthesis of 
cholesterol [32]. Thus, inhibition of ACLY leads to a reduction 
of acetyl-CoA and cholesterol synthesis, resulting in an in-
creased number of LDLRs, causing a subsequent reduction of 
plasma cholesterol. Bempedoic acid is a small molecule that 
acts as a selective antagonist of ACLY. It is administered as a 
prodrug and requires activation by very-long-chain acyl-CoA 
synthetase-1, which is an enzyme mainly expressed in the liver. 
This property minimizes the exposure of the active drug to the 
non-hepatic tissue, such as the skeletal muscle [33]. 

In the Cholesterol Lowering via Bempedoic Acid, an ACL-
Inhibiting Regimen (CLEAR) Harmony trial and the CLEAR 
Wisdom trial involving patients with ASCVD or HeFH, and 
plasma LDL-C ≥70 mg/dL while receiving statin therapy, 
bempedoic acid reduced plasma LDL-C levels by approxi-
mately 18% [34,35]. In the CLEAR Tranquility trial involving 
patients with statin intolerance and plasma LDL-C ≥100 mg/
dL while receiving no more than low-dose statin therapy, bem-
pedoic acid reduced plasma LDL-C levels by 28% [36]. In the 
CLEAR Serenity trial involving patients with statin intolerance 

and plasma LDL-C ≥130 mg/dL (for primary prevention) or 
plasma LDL-C ≥100 mg/dL (for secondary prevention and/or 
HeFH) while receiving various lipid-lowering therapies with 
selective cholesterol absorption inhibitors, bile acid seques-
trants, fibrates, PCSK9 inhibitors, or niacin, either alone or in 
combination, bempedoic acid reduced plasma LDL-C levels by 
21% [37]. A pooled analysis showed that bempedoic acid was 
associated with increase of blood urea nitrogen, creatinine, 
and uric acid. It also resulted in a decrease in hemoglobin. 
Gout incidence was higher in the bempedoic acid group com-
pared with the placebo group (1.6/100 person-years [PY] vs. 
0.5/100 PY). New-onset diabetes/hyperglycemia incidence was 
lower in the bempedoic acid group compared with that in the 
placebo group (4.7/100 PY vs. 6.4/100 PY) [38]. A meta-analy-
sis showed that bempedoic acid significantly reduced plasma 
LDL-C levels by 14%, but no significant reduction was seen in 
MACE (17%) [39]. Interestingly, a Mendelian randomization 
analysis showed a reduction in cardiovascular disease (CVD) 
risk per unit decrease in the plasma LDL-C level in carriers of 
loss-of-function mutation in ACLY or HMGCR which mim-
icked the effect of ACLY inhibitors and statins, respectively 
[40]. A phase 3 cardiovascular outcome trial involving patients 
with statin intolerance (Evaluation of Major Cardiovascular 
Events in Patients With, or at High Risk for, Cardiovascular 
Disease Who Are Statin Intolerant Treated With Bempedoic 
Acid [ETC-1002] or Placebo [CLEAR Outcomes], NCT02993-
406) is underway. 

TG LOWERING AGENTS

Epidemiological, mechanistic, genetic, and clinical studies 
have consistently demonstrated that an elevated plasma TG 
level is associated with increased risk of ASCVD [41,42]. How-
ever, TG can be degraded by most cells in the body and, there-
fore, does not accumulate in the atherosclerotic plaque. There-
fore, TG itself is unlikely the cause of atherosclerosis. Instead, 
TG-rich lipoproteins enter into the arterial intima and contrib-
ute to plaque formation, eventually leading to a high ASCVD 
risk [43].

American guidelines recommend the administration of fi-
brates or omega-3 fatty acids in patients with persistently ele-
vated severe hypertriglyceridemia (TG ≥500 mg/dL) to pre-
vent pancreatitis [4]. European guidelines recommend the ad-
ministration of n-3 polyunsaturated fatty acids (icosapent ethyl 
2×2 g/day) in combination with a statin in high-risk (or 
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above) patients with TG levels between 135 and 499 mg/dL 
despite statin treatment [44]. The details of the icosapent ethyl 
trials will be discussed below.

