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The association between physical activity and human disease has not been
examined using commercial devices linked to electronic health records.
Using the electronic health records data from the All of Us Research
Program, we show that step count volumes as captured by participants’ own
Fitbit devices were associated with risk of chronic disease across the entire
human phenome. Of the 6,042 participantsincluded in the study, 73% were
female, 84% were white and 71% had a college degree, and participants had
amedian age of 56.7 (interquartile range 41.5-67.6) years and body mass
index 0f28.1(24.3-32.9) kg m2. Participants walked a median of 7,731.3
(5,866.8-9,826.8) steps per day over the median activity monitoring period
of 4.0 (2.2-5.6) years with a total of 5.9 million person-days of monitoring.
Therelationship between steps per day and incident disease was inverse
and linear for obesity (n = 368), sleep apnea (n = 348), gastroesophageal
reflux disease (n =432) and major depressive disorder (n =467), with values
above 8,200 daily steps associated with protection fromincident disease.
Therelationships with incident diabetes (n =156) and hypertension (n =482)
were nonlinear with no further risk reduction above 8,000-9,000 steps.
Although validationina more diverse sample is needed, these findings
provide areal-world evidence-base for clinical guidance regarding activity
levels that are necessary to reduce disease risk.

Physical activity can be quantified and tracked by wearables that are
used widely by the public. Prior studies consistently show that taking
fewer steps per day' ®is associated with higher risk of all-cause mortality

and cardiovascular disease. These studies raise public awareness of the

importance of engaging in physical activity, but study design limita-
tions also leave important questions unanswered. First, prior studies
assessed physical activity either by self-reported questionnaires or by
having participants wear aresearch-grade device for abrief monitoring

'Vanderbilt Institute of Clinical and Translational Research, Vanderbilt University Medical Center, Nashville, TN, USA. 2Department of Biostatistics,
Vanderbilt University School of Medicine, Nashville, TN, USA. ®Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville,

TN, USA. “Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA. Department Biomedical Informatics,
Columbia University, New York, NY, USA. SDepartment of Medicine and Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA.
"Department of Biomedical Informatics, Biomedical Engineering and Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA.

e-mail: evan.brittain@vumc.org

Nature Medicine


https://doi.org/10.1038/s41591-022-02012-w
http://orcid.org/0000-0003-0019-3087
http://orcid.org/0000-0003-3802-8183
http://orcid.org/0000-0002-9066-9431
http://orcid.org/0000-0001-5843-3392
http://orcid.org/0000-0002-1744-2011
http://crossmark.crossref.org/dialog/?doi=10.1038/s41591-022-02012-w&domain=pdf
mailto:evan.brittain@vumc.org

Article

https://doi.org/10.1038/s41591-022-02012-w

period (most often 7 days)' . As a result, activity may be under- or
over-reported. Moreover, no information is reported about activity
levelsbetween the baseline period and when outcomes are assessed at
follow-up, often many years later. Second, prior studies have focused on
arelatively targeted set of outcomes limited to mortality, diabetes and
cardiovascular disease. Little is known about theimpact of activity over
time on developing chronic diseases across the full human phenome,
which represents the sum of human traits and conditions resulting
from genetic and behavioral variation in a population’.

TheAllof UsResearch Program (AoURP) is aninitiative thatisaccu-
mulating multiple streams of health-related information (for example,
electronic healthrecords (EHRs), genomics, physical measures, partici-
pantsurveysand wearables such as Fitbit) in1,000,000 or more Ameri-
cansandincludes afocus on populations usually under-representedin
biomedical research to date®. The rich EHR data within AOURP can be
used toidentify the incidence of chronic conditions across the human
phenome’. Thus, the AoURP dataset provides a unique opportunity
to directly examine the effects of physical activity over time on health
outcomes using wearables and clinical data.

The purpose of this study was to examine the associations between
physical activity over time and incident chronic diseases. Based on
previous literature’, we hypothesized that more steps per day over
time will be associated with lower incidence of chronic diseases. We also
sought to identify empiric, evidence-based activity levels associated
withrisk of, and protection from, chronic disease, which could inform
public health guidance on physical activity.

Results

Participant characteristics

Of'the 329,070 AoURP participants at the time of our analysis, 214,206
participants had consented to share EHR data. Of those sharing EHR
data, 6,042 participants linked their own Fitbit device, had valid Fit-
bit data over at least 6 months of total monitoring and were aged at
least 18 years at any time during the monitoring period (Extended
DataFig.1). Only 0.02% and 0.44% of total days were excluded given
they had fewer than100 steps and <6 months of monitoring, respec-
tively. Participants had amedianage of 56.7 years (interquartile range
(IQR) 41.5-67.6) and median body mass index (BMI) of 28.1 kg m™
(IQR 24.3-32.9) at baseline (Table 1). Nearly 73%, 84% and 71% were
female, white and with a college degree, respectively. The median
daily step counts were 7,731 (IQR 5,867-9,827) steps per day over
Fitbit monitoring duration of 4.0 years (IQR 2.2-5.6), representing
5,991,662 person-days of monitoring and nearly 50.6 billion total
steps. Participants with Fitbit and EHR data were more likely to be
white, female and to have a lower burden of medical comorbidities
compared with those sharing EHR data alone (Table 1).

Daily steps and chronic diseases across human phenome

Our first analysisinvolved exploratory examination of the relationship
between average step counts over an individual’s entire monitoring
periodandincident disease across all1,711 phecodes. Figure 1a,b shows
these datainalogistic regression model adjusted for age, sexand race
set to an effect size (odds ratio (OR)) per 1,000 step increase. ORs <1
indicate that higher step counts were associated with lower risk of each
condition. Incident chronic conditions with the largest effect sizes that
met the adjusted statistical significance threshold across the human
phenome after aminimum of 6 months of monitoring were obstructive
sleep apnea (n/N =342/5,518, OR (95% confidence intervals (CI)) = 0.88
(0.84,0.92)), obesity (n/N=380/5,267, OR (95% CI) = 0.89 (0.86, 0.93)),
type 2 diabetes with neurological manifestations (n/N=37/5,976,
OR (95% CI) = 0.69 (0.60, 0.79)), hypertension (n/N =498/4,897, OR
(95% CI) = 0.92 (0.89, 0.95)), gastroesophageal reflux disease (GERD)
(n/N=451/5,091, OR (95% CI)= 0.92 (0.89, 0.95)) and major depres-
sive disorder (MDD) (n/N = 483/5,370, OR (95% CI) = 0.92 (0.89, 0.95))
(Fig.1and Supplementary Table 2).

Table 1] Participant baseline characteristics for those
included versus excluded from the analytical cohort

Included Excluded Pvalue

Variable Median (IQR) or N (%)

Subjects (n) 6,042 208,164

Age 56.69 56.91 0.373
(41.45-67.62) (40.96-68.24)

Race <0.001

Black 336 (5.6) 45,661(21.9)

Other 309 (5.1) 1,112 (5.3)

White 5,072 (83.9) 108,141 (51.9)

Sex at birth <0.001

Female 4,379 (72.5) 126,159 (60.6)

Male 1,579 (26.1) 77,969 (37.5)

Ethnicity <0.001

Hispanic or Latino 376 (6.2) 41,638 (20.0)

Not Hispanic or Latino 5,590 (92.5) 160,368 (77.0)

Education <0.001

College degree 4,317 (71.4) 82,407 (39.6)

Some college 1,346 (22.3) 53,973 (25.9)

No college 356 (5.9) 66,925 (32.2)

BMI 28.10 28.80 <0.001
(24.32-32.85) (24.70-34.10)

Baseline conditions

CAD 170 (2.8) 14,684 (7.1) <0.001

Cancer 1,429 (23.7) 58,050 (27.9) <0.001

Smoking (100

cigarettes)

>100 cigarettes 1,932 (32.0) 84,466 (40.6) <0.001

Alcohol

>1drink 5,846 (96.8) 177,735 (85.4) <0.001

Fitbit variables

Duration (years) 3.99 (215-5.58)

7,731.30
(5,866.84-
9,826.85)

Data are median (IQR) for continuous variables and frequency (percentage) for categorical
variables. Participants were excluded because of not having EHR and Fitbit data or valid Fitbit
data for at least 6months. For included participants, missingness for each variable was as
follows: Race, 325 (5.4%); Sex, 84 (1.4%); Ethnicity, 76 (1.3%); BMI, 2,644 (43.8%); Smoking, 108
(1.8%); Education, 23 (0.4%); Alcohol, 31(0.5%). For excluded participants, missingness for
each variable was as follows: Race, 43,250 (20.8%); Sex, 4,036 (1.9%); Ethnicity, 6,158 (3.0%);
BMI, 51,496 (24.7%); Smoking, 6,094 (2.9%); Education, 4,859 (2.3%); Alcohol, 6,477 (3.1%). For
included participants, BMI had a high amount of missingness because the measurement must
have occurred before the Fitbit monitoring period. Mann-Whitney U and chi-squared tests

for continuous and categorical variables, respectively, were used to compare these clinical
characteristics for the participants who were excluded versus included in the analytical
dataset for this study.

Average daily steps

We focused subsequent analyses on chronic conditions with a
plausible biological link to activity levelsincluding diabetes, hyperten-
sion, GERD, MDD, obesity and sleep apnea (Supplementary Table 1).
Type 2 diabetes codes with neurological manifestation were combined
with codes for type 2 diabetes, and sleep apnea and obstructive sleep
apnea were combined into a single condition given their phenotypic
and diagnostic overlap. The conditions that were of interest in time
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Fig.1|Hypothesis-generating analysis to explore relation between daily
steps and prevalent chronic disease across human phenome. a, Negative log
base-10 Pvalues for each phecode are plotted as a function of the OR from the
corresponding logistic regression with average daily step count. EF, ejection
fraction; NOS, not otherwise specified. OR is reported per 1,000 step count
increase, as adjusted for age, race and sex. All phecodes occurred after 6 months
of Fitbit monitoring and not before. Horizontal red line indicates the Bonferroni
corrected a level of 3.1856 x 1075, accounting for all phecodes used. Vertical

OR

lineis OR=1.b, OR and 95% Cl to quantify the association of increasing daily
step counts with selected outcomes, that is type 2 diabetes mellitus (T2DM)
with (w/) neurological manifestation (manif.) (sample size, N = 5,976), sleep
apnea (N=5,699), obstructive sleep apnea (N = 5,518), obesity (N = 5,267), major
depressive disorder (N =5,370), GERD (N = 5,091) and essential hypertension
(N=4,897). The points represent OR and error bars represent 95% CI. The values
toward the right of the figure represent OR (95% CI) values in text format. All
models were adjusted for age, race and sex.

to event analyses often coexist clinically, but multimorbidity among
these six conditions was rare in this cohort (Extended Data Fig. 2).
In addition to removing conditions that did not meet the statistical
significance threshold in logistic regression, acute conditions (acute
renal failure), nonspecific diagnoses (nausea and vomiting, shortness
of breath, urinary incontinence, dysphagia, complications of trans-
plants, inflammatory and toxic neuropathy), those with few events, that
is, n <50 (convulsions, heart failure with preserved ejection fraction)
and those with little to no plausible link to activity (hypopotassemia)
were not pursued in subsequent analyses.

Time-varying analysis of daily step counts and disease risk
Inthe Cox models, 15.4-16.0% of months (that s, 4.7-4.9% of days) were
excluded due to fewer than 15 valid days of data. Figure 2a shows the
relationship between step counts and adjusted hazard ratio (HR) for
anincident diagnosis of each condition referenced to the median daily
average steps for the entire cohort. The median values ranged from
8,160 to 8,290 steps per day across the different analytical cohorts
created to investigate each incident diagnosis.