Pemafibrate
Fibrates are well known TG-lowering drugs and are agonists of 
peroxisome proliferator-activated receptor alpha (PPARα). 
These include fenofibrate, bezafibrate, and gemfibrozil [45]. 
Previous randomized controlled trials (RCTs) have demon-
strated inconsistent results on ASCVD risk reduction, particu-
larly among patients on statins [46-50]. However, a meta-anal-
ysis demonstrated that fibrates reduce ASCVD risk in the sub-
group of patients with high baseline plasma TG levels [51].

Pemafibrate is the first selective PPARα modulator. It shows 
more than 2,500 times stronger PPARα activation compared 
with fenofibric acid, the active form of fenofibrate. It also 
shows more than 5,000-fold selectivity for PPARα compared 
to PPARγ and more than 11,000-fold selectivity for PPARα 
compared to PPARδ [52].

In a phase 3 comparative trial involving Japanese patients 
with plasma TG levels between 150 and 500 mg/dL, pemafi-
brate and fenofibrate significantly reduced plasma TG levels by 
46% and 39%, respectively. The pemafibrate group showed less 
frequent adverse events compared with the fenofibrate group 
(2.7% vs. 6.8%) [53]. In clinical trials involving Japanese pa-
tients with plasma TG ≥150 or 200 mg/dL while receiving 
statin therapy, pemafibrate reduced plasma TG levels by 50% 
from the baseline [54]. In a phase 2 trial involving a total of 408 
statin-treated European patients with plasma TG levels be-
tween 175 and 500 mg/dL, the highest dose of pemafibrate 
tested, 0.2 mg twice a day, reduced plasma TG levels by 54.4% 
from the baseline [55]. A phase 3 cardiovascular outcome trial 
involving 10,000 patients with type 2 diabetes mellitus and 
plasma TG levels of 200 to 500 mg/dL while receiving statin 
therapy (Pemafibrate to Reduce Cardiovascular OutcoMes by 
Reducing Triglycerides IN patiENts With diabeTes [PROMI-
NENT], NCT03071692) started from March, 2017 [56]. How-
ever, the study has been stopped early in April, 2022 for rea-
sons of futility. Nevertheless, considering that pemafibrate may 
prevent disease progression in non-alcoholic fatty liver disease 
(NAFLD) patients with hypertriglyceridemia, the possibility 
that of ASCVD risk reduction by pemafibrate in patients with 
NAFLD remains [57]. Meanwhile, two clinical trials involving 
patients with plasma TG levels of 500 to 2,000 mg/dL (NCT-
03011450 and NCT03001817) are currently ongoing as well. 

Omega-3 fatty acid preparations
Omega-3 fatty acids exert their effects through the PPAR-me-
diated pathway [58]. Even though omega-3 fatty acids have 
been recommended for patients with severe hypertriglyceride-
mia, most studies have not supported the benefits of omega-3 
fatty acids in primary or secondary prevention of ASCVD in 
patients undergoing statin therapy [59-61]. Interestingly, in the 
Reduction of Cardiovascular Events with Icosapent Ethyl-In-
tervention Trial (REDUCE-IT) trial involving patients with 
plasma TG levels of 135 to 500 mg/dL, LDL-C levels of 41 to 
100 mg/dL, and ASCVD or diabetes while receiving statin 
therapy, high dose (4 g/day) of icosapent ethyl, a form of eicos-
apentaenoic acid (EPA) reduced cardiovascular risk by 25% 
(HR, 0.75; 95% CI, 0.68 to 0.83) [62]. In the Effect of Vascepa 
on Improving Coronary Atherosclerosis in People With High 
Triglycerides Taking Statin Therapy (EVAPORATE) trial in-
volving patients with coronary artery disease and plasma TG 
levels of 135 to 500 mg/dL while receiving statin therapy, 4 g/
day of icosapent ethyl reduced low-attenuation plaque (LAP) 
volume by 17%, while in the placebo group LAP volume in-
creased by 109% [63]. However, in the Outcomes Study to As-
sess STatin Residual Risk Reduction With EpaNova in HiGh 
CV Risk PatienTs With Hypertriglyceridemia (STRENGTH) 
trial involving patients with plasma TG levels of 180 to 500 
mg/dL, LDL-C <100 mg/dL, and ASCVD or diabetes while 
receiving statin therapy, 4 g/day of omega-3 carboxylic acids 
containing EPA and docosahexaenoic acid (DHA) resulted in 
no significant reduction in the risk of cardiovascular events 
[64]. The contrasting results for icosapent ethyl versus ome-
ga-3 carboxylic acids have led to a controversy focused on de-
sign differences between the comparator oils (placebos) in RE-
DUCE-IT trial and STRENGTH. REDUCE-IT used mineral 
oil whereas STRENGTH used corn oil. Importantly, the RE-
DUCE-IT investigators reported significant increases in LDL-
C and CRP in the mineral oil group compared to icosapent 
ethyl-treated group [62]. That finding led to a cohort study, 
which was designed to mimic the REDUCE-IT trial; it showed 
that the contrasting CVD outcomes between the two trials 
could be partly explained by a difference in the effects of the 
comparator oils (mineral vs. corn), but not the active oils (EPA 
vs. EPA+DHA), on lipid traits and C-reactive protein [65]. Re-
cently, a study of several ASCVD-related biomarkers in RE-
DUCE-IT, conducted by the investigators themselves, showed 
that icosapent ethyl had minimal effects on those biomarkers, 
whereas levels increased among those allocated to mineral oil 
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[66]. All together, these analyses suggest that the results of the 
REDUCE-IT trial must be interpreted with some caution.