The relationship between steps and incident disease was inverse
(all P<0.001) and linear for obesity, sleep apnea, GERD and MDD

(chunk tests for nonlinearity were nonsignificant for those condi-
tions) with a lower risk of each diagnosis at higher step counts. For
example, incomparison with the median step count, the risk of obesity
declined by 31% (HR 0.69,95% C10.53, 0.88) when steps were increased
t010,000 per day. In contrast, incident diabetes and hypertension had
anonlinear relationship (chunk tests for nonlinearity P < 0.05for both)
with step counts demonstrating inflections points at approximately
9,000 and 8,000 steps, respectively, where risk plateaued at higher
step counts. Figure 2b shows the estimated cumulative rates of a new
diagnosis for 3, 5and 7 years, which shows how risk changes when an
average step count is maintained over time. In general, incident risk
for all the years is higher at lower step counts and increases over time
when a given step count is maintained. For example, the risk of new
hypertension diagnosis at 6,000 steps per day is maintained at4%,10%
and 17% at 3, 5and 7 years, respectively. Risk for all conditions except
hypertension asymptotically approached zero at very high daily step
counts. Extended Data Fig. 3a shows the HR on the log-transformed
scaleand Extended Data Fig. 3b shows the relationships betweeninci-
dentdisease and step counts as alog relative hazard function thatis not
indexed to the median step count value. These results confirm general
relationships between higher daily steps and lower disease risk. Table 2
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Fig.2|Relation between daily steps over time and incident chronic disease.
a, Cox models were used to compute HRs as a function of average daily step
count. Median step counts of 8,160 (diabetes), 8,290 (essential hypertension),
8,260 (GERD), 8,210 (major depressive disorder), 8,280 (obesity) and 8,220

(sleep apnea) were used as reference. b, Cumulative incidence by year for each
outcome as a function of average daily step count. Shaded area represents 95%
CI. All the Cox models were adjusted for age, race, sex, CAD, cancer, BMI, systolic
blood pressure, education level, smoking and alcohol use.

models the adjusted HR for each condition when moving from the 25th
percentile for average daily step counts to the 75th percentile, which
gives insight into the distribution of risk across the spectrum of step

counts. Participants with step counts at the 75th percentile have 24-52%
lower risk of developing diabetes, hypertension, GERD, MDD, obesity
and sleep apnea, compared with those who were in 25th percentile,
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Table 2| HRs, 95% Cl and P values for 75th step count percentile versus 25th percentile with respect to each continuous Cox

model and diagnosis

Model/diagnosis Samplesize (N) Events(n) 25th percentile 75th percentile HR (75% versus 95% CI Pvalue
(thousands) (thousands) 25%)
Model1
Diabetes 5124 156 6.05 10.63 0.44 0.28, 0.68 <0.001
Hypertension 4,437 482 6.18 10.73 on 0.55, 0.91 0.007
GERD 4,613 432 6.14 10.76 0.64 0.56, 0.73 <0.001
MDD 4,884 467 6.09 10.72 0.63 0.55,0.72 <0.001
Obesity 4,774 368 6.16 10.77 0.52 0.43, 0.62 <0.001
Sleep apnea 4,922 348 6.11 10.70 0.53 0.45, 0.63 <0.001
Model 2
Diabetes 5124 156 6.05 10.63 0.68 0.56, 0.84 <0.001
Hypertension 4,437 482 6.18 10.73 0.76 0.59, 0.98 0.033
GERD 4,613 432 6.4 10.76 0.66 0.57,0.76 <0.001
MDD 4,884 467 6.09 10.72 0.66 0.57,0.76 <0.001
Obesity 4,774 368 6.16 10.77 0.59 0.43,0.82 0.001
Sleep apnea 4,922 348 6.11 10.70 0.48 0.35, 0.65 <0.001
Model 3
Diabetes 5124 156 6.05 10.63 0.67 0.54,0.83 <0.001
Hypertension 4,437 482 6.8 10.73 0.75 0.58, 0.98 0.031
GERD 4,613 432 6.14 10.76 0.64 0.55,0.74 <0.001
MDD 4,884 467 6.09 10.72 0.67 0.59, 0.78 <0.001
Obesity 4,774 368 6.16 10.77 0.59 0.42,0.81 0.001
Sleep apnea 4,922 348 6.11 10.70 0.54 0.45, 0.64 <0.001
Model 4
Diabetes 5124 156 6.05 10.63 077 0.69,1.0 <0.05
Hypertension 4,437 482 6.18 10.73 0.81 0.61,1.07 014
GERD 4,613 432 6.14 10.76 0o 0.59, 0.84 <0.001
MDD 4,884 467 6.09 10.72 0.69 0.58, 0.82 <0.001
Obesity 4,774 368 6.16 10.77 0.56 0.40, 0.80 0.001
Sleep apnea 4,922 348 6.11 10.70 0.49 0.35, 0.68 <0.001
Model 5
Diabetes 5124 156 6.05 10.63 078 0.59,1.02 0.07
Hypertension 4,437 482 6.18 10.73 0.82 0.62,1.08 0.158
GERD 4,613 432 6.14 10.76 07 0.59, 0.86 <0.001
MDD 4,884 467 6.09 10.72 0.70 0.59, 0.84 <0.001
Obesity 4,774 368 6.16 10.77 0.56 0.40, 0.79 0.001
Sleep apnea 4,922 348 6.1 10.70 0.49 0.35,0.68 <0.001

Model 1included steps (time-varying), age, race and sex. Model 2=Model 1 plus systolic blood pressure, CAD, cancer, smoking, education, alcohol and body mass index. Model 3=Model 2 plus
Fitbit wear time (time-varying). Model 4=Model 2 plus baseline step counts (averaged over first 3months). Model 5=Model 2 plus baseline step counts (averaged over first 6 months).

adjusted forapriori covariates. Results were similar across limited and
full a priori models as well as those that accounted for wear time and
baseline step counts over the first 3and 6 months (Table 2, Models1-5).

We next modeled risk of obesity as a function of baseline BMI,
daily step counts and BMI*steps interaction using recorded BMI values
rather thandiagnostic codes. Weincluded only individuals who never
had arecorded BMI > 30 kg m™or a coded diagnosis of obesity at any
time before or during the first 6 months of monitoring (N=1,067).
This analysis was designed to address potential concerns regarding
incidence estimates confounded by conditions that were prevalent but

undiagnosed at baseline. Figure 3 and Supplementary Table 3 show that
the risk of obesity decreases substantially at higher step counts, even
when the baseline BMl is near the threshold for obesity. For example,
when starting at abaseline BMI of 28 kg m, risk of obesity is reduced
by 36% (95% C120-49%) when step counts increase from the 25th to 75th
percentile. Thisincrease in step counts resulted in a50% reductionin
cumulativeincidence of obesity at 5 years from16% (95% CI 11, 20) at the
25th percentile compared with 8% (95% CI 5,12) at the 75th percentile.

Atrajectory analysis in which steps were plotted at discreet time
periods before disease diagnosis showed lower baseline step counts
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Fig. 3| Relation between daily step counts and incident risk of obesity. a, Cox
models were used to compute HR for obesity (outcome) as a function of average
daily step count as stratified by BMI of 25-29 kg m™. A median step count of
8,594 steps was used as reference. b, Cumulative incidence by year as a function

- 27 28 29

of average daily step count and as stratified by BMI of 25-29 kg m 2. The model
isidentical to models previously described except BMI was allowed to interact
linearly with the average daily step count.

anda prediagnosis plateau (particularly for hypertension and depres-
sion) among those withincidence disease (Extended DataFig.4). Based
on the findings of Models 4 and 5 shown in Table 2, accounting for
baseline daily steps averaged over the first 3 or 6 months in the sepa-
rate Coxmodels, in addition to a priori covariates, did not change the
relation between daily steps over time with incident conditions. We
performed afalsification analysis to examine the association between
step counts and incident diagnoses with no expected relationship to
step counts. As expected, we found no association between daily step
counts and risk of carpal tunnel syndrome (n/N =131/5,269) or actinic
keratosis (n/N =167/5,242 incident diagnoses) (Extended Data Fig. 5).

Daily step counts, intensity and incident chronic disease

Daily step counts and intensity (defined using a steps per minute thresh-
old thatindicates slow walking) were positively correlated (p coefficient
ranges from 0.48t00.87, P < 0.001). We observed agradient of higher

disease risk at the intersections of lower daily step counts and lower
bout cadence quartiles compared with higher daily step counts and
higher bout cadence quartiles (Extended Data Fig. 6). We saw similar
trends when this relation was examined on a continuous basis using
aprobability density plot (Extended Data Fig. 7). When step intensity
was defined using the moderate to vigorous intensity steps per minute
threshold, similar findings were observed albeit with lower rates of
incident disease (Extended Data Fig. 8). Daily step counts remained
significantly associated with each condition (all chunk tests P < 0.05)
after accounting for step intensity (Extended Data Fig. 9 and Supple-
mentary Table 4). Specifically, the effect estimates, thatis, HR, for step
counts for diabetes, obesity, sleep apnea, GERD and MDD ranged from
0.64 t0 0.81 (Supplementary Table 4).

Regardless of how step intensity was defined, thatis, slow walking
or moderate to vigorous activity, it was associated with lower risk of
chronic diseases (all chunk tests P < 0.05, Supplementary Table 5 and

Nature Medicine



Article

https://doi.org/10.1038/s41591-022-02012-w

Extended DataFig.10). The HR for step intensity for incident diabetes,
hypertension, GERD, MDD, obesity and sleep apnearanged from 0.43 to
0.88 (Supplementary Table 5). Step intensity (defined as slow walking)
alsoremained significantly associated with obesity, sleep apnea, MDD,
GERD and hypertension after adjusting for step count (all chunk tests
P <0.05). When defined using a moderate to vigorous intensity, bout
cadence remained significantly associated with obesity, sleep apnea
and GERD (all chunk tests P < 0.05; Supplementary Table 5).

Discussion

We examined the association between step count volume and intensity
across the entire spectrum of human disease using commercial activ-
ity monitors linked to an individual’s EHR. We identified consistent
and statistically significant associations between activity levels and
incident diabetes, hypertension, GERD, MDD, obesity and sleep apnea.
Taking more steps each day was related to lower risk of developing these
chronicdiseases. Higher step counts were associated with protection
from obesity in a high-risk population (BMI25-29 kg m™2). Step count
was positively correlated with step intensity, regardless of the bout
cadence definition. The relation of step counts with disease risk per-
sisted for diabetes, GERD, MDD and sleep apnea even when adjusting
for step intensity. Step intensity was also significantly associated with
these outcomes. These data provide new, empiric evidence of activity
levels associated with chronic disease risk and suggest that integra-
tion of commercial wearables data into the EHR may be valuable to
supportclinical care.

Our findings are consistent with previous literature describing
associations between step counts and adverse events'®". A systematic
review by Hall et al.' found that taking more steps per day was related
tolower risk of all-cause mortality, cardiovascular events and incident
diabetes. The National Health and Nutrition Examination Survey study,
which quantified steps over a 7-day monitoring period and assessed
mortality over an average of 10.1 years, found a 51% lower mortality
at 8,000 steps per day compared with 4,000 steps per day'. Similar
results were reported from a middle-aged, biracial cohort with 7 days
of monitoring and over 10 years of follow-up time’. A prospective
cohortstudy conducted in3,055 community-dwelling adults aged over
70 years found a similar nonlinear relation between daily steps and
risk of developing diabetes, where the risk leveled off at 8,000 steps
per day™. It is notable that step count thresholds associated with risk
of mortality and cardiometabolic disease in prior studies are similar
to step count thresholds associated with a wide variety of previously
unreported phenotypesinour study. These results suggest thatasingle
step count target of approximately 8,000-9,000 steps per day may be
suitable to reduce risk of many common conditions.