ApoC3 inhibitor
Apolipoprotein C3 (apoC3) is a key regulator of TG metabo-
lism. It is a potent inhibitor of lipoprotein lipase (LPL), the en-
zyme responsible for the lipolysis of TG in the very-low-densi-
ty lipoprotein (VLDL) and chylomicron particles [67]. In addi-
tion, it inhibits hepatic clearance of VLDL and chylomicron 
remnants by LPL-independent pathways [68]. Plasma apoC3 
levels are associated with an increased risk of CVD [69,70]. A 
previous study showed that participants heterozygous for loss-
of-function mutation in the APOC3 gene showed a reduction 
of 49% in plasma apoC3 levels and of 35% in plasma TG levels 
along with very efficient in vivo lipolysis of VLDL TG [71]. A 
genome-wide association study (GWAS) showed that hetero-
zygous carriers of a null mutation in the APOC3 gene had low-
er serum TG levels and reduced subclinical atherosclerosis 
than noncarriers [72]. In addition, loss-of-function mutations 
in the APOC3 gene are associated with 40% lower plasma TG 
levels and a 40% lower risk of CVD [73,74]. 

Volanesorsen (ISIS 304801; ISIS-APOCIIIRx) is a 2ʹ-meth-
oxyethyl–modified antisense oligonucleotide (ASO) targeting 
apoC3 mRNA [75]. IONIS-APOCIII-LRx (ISIS 678354; AK-
CEA-APOCIII-LRx) contains the same nucleotide sequence as 
volanesorsen, but contains an additional triantennary GalNAc 
complex that targets the ASO to the liver, allowing use of a 
much lower dose [76]. Volanesorsen has been tested in pa-
tients with elevated plasma TG levels and in patients with fa-
milial chylomicronemia syndrome (FCS), an autosomal reces-
sive disease of chylomicron metabolism associated with severe 
hypertriglyceridemia and recurrent pancreatitis due to defi-
ciencies of LPL, apolipoprotein C2 and A5, glycosylphosphati-
dylinositol-anchored HDL binding protein 1, and lipase matu-
ration factor 1. In the A Study of Volanesorsen (Formerly IO-
NIS-APOCIIIRx) in Patients With Familial Chylomicronemia 
Syndrome (APPROACH) trial involving patients with FCS 
having plasma TG ≥750 mg/dL, 300 mg/week of volanesorsen 
reduced plasma apoC3 levels by 84% and plasma TG levels by 
77%. Seventy-seven percent of the patients in the volanesorsen 
group achieved plasma TG levels <750 mg/dL, compared to 
the 10% of the patients in the placebo group. Sixty percent and 
forty-five percent of the patients in the volanesorsen group ex-
hibited injection-site reactions and thrombocytopenia with 
platelet levels of <100,000/μL, respectively [77]. In the A Study 