Our study design and analytic approach differed from prior stud-
iesinimportant ways that make our results new and clinically relevant.
First, prior studies assessed step counts over a single, short (usually
7 days) monitoring period with activity data between the baseline
monitoring period and outcomes assessment, often many years later.
Short monitoring periods are prone to an observer effect and may
notaccurately reflect true short- and long-term activity behavior®. In
contrast, our models accounted for changesin steps over the entirety
ofanindividual’s monitoring period (median of 4 years) rather thana
brief snapshot. Second, prior studies have focused on a narrow set of
outcomes (forexample, mortality, diabetes and cardiovascular disease)
ascertained at a single timepoint remote from the initial monitoring
period. Our study used a hypothesis-generating phenome-wide asso-
ciationstudy approach, examining the association between step counts
and the human phenome. In this manner, several new associations
emerged including GERD, sleep apneaand MDD, which would likely go
unidentified if disease phenotypes were selected a priori. Lastly, our
analysis permitted incident disease to emerge atany point during clini-
cal careratherthana prespecified follow-up time as performed in most
cohortstudies. One may speculate that thisapproachis more accurate

withrespectto the timing ofincident disease and refines the temporal
association between longitudinal activity and incident disease.

The findings of this study should be viewed in the context of sev-
eral limitations. We were not able to account for daily step variations
between different types of Fitbit models™ and seasonal differences” as
wellasthe occurrence of the COVID-19 pandemic because device data
were not available at the time of analyses and data were date-shifted
to protect privacy of participants. The characteristics of our study
sample may limit the generalizability of our findings to more diverse
populations. The majority of our cohort was relatively young, female,
whiteand college-educated, and only included participants who owned
Fitbit devices. Further, participants engaged in more steps per day
(median 7,731 steps per day) than the average steps per day values
reported for adults in the USA aged over 60 years'®, suggesting that
the analytical cohort in this study was more active. The fact that we
were able to detect robust associations between steps and incident
diseaseinthis active sample suggests even stronger associations may
exist in a more sedentary population. Therefore, further studies are
neededincluding participants who are historically under-represented
inbiomedical research and those with activity levels that more closely
mirror the general community.

Our data do not account for nonstepping activity such as swim-
ming or cycling, such nonstepping movement is better captured via
waveform or raw accelerometry and may provide additional insightinto
the association between physical activity and clinical diagnoses. Fur-
ther, this study was observational in nature; therefore, causation should
notbeinferred. We acknowledge the potential for reverse causationin
which the existence of a condition leads to taking fewer steps rather
than the reverse. We attempted to mitigate this concern by focusing
only on incident conditions and excluding any incident disease that
emerged inthefirst 6 months of the monitoring period. Further, there
isapotential for unmeasured confounding in our analyses because we
were not able to account for an exhaustive list of potential confound-
ers such as job status, environmental factors and differences in the
usage patterns between participants over time". Future studies are
neededtoinvestigate theimpact of user behavior on health outcomes.
Additionally, findings from exploratory logistic regression that did not
find anassociationbetween steps per day and other outcomes such as
cardiovascular diseases should be viewed with caution given that the
analytical sample was relatively young, reported fewer outcomes and
had limited follow-up. We excluded 15.4-16.0% (varies based on the
outcome) of months due to fewer than 15 valid days of datain the Cox
models. This missingness seems acceptable in comparison with prior
studies which considered data to be valid if activity was captured on
atleast3 out of 7 days (thatis, up to 57% missing data)'®. Lastly, we also
acknowledge the limitations of using EHR data for outcomes ascer-
tainment and the potential lack of specificity of diagnostic codes. It is
possible that conditions are coded improperly, not coded atall or not
recognizedinthe clinic. Nonetheless, our results reflect use of diagnos-
ticcodesin clinical practice across various medical systems, including
large regional medical centers and federally qualified health centers.

Despite these limitations, the sources of data for our study are
unique and offer an example of the potential clinical value of linking
wearables data to the EHR. Published activity studies almost exclu-
sively used research-grade actigraphs to measure steps and/or activ-
ity counts. In contrast, our data derive from commercially available
devices. Although some fidelity is lost between research-grade and
commercial devices, datafrom the latter are highly generalizable to a
large portion of the public who own such devices. Activity datain this
study date to the creation of aFitbitaccount by the user. Therefore, the
risk of an observer effectin this cohortis negligible because much of the
activity datawas collected before the participant consented to All of Us.

These findings may have important clinical and public health
implications. We were unable to identify any published studies that
investigated the association of physical activity data from awearable
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device to health outcomes, defined using an individual’s EHR. There-
fore, this study provides important new evidence that integration of
these datasourcesis feasible and may provide valuable and actionable
information for clinicians. Clinicians could monitor activity trends and
provide evidence-based anticipatory guidance for activity tailored
to an individual’s clinical characteristics and risk profile. For exam-
ple, our data suggest that an individual with a BMI of 28 kg m™ (can
lower their risk of obesity 64% (95% C151, 80) by increasing steps from
approximately 6,000 steps to 11,000 steps per day (Fig. 3). Although
validation of these results is important, such data provide a neces-
sary first step toward the development of personalized activity pre-
scriptions. Further, wearables can also be used as an adjunct tool to
encourage patients to engage in physical activity by allowing them to
set, measure and track goals”. Finally, self-reported physical activity
orexercise interventions may have potential beneficial effects to lower
the incidence of depression®® and lower the severity of obstructive
sleep apnea and associated comorbidities”. Therefore, these results
provide support for the need for further research to examine the effect
ofreal-world, unstructured physical activity to prevent or mitigate the
effects of such conditions, including some previously unidentified
activity-disease associations (for example, GERD).

Insummary, using the datafrom AoURP, higher daily step counts
were associated with reduced risk of several common, chronic diseases,
including diabetes, hypertension, GERD, MDD, obesity and sleep apnea.
This association between step counts over time and incident chronic
diseases was consistent even after adjusting for potential covariates,
including baseline steps per day and step intensity. Step intensity was
alsosignificantly associated with these incident diseases, although the
relationships were less consistent than with step counts. These findings
provide a new, robust source of evidence in support of the physical
activity guidelines to prevent the risk of developing chronic diseases. If
validated, these results may offer an evidence-base for refining activity
recommendations based on anindividual’s risk profile. This study also
provides an example of the potential clinical value of linking data from
commercially available wearables to the EHR.

Online content

Any methods, additional references, Nature Research reporting sum-
maries, source data, extended data, supplementary information,
acknowledgments, peer review information; details of author contribu-
tions and competinginterests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41591-022-02012-w.
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Methods

Study participants

Participants aged over 18 years were enrolled after an informed con-
sent process at clinics and regional medical centers that compose the
AoURP network. A detailed description of AOURP has been published
elsewhere®, For this study, we used the AOURP Registered Tier Dataset
version 5 (R2021Q3R2 Curated DataRepository) available on the AOURP
Researcher Workbench, a secure cloud-based platform. This dataset
included information on physical measurements and vital signs collected
atenrollment, surveys, EHR and Fitbit data from participants enrolled
fromMay 30,2018 to April1,2021. Our analyses focused on participants
who owned a Fitbit and agreed to share their Fitbit and EHR data. We
excluded participants who did not wear a Fitbit for at least 6 months.

Fitbitdata

Participants who provided primary consent to be part of the AOURP
and share EHR data had an opportunity to provide their Fitbit data
under the Bring Your Own Device program. Participants connected
their own Fitbit device account with the AOURP Participant Portal and
agreed toshare their complete dataover all timein their Fitbit account.
For example, if a participant began tracking in their Fitbit account in
May 2015 (that is, before the launch of AURP), the AoURP data pull
captured all existing Fitbit datain theiraccount, notjust recentdata. A
participant could stop sharing their dataat any time. Participants’ data
had direct identifiers removed and all datetime fields were subjected
todate shifting by arandom number between1and365daysinaccord-
ance with approved AoURP privacy policies.

Fitbit data were reported as daily (steps per day) and intraday
(steps per minute) step counts. We examined step intensity using steps
per minute data’>”. Intensity was defined using mean bout cadence,
thatis, steps per minute, which were calculated by averaging the steps
over the time when a participant engages in >2 consecutive minutes at
>60 steps per minute (which suggests that the participant is at least
engaged in slow walking®) across all valid days"*. Evidence suggests
that 10-hour wear time is sufficient to estimate daily physical activity
during waking time**. Therefore, a valid day was defined as a participant
wearing the Fitbit for atleast 10 hours per day and reporting atleast 100
steps per day. We acknowledge that Fitbit devices have reduced fidel-
ity compared with research-grade actigraphs; however, in systematic
reviews, Fitbits outperform other commercially available devices when
correlated with research-grade devices™*.

Outcomes

The primary outcomes were identified using any incidentbilling code
inEHR. We excluded any new diagnoses coded during the first 6 months
of monitoring, assuming that such conditions were likely prevalent but
notyetrecognized clinically. The EHR data from different participating
sites were mapped and harmonized using the Observational Medical
Outcomes Partnership common data model”?’, We used the ICD to
phecode map developed by Zheng et al.* to map the EHR data to create
phecodes (Supplementary Tables 1and 2). We mapped ICD9CM and
ICD10CM ‘source’ codes found inthe AOURP Curated Data Repository
to phecodes, whichwere used as outcomes.

Statistical analyses

A CONSORT diagram was created to describe how many participants as
well asFitbitdata, including percent days, were excluded based onthe
criteria used to create the analytical dataset. Descriptive statistics for
participant’s demographic and clinical characteristics were presented
by median and IQR for continuous variables and frequency for categori-
cal variables. Mann-Whitney U and chi-squared tests for continuous
and categorical variables, respectively, were used to compare these
clinical characteristics for the participants that were excluded versus
included in the analytical dataset for this study. We used logistic regres-
sion and Cox proportional hazard models to examine associations

between step counts and incident disease. We first conducted multiple
logistic regression models adjusted for age, sex and stated race, to
examine the association between average steps per day over anindivid-
ual’s entire monitoring period and all available phecodes. ORs and 95%
Clswerereported per1,000 step countincrease. These analyses were
exploratory in nature and allowed a data-driven approach to identify
the diseases with a statistically significant relation with steps per day in
amanner that was unconstrained by prior knowledge. The remainder
of our analyses focused on disease associations by logistic regression
thatmet a Bonferroniadjusted significance threshold and have a plau-
sible biological link to physical activity. These conditions were then
examined in separate continuous time-dependent Cox proportional
hazard models with adjustment for relevant covariates. Participants
were censored at their last medical encounter, which was defined as
latest measurement, laboratory data, procedure or condition code.

The phecode definitions used to map the diseases that were used
asanoutcome for Cox model analyses can be found in Supplementary
Table 1. Steps per day (averaged monthly) was examined as arepeated
measure and time-varying variable to account for fluctuationsin activ-
ity over anindividual’s monitoring period. Only daily steps data before
incident diagnoses were used in the Cox models. The time components
for Cox models were chosen in terms of months. We also performed
similar Cox model analyses restricted to individuals who were at high
risk of incident obesity by virtue of a baseline BMI of 25-29.9 kg m™.
To examine whether the relationship between steps per day with the
hazard of incident outcomes was linear or nonlinear, restricted cubic
spline functions using 3,4 and 5knots of steps was fitted with separate
Coxmodels. The model with lowest Akaike information criterion (AIC)
value was chosento theninterpret the relation of steps per day with risk
of developing a condition. Months for which participants had fewer
than 15 days of observations were excluded from Cox models. We also
examined the percent months and days that were excluded based on
this additional criterion implemented in the Cox models.

To investigate the strength of association between step counts
and risk of developing chronic disease, HRs and 95% Cls were com-
puted by comparing 75thand 25th percentiles of daily step counts. We
also conducted a falsification analysis to show that daily step counts
did not associate diseases with no plausible relationship with activity;
in this case, we tested carpal tunnel syndrome and actinic keratosis.
All Cox models were adjusted for a priori covariates: age, sex (male,
female), race (Black or African American, white, other), coronary
artery disease (CAD) (yes, no), cancer (yes, no), BMI, systolic blood
pressure, education level (no college, some college, college degree),
all time smoking (<100 cigarettes, =100 cigarettes) and alcohol use
(alcohol participant, notan alcohol participant). All covariates except
BM], systolicblood pressure, CAD and cancer were assessed at enroll-
ment visit via participant surveys. Baseline BMI and systolic blood
pressure was extracted using EHR data. CAD and cancer were ascer-
tained using ICD9CM/ICD10CM or Current Procedural Terminology
(CPT4) codes as well as ICD9CM/ICD10CM codes, respectively. These
codestodefine CAD and cancer are shown in Supplementary Table 1.