of Volanesorsen (Formerly ISIS-APOCIIIRx) in Patients With 
Hypertriglyceridemia (COMPASS) trial involving patients 
with plasma TG ≥500 mg/dL or FCS, 300 mg/week of volane-
sorsen reduced plasma TG levels by 71%, representing an ab-
solute reduction of 869 mg/dL. In the volanesorsen group, 24% 
of the patients exhibited injection-site reactions, one patient 
exhibited thrombocytopenia with platelet level of <50,000/μL, 
and one patient exhibited serum sickness [78]. A meta-analysis 
of the available phase 2 and phase 3 clinical trials showed that 
volanesorsen significantly reduced plasma TG levels (68%), 
VLDL-C levels (73%), apoC3 levels (74%). It also raised plas-
ma HDL-C levels by 40% and apoB levels by 8%. In 2019, vo-
lanesorsen was approved by the European Union (EU) for the 
treatment of adult patients with FCS [79]. A phase 2/3 trial of 
volanesorsen in patients with familial partial lipodystrophy is 
underway (NCT02527343). 

In a phase 2 trial of patients with hypertriglyceridemia and 
an established ASCVD or high cardiovascular risk (NCT0338-
5239), treatment with IONIS-APOCIII-LRx for 6 months re-
sulted in plasma TG level reductions of 23% with a dose of 10 
mg every 4 weeks, 56% with a dose of 15 mg every 2 weeks, 
60% with a dose of 10 mg every 4 weeks, and 60% with a dose 
of 50 mg every 4 weeks, compared with an increase of 6% in 
the placebo group [80]. A phase 3 trial of IONIS-APOCIII-LRx 
in the patients with FCS is underway (NCT04568434).

ANGPTL3 inhibitor
Angiopoietin-like 3 (ANGPTL3), angiopoietin-like 4 (ANG-
PTL4), and angiopoietin-like 8 (ANGPTL8) inhibit LPL activ-
ity in a coordinated fashion, thereby regulating the plasma TG 
levels. ANGPTL3 and ANGPTL8 are produced and secreted 
by the liver, and ANGPTL8 activates ANGPTL3 to inhibit LPL 
activity in the heart and muscle [81,82]. ANGPTL4 is mainly 
expressed in the adipose tissues [83]. Under fasting conditions, 
ANGPTL4 expression is elevated and that of ANGPTL8 is sup-
pressed, whereas expression of ANGPTL3 remains unaltered. 
Consequently, LPL activity is inhibited in the adipose tissues, 
but increased in the heart and muscle, thereby diverting the 
fatty acids and TGs away from the adipose tissues [84]. Under 
feeding conditions, ANGPTL4 expression is suppressed and 
that of ANGPTL8 is elevated, thereby leading to a restoration 
of LPL activity in the adipose tissues to take up TGs for storage 
[84,85].

ANGPTL3 regulates plasma TG and HDL-C levels by inhib-
iting LPL and endothelial lipase, respectively (Fig. 2). Loss-of-
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function mutations in the ANGPTL3 gene were associated 
with low levels of plasma TG, LDL-C, and HDL-C [86,87]. A 
previous study showed that participants heterozygous for AN-
GPTL3 loss-of-function mutation had 50% lower ANGPTL3 
levels than noncarriers, and a 39% lower risk of coronary ar-
tery disease [88]. Another study showed that participants het-
erozygous for ANGPTL3 loss-of-function mutation had 17% 
lower plasma TG levels, 12% lower plasma LDL-C levels, and a 
34% lower risk of coronary artery disease [89].

Evinacumab is a human monoclonal antibody that inhibits 
ANGPTL3. In the Evinacumab Lipid Studies in Patients with 
Homozygous Familial Hypercholesterolemia (ELIPSE HoFH) 
trial involving patients with HoFH and plasma LDL-C ≥70 
mg/dL while receiving statin therapy, an intravenous infusion 
of evinacumab (15 mg/kg of body weight), every 4 weeks, re-
duced the plasma LDL-C levels by 49% and plasma TG levels 
by 50%. Even in patients with LDLR null-null variants, evi-
nacumab reduced plasma LDL-C levels by 43.4%, as compared 
with the 16.2% increase in the placebo group. Adverse events 
were similar in both the groups, including the increase of liver 
fat on dose dependent manner [90]. In a phase 2 trial involving 
patients with refractory hypercholesterolemia despite on 
PCSK9 inhibitor and on maximal tolerated dose of statin, with 
or without ezetimibe (mean LDL-C of 150 mg/dL), evinacum-
ab reduced plasma LDL-C levels by more than 50% at the 
maximum dose (450 mg/week administered subcutaneously 
and 15 mg/kg of body weight administered intravenously at 
intervals of 4 weeks) [91].

Vupanorsen (ISIS 703802; AKCEA-ANGPTL3-LRx; IONIS-
ANGPTL3-LRx) is a GalNAc-conjugated ASO which targets 
ANGPTL3 mRNA. In a phase 1 trial, participants with plasma 
TG 90–150 mg/dL or >150 mg/dL were treated with a single 
dosage (20, 40, or 80 mg) or multiple dosages (10, 20, 40, or 60 
mg per week for 6 weeks) of vupanorsen. After 6 weeks of 

treatment, participants in the multiple dosage group demon-
strated a reduction in plasma ANGPTL3 levels (46.6%–84.5%), 
TG levels (33.2%–63.1%), LDL-C levels (1.3%–32.9%), VLDL-
C levels (27.9%–60.0%), non-HDL-C levels (10.0%–36.6%), 
apoB levels (3.4%–25.7%), and apoC3 levels (18.9%–58.8%). 
There were no evidences of prothrombotic effects, bleeding ep-
isodes, significant reduction in platelet counts, or significant 
changes in the liver or renal function [92]. In a phase 2a trial, 
participants with plasma TG >150 mg/dL, type 2 diabetes mel-
litus, and hepatic steatosis were treated with 40 or 80 mg dos-
age of vupanorsen every 4 weeks, or 20 mg dosage every week. 
After 6 months of treatment, vupanorsen reduced plasma AN-
GPTL3 levels by 41% (when given dosage of 40 mg every 4 
weeks), 59% (when given dosage of 80 mg every 4 weeks), and 
56% (when given dosage of 20 mg every week); and plasma TG 
levels by 36% (when given dosage of 40 mg every 4 weeks), 
53% (when given dosage of 80 mg every 4 weeks), and 47% 
(when given dosage of 20 mg every week). Vupanorsen, ad-
ministered 80 mg every 4 weeks, reduced plasma apoC3 levels 
by 58%, remnant cholesterol levels by 38%, total cholesterol 
levels by 19%, non-HDL-C levels by 18%, HDL-C levels by 
24%, and apoB levels by 9%. The most common adverse events 
reported were injection-site pruritus (in 14% of the partici-
pants) and injection-site erythema (in 12% of the participants). 
None of the participants exhibited a platelet level <100,000/
mm3 [93]. In a phase 2b trial, participants with non-HDL-C 
>100 mg/dL and TG 150 to 500 mg/dL on statin therapy were 
treated with 80, 120, or 160 mg dosage of vupanorsen every 4 
weeks, or 60, 80, 120, or 160 mg dosage every 2 weeks. After 6 
months of treatment, vupanorsen reduced plasma non-HDL-
C from 22.0% (when given dosage of 60 mg every 2 weeks) to 
27.7% (when given dosage of 80 mg every 2 weeks). Injection 
site reactions and liver enzyme elevations were more common 
at higher doses. There was a dose-related increase in hepatic fat 

Fig. 2. Diverse classes of lipid-lowering agents. ASO, antisense oligonucleotide; siRNA, small interfering RNA.
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fraction [94].

ANGPTL4 and ANGPTL8 as targets
Studies of ANGPTL4 have shown controversial results. A pre-
vious study showed that the carriers of inactivating mutations 
in the ANGPTL4 gene had lower levels of plasma TG and a 
lower risk of coronary artery disease, compared with the non-
carriers [95]. However, another study suggested that the circu-
lating ANGPTL4 levels may not influence plasma TG levels or 
coronary heart disease risk [96]. Furthermore, a study showed 
an increased coronary heart disease risk among individuals 
having E40K mutation despite of having an athero-protective 
lipid profile [97]. Even though monoclonal antibodies against 
ANGPTL4 reduced atherosclerosis in mice and monkeys, the 
resulting severe inflammatory clinical phenotypes in these ani-
mals, such as peritonitis and mesenteric lymphadenopathy 
have precluded the use of ANGPTL4 antibodies in humans 
[95,98-100].