Inaddition to accounting for a priori covariates, weranaseparate
Cox model accounting for wear time, which was considered to be a
time-varying covariate. Specifically, wear time was defined as the num-
ber ofhoursinaday that contained non-zero step counts. We also per-
formed trajectory analyses by examining the average daily step counts
over 0-3 months, 3-6 months, 6-12 months and 12-24 months for the
participants who developed versus those who did not develop the con-
ditions, which were examined in the Cox models. We then accounted for
baseline daily steps averaged over the first 3and 6 months, inseparate
Coxmodelsinadditiontoapriori covariates, in an attempt to mitigate
the potential for reverse causation.

To examine the relation between steps per day and step intensity
(bout cadence), the Spearman correlation coefficient was computed.
Additionally, we descriptively examined the gradient of disease risk by
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plotting theintersections of daily step counts and bout cadence quartiles.
We also used the probability density plot to examine the association
between daily step counts and bout cadence on a continuous spectrum
for participants who developed versus those who did not develop the con-
ditions, which were examined in Cox models. We conducted similar Cox
analyses to investigate whether the association of steps per day with the
risk of developing chronic conditions stayed consistent after accounting
for stepintensity and potential covariates. Similarly, we used a Cox model
adjusted for a priori covariates to examine the strength of association
between step intensity and outcomes. Lastly, werepeated these analyses,
using step intensity, which referred to steps per minute computed by
averaging the steps over the time when a participant engaged in >2 con-
secutive minutes at =100 steps per minute, athreshold used to determine
time spent in moderate to vigorous activity?®, across all the valid days.

Proportional hazards assumption was examined using cox.zphR
function®inthe survival R package. Proportional hazard assumptions
were met for all models. All missing data for covariates were imputed
using multiple imputation with predictive mean matching®. The rms
package® was used to fit all Cox models and to compute HRs. The
‘anova’ function in the rms package was used to assess whether the
predictors were significantly associated with the outcome as well as
to evaluate significance of nonlinear effects for steps based on the
model with the lowest AIC value. Specifically, we performed a Wald x*
test (or ‘chunk test’) to jointly assess whether all the terms, including
nonlinear terms in the restricted cubic spline are zero*. If the test is
nonsignificant, itindicates that the variable represented by the spline
isnotassociated with the outcome or it does not have anonlinear rela-
tionship with the outcome. The areglmpute function in the Hmisc R
package® was used to conduct multiple imputation and all the results
were pooled across the five imputation datasets.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

Toensure privacy of participants, data used for this study are available
to approved researchers following registration, completion of ethics
training and attestation of a data use agreement through the All of
Us Research Workbench platform, which can be accessed via https://
workbench.researchallofus.org/login.

Code availability
Code used for this study can be made available to users of the All of Us
Research Workbench platform by contacting our study team.
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>= 100 steps/day < 100 steps/day
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(n =428, % days = 0.44)
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Extended Data Fig. 1| Consort diagram showing inclusion/exclusion criteria. The flow diagram graphically depicts the steps that were utilized to derive the
analytical sample that met the inclusion and exclusion criteria. EHR, electronic health records.
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(n=6,042)
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Extended Data Fig. 2| Frequency of multiple conditions by number. The bar chart depicts number of participants who reported having multimorbidity among 6
conditions, i.e. diabetes, hypertension, gastroesophageal reflux disease, major depressive disorder, obesity and sleep apnea.
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Extended DataFig. 6 | Incidence rates (number of events shownin brackets)
for each diagnosis as a function of step counts and bout cadence (step
intensity) quartiles. Incidence rates (number of events shown in brackets) for
each diagnosis as a function of step counts and bout cadence (step intensity)
quartiles. Incidence rates is number of cases per 1000 people for each diagnosis
asafunction of step and bout cadence quartiles. Bout cadence referred to steps

per minute computed by averaging the steps over the time when participant
engaged in >2 consecutive minutes at >60 steps/minute across all the valid
days. Step quartile intervals (thous.) are as follows: 1: [549,5.87]; 2: [5.87,7.73]; 3:
[7.73,9.83]; 4:[9.83,33.6]. Bout cadence quartiles are as follows: 1: [68.1,83.6]; 2:
[83.6,88.71; 3:[88.7,94.3]; 4:[94.3,158].

Nature Medicine



Article

https://doi.org/10.1038/s41591-022-02012-w

Diabetes Diabetes

Essential hypertension

Essential hypertension

FALSE TRUE

FALSE

TRUE

154 1

134

11 1

GERD

MDD

FALSE

FALSE

TRUE

154

134

11 -+

Average Daily Steps (thous.)

Density
0.0100

0.0075
0.0050

0.0025

Sleep Apnea

Sleep Apnea

FALSE

TRUE

15 1

134

11 1

=

80 90 0 90 100

=
o
o
(o]

80 90 100

80 90

Average Daily Bout Cadence

Extended DataFig. 7 | Probability density plot examining the relation
between step counts and bout cadence (step intensity) on continuous
spectrum in participants who developed (represented as TRUE) vs. did
not develop the condition (represented as FALSE). Probability density plot
examining the relation between step counts and bout cadence (step intensity)

on continuous spectrum in participants who developed (represented as TRUE)
vs. did not develop the condition (represented as FALSE). Bout cadence referred
to steps per minute computed by averaging the steps over the time when
participant engaged in >2 consecutive minutes at 260 steps/minute across all the
valid days.