A few studies have suggested a potential benefit of ANG-
PTL8 inhibition. ANGPTL8-inhibiting monoclonal antibody 
significantly reduced the plasma TG levels and increased plas-
ma HDL-C levels in mice and monkeys [101]. A genetic study 
showed that carriers of ANGPTL8 rs145464906T allele (stop-
gain variant) had 15% lower plasma TG levels and 10 mg/dL 
higher plasma HDL-C levels compared with the non-carriers 
[102]. Another study showed that carriers of ANGPTL8 rs-
760351239T allele (stop-gained variant) had 18.9 mg/dL lower 
plasma TG and 6.1 mg/dL higher plasma HDL-C levels in the 
UK Biobank, and had 24.0 mg/dL lower plasma TG levels and 
9.1 mg/dL higher plasma HDL-C levels in the FinnGen Study 
[103]. In a phase 1 trial involving participants with mixed hy-
perlipidemia (TG ≥135 mg/dL and LDL-C ≥70 mg/dL), a sin-
gle dose treatment of monoclonal antibody against ANG-
PTL3/8 complex resulted in dose-dependent decrease in TG, 
LDL-C, non-HDL-C, and apoB [104].

LIPOPROTEIN(A) LOWERING AGENTS

Lp(a) consists of an LDL-like moiety covalently linked to 
apolipoprotein(a) (apo(a)). The LDL-like moiety contains a 
central lipid core consisting of cholesteryl esters and TGs, an 
outer shell of phospholipids and unesterified free cholesterol, 
and an apolipoprotein B100 (apoB100) [105,106]. Apo(a) is 
highly homologous to plasminogen. Plasminogen consists of a 
tail domain, five kringle domains, and a trypsin-like protease 

domain, whereas apo(a) lacks the tail domain and the first 
three kringle domains present in plasminogen. Instead, apo(a) 
consists of 10 sequences homologous to plasminogen kringle 4 
domain (K IV1–10), a kringle 5-like (K V), and a protease-like 
domain. Two key features of apo(a) is that K IV2 can be present 
in 1–40 copies, and the protease-like domain has no protease 
activity. Lp(a) also contains proinflammatory oxidized phos-
pholipids (OxPLs) [107]. Therefore, Lp(a) can be atherothrom-
botic through several mechanisms: atherogenic via its LDL-
like moiety, proinflammatory via its OxPLs content, and po-
tentially antifibrinolytic via its apo(a) moiety that may bind to 
fibrin but has no fibrinolytic activity [108].

A meta-analysis and a prospective cohort study showed that 
the Lp(a) concentration was associated with coronary heart 
disease, stroke, and aortic valve stenosis [109,110]. A case-con-
trol study showed that two LPA variants were significantly as-
sociated with an increased plasma Lp(a) level and an increased 
risk of coronary disease [111]. In addition, the number of K 
IV2 repeats in apo(a), which was negatively correlated with the 
plasma levels of Lp(a), was also negatively correlated with the 
risk of myocardial infarction [112].

There is a lack of specific and potent therapies to lower Lp(a) 
levels in the plasma. The outcomes of lowering plasma Lp(a) 
levels pharmacologically in patients with ASCVD and high 
plasma Lp(a) levels are yet to be tested. The best evidence for 
potential benefits of lowering of plasma Lp(a) levels has come 
from studies in which patients have gone through lipid aphere-
sis. In a prospective study involving patients with ASCVD and 
plasma Lp(a) >60 mg/dL while receiving lipid-lowering thera-
py, apheresis lowered the incidence rate of cardiovascular 
events by 70%–80% [113]. However, there was no control 
group, and LDL-C levels were also reduced. In another study 
involving patients with coronary artery disease and Lp(a) >60 
mg/dL while receiving lipid-lowering therapy, apheresis low-
ered the incidence rate of cardiovascular events by 80%–90% 
[114]. Because subgroup of patients with LDL-C >100 or 
≤100 mg/dL had similar reductions in rate of major adverse 
coronary events, the effect of LDL-C on outcome could be ex-
cluded [114].

Apo(a) inhibitor
So far, no therapeutic agent has been approved for specifically 
lowering Lp(a). However, an agent targeting apo(a) has been 
developed. IONIS-APO(a)Rx (ISIS-APO[a]Rx) is a 2ʹ-O-
methoxyethyl-modified ASO targeting apo(a) [115]. IONIS-
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APO(a)LRx (Pelacarsen; AKCEA-APO[a]LRx; TQJ230) is a 
modified IONIS-APO(a)Rx which is conjugated with a trian-
tennary GalNAc complex, and, because it is efficiently targeted 
to the liver, shows more than 30-times higher potency than the 
parent ASO [116].

In a phase 1 trial involving healthy adults with plasma Lp(a) 
≥10 mg/dL, IONIS-APO(a)Rx resulted in significant lowering 
of plasma Lp(a) levels in a dose-dependent manner: 39% in the 
100 mg group, 59% in the 200 mg group, and 77% in the 300 
mg group [115]. In a phase 2 trial involving participants with 
plasma Lp(a) levels between 50 and 175 mg/dL (cohort A) or 
those with Lp(a) ≥175 mg/dL (cohort B), IONIS-APO(a)Rx re-
sulted in plasma Lp(a) level reduction of 67% and 72%, respec-
tively [116].

In a phase 1/2a trial involving participants with plasma Lp(a) 
≥30 mg/dL, IONIS-APO(a)LRx resulted in Lp(a) level reduction 
of up to 92% [116]. In a phase 2 trial involving patients with AS-
CVD and Lp(a) >60 mg/dL, IONIS-APO(a)LRx was adminis-
tered in ascending doses at intervals of 1 to 4 weeks. After 6 
months of treatment, plasma Lp(a) levels were reduced by 35% 
at a dose of 20 mg every 4 weeks, 56% at 40 mg every 4 weeks, 
58% at 20 mg every 2 weeks, 72% at 60 mg every 4 weeks, and 
80% at 20 mg every week, as compared with the 6% with the 
placebo. There were no significant differences between both the 
groups in terms of the adverse events that occurred, such as 
fluctuation in platelet counts, liver and renal toxicity, and influ-
enza-like symptoms. Notably, 27% of patients in the IONIS-
APO(a)LRx group exhibited injection-site reactions [117].

A phase 3 cardiovascular outcome trial of IONIS-APO(a)LRx 
in the patients with ASCVD event and plasma Lp(a) >70 mg/dL 
(Lp(a)HORIZON, NCT04023552) is underway.

Recently, the results of olpasiran, an siRNA to target LPA 
were reported. In a phase 1 trial involving participants with 
Lp(a) 70–199 nM or >200 nM, single doses of olpasiran at 3, 9, 
30, 75, or 225 mg were administered. Plasma Lp(a) levels were 
reduced in a dose-responsive manner from 71% to 97%. Only 
one patient on olpasiran experienced an injection site reaction 
[118].

In addition, the results of SLN360, an siRNA to target LPA 
messenger RNA were reported. In a phase 1 trial involving 
participants with Lp(a) >60 mg/dL and no known CVD, single 
doses of SLN360 at 30, 100, 300, or 600 mg were administered. 
Plasma Lp(a) levels were reduced by 46% at a dose of 30 mg, 
86% at 100 mg, 96% at 300 mg, and 98% at 600 mg, as com-
pared with the 10% with the placebo. Low-grade injection site 

reactions and headache were common treatment-emergent 
adverse events [119]. 

HDL TARGETING AGENTS

HDLs are heterogenous subpopulations of discrete particles 
that differ in density, size, shape, and composition [120]. Plas-
ma HDL-C level is an excellent predictor of ASCVD risk [121]. 
However, a Mendelian randomization study failed to show a 
correlation between plasma HDL-C levels and ASCVD risk 
[122]. Indeed, few epidemiological studies showed increased 
mortality when plasma HDL-C was elevated [123,124]. In ad-
dition, RCTs with niacin and cholesteryl ester transfer protein 
inhibitors, in which HDL-C levels were significantly increased, 
failed to show a reduction in ASCVD risk [125,126]. Thus, the 
importance of HDL function, rather than HDL-C level, has 
been suggested [121].