Nature Medicine



Article https://doi.org/10.1038/s41591-022-02012-w

All Years Post 6m By Year 1 By Year 3 By Year 5
4] 86 301 227 165 95 84 37 12 162 26 91  11.1 288 315 16 17
(14) (5 (14 (19) @ @ @ M @ a2 () (0 (12) (15 (@ (19
gl 26 233 16 134 75 143 5 0 156 231 112 55 279 199 129 83
(10) (1) (8 (9 ® 6 @ ©0 ® (@0 6 @ ay @ ©® @ |g
5] 822 262 161 325 122 7 43 0 82 172 78 238 207 363 159 261 |=
(12 © @ @ @ @ @ (0 ® 6 @ O ® a1y @ ©
1] 478 661 779 91 24 133 20 37 37.3 698 409 66.2 95.2
©@© (@ (6 @ @6 @O M ® (6 (6 @ © @©
4] 841 €87 635 595 30 279 4 137 72,5 557 335 355 72.6 654 59.6 56.8
(29) (31) (36) (51) an @2 @ (@01 (28) (23) (17) (30) (27) (28) (31) (47)
5] 882 106 64 687 166 191 114 91 401 718 402 393 90.1 814 638 55 |
(30) (44) (299 (23 ® ® @4 @O (14) (@7 (16) (13) 82 (32 (@7) (18) |m
5] 977 842 905 1026 256 286 95 221 58.1 543 625 26.1 856 858 837 37 |XJ
(B4 (23 (199 (12 ® O @ @ (200 (14 (149 @) @) @) @8 @ |©
| 1114 111.1 938 20.7 182 14.9 745 124 811 90.4 104 1233
a9 12 e @ @ (14) (15 (6) a7y (13) (9
4] 1018 952 662 70 23.7 31.9 187 139 68.8 551 39.4 432 925 892 626 61.4
(81) (42) (36) (59) ® @13 © @1 (24) (220 (190 (36) 81 @7 @) (0 | T
123.4 1058 57.1 70 427 254 85 117 86.7 712 407 26.9 1141 779 631 633 |5
31.(89) (44) (25) (24) 14 @B @ @ (28) (27) (16) (9) (38 (31) (26 (21) |8
5] 1229 100 955 84.9 259 207 145 308 67.3 775 81.9 455 101.6 1082 946 49 |O
o @7) (@7) (21) (9 @ 6 6 @ (20) (200 (190 (5) (82) (290 (21) (5 |@
£ | [189.2 131.1 335 29.1 78.1 95.5 (1455 101.4 146.1 123.1 S
g 11 (22 () ® @ © (a7 (@6 @) (26) ®)
Cg_ 4] 988 741 753 484 265 288 251 6 54 524 457 237 88 656 646 406
Q (36) (36) (45) (43) (11) @13 (13) () (23) (23) (24) (21) (36) (30) (35) (35)
N 67.4 1047 97.8 96.3 104 213 82 20.1 486 71.6 585 49.3 57.7 79.3 849 698
31 (25 (45) (45) (34) @ O @ O (18) (29) (24 (17) (22) (34) (36) (24) | =
5] 847 79 789 100 47 232 225 21 58.8 54 76.3 588 69.3 103.6 97.5 110.1 8
(80) (23) (18) (12) (15 ® 6 O (21) (15 (18) () (26) (29) (23) (12
1| 83 684 1212 244 165 725 61.9 703 64.1 1031 74.1 106.7
(15 (® (8 ® @ 6 12 © 06 (20) (10)  (8)
4] 691 723 458 363 78 224 117 108 431 507 327 182 60.5 689 43.1 245
(25) (34) (270 (32 @ @0 ® © 17 @ (@7 (16) (23) (381) (23) (21)
5l 82 8 71 585 272 6 81 174 499 433 481 258 833 654 732 405 |
(80) (35 (33) (21) (10 @ @ (6 (18) (17) (200 (9 @) @) @2 (04 |z
5] 753 833 478 696 298 195 189 14 541 56.7 524 339 629 78 609 561 |Q
(25) (24) (11) (8 @ 6 @ @ (18) (16) (12 (4) (22) (220 (14 (6 |<
4] 747 1284 7841 202 0 152 57.6 656 51.9 61.9 866 67.6
(13) 1 (4 () @ O an  ® @ (12 @1
41 696 607 385 325 128 179 19 83 47.4 295 265 248 70.5 499 372 322
(25) (29) (23) (29) ® @ @O O (19) (13) (14 (22 (7 (23) (20) (28) |
gl 746 738 495 515 132 145 7.9 11.1 402 468 278 14 58 625 489 363 |Q
27) (34 (24 (19 ® ©6 ©6 @ (15) (20) (12) (5) (22) (28) (220 (13) |©
5] 978 455 609 1074 219 293 88 6.9 56.7 20.8 456 56.9 806 508 717 804 |Z
(85 (14 (14 (13) o 6 @ (00 () (1) (@) (80) (15 (17) (9 3
1] 908 04 106 51.9 89 141 79.6 625 88.6 1024 758 80 o
(16) (1) (@) an o M (16) ® (@) (21) (10) ()
1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

Bout Cadence (>/=100) Quartile

Rate Per 1000 .
0 50 100 150 200

Extended Data Fig. 8 | See next page for caption.

Nature Medicine



Article

https://doi.org/10.1038/s41591-022-02012-w

Extended Data Fig. 8 | Incidence rates (number of events shown in brackets)
for each diagnosis as a function of step counts and bout cadence (step
intensity) quartiles. Incidence rates (number of events shown in brackets) for
each diagnosis as a function of step counts and bout cadence (step intensity)
quartiles. Incidence rates is number of cases per 1000 people for each diagnosis
asafunction of step and bout cadence quartiles. Bout cadence referred to steps

per minute computed by averaging the steps over the time when participant
engaged in >2 consecutive minutes at >100 steps/minute across all the valid
days. Step quartile intervals (thous.) are as follows: 1: [549,5.87]; 2: [5.87,7.73]; 3:
[7.73,9.83]; 4:[9.83,33.6]. Bout cadence quartiles are as follows: 1:[102,109]; 2:
[109,111]; 3: [111,114]; 4: [113,2071].
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Extended Data Fig. 9 | Relation between daily steps counts and incident risk
of chronic diseases. Relation between daily steps counts and incident risk of
chronicdiseases. A: Hazard ratio as a function of average daily steps in thousands
for each outcome. B: Cumulative incidence as a function of average daily steps
for each selected outcome by year. Results of Cox model with average daily bout
cadence (step intensity) as covariate