ApoA1 peptide
Apolipoprotein A1 (apoA1) is a protein synthesized in the liver 
and intestine and functions as the major structural component 
of HDL [127]. Lipid-free apoA1 triggers microsolubilization of 
cell membrane lipids, facilitating transfer of free cholesterol 
and phospholipids, after an interaction with the ATP-binding 
cassette transporter A1, to form nascent HDL particles 
[128,129]. These nascent HDL particles, after being remodeled 
by the lecithin cholesterol acyltransferase, transform into ma-
ture HDL particles. These mature HDL particles interact with 
the ATP-binding cassette transporter G1, ATP-binding cas-
sette transporter G4, and scavenger receptor class B type 1 to 
mediate additional cholesterol efflux from the foam cells in the 
arterial wall [130,131]. 

Researchers have considered HDL mimetics containing 
apoA1 as a potential treatment to exploit the athero-protective 
effects of HDL [132]. However, RCTs of two different reconsti-
tuted apoA1 products showed disappointing results. In the 
MDCO-216 Infusions Leading to Changes in Atherosclerosis: 
a Novel Therapy in Development to Improve Cardiovascular 
Outcomes-Proof of Concept IVUS, Lipids, and Other Surro-
gate Biomarkers (MILANO-PILOT) trial involving patients 
with an acute coronary syndrome, 20 mg/kg of body weight of 
a recombinant variant apoA1 (A1-Milano; MDCO-216) week-
ly showed no regression of plaque volume compared to that by 
the placebo [133]. In the CER-001 Atherosclerosis Regression 
Acute Coronary Syndrome Trial (CARAT) trial involving pa-
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tients with an acute coronary syndrome, 3 mg/kg of body 
weight of a recombinant wild-type apoA1 (CER-001) weekly 
showed no regression of plaque volume compared to that by 
the placebo [134]. A phase 3 trial of CSL-112, a novel formula-
tion of native apoA1 purified from the human plasma, in the 
patients with acute coronary syndrome is underway (NCT0-
3473223) [135].

CONCLUSIONS

The goal of a lipid-lowering therapy is to reduce the risk of AS-
CVD. Statins are first-line agents to lower plasma LDL-C, a well-
known risk factor of ASCVD. However, even under optimal 
statin therapy, a significant residual ASCVD risk remains. There-
fore, novel drugs other than statins and novel targets other than 
LDL-C are definitely necessary to reduce the risk of ASCVD.

Emerging methods from human genetics, such as GWAS, 
Mendelian randomization study, and novel platforms for drug 
discovery such as RNA-targeted therapies have contributed 
significantly to the development of diverse classes of lipid-low-
ering agents (Fig. 2). Inclisiran, the siRNA which targets 
PCSK9, shows comparable effects to that of PCSK9 monoclo-
nal antibodies. Bempedoic acid, an ACLY inhibitor, lowers 
plasma LDL-C levels and is a valuable treatment option for the 
patients with statin intolerance. Pemafibrate, the first selective 
PPARα modulator, shows a favorable benefit-risk balance 
compared to fenofibrate in early phase trials but seems to have 
failed to reduce ASCVD in PROMINENT. Based on the RE-
DUCE-IT trial, high dose icosapent ethyl shows promise as a 
viable treatment option. Evinacumab, the ANGPTL3-inhibit-
ing monoclonal antibody, reduces plasma LDL-C levels in the 
patients with refractory hypercholesterolemia who had been 
treated with maximum tolerated doses of statins and other lip-
id-lowering therapies such as PCSK9 inhibitors. ASOs that tar-
get apoC3, ANGPTL3, and Lp(a) have significantly attenuated 
dyslipidemic states. ApoA1 mimetic peptide is considered as a 
potential treatment to exploit the athero-protective effects of 
HDL-C, but needs more supporting evidences. We hope that 
these novel lipid-lowering agents can be used in real clinical 
settings in the near future. 
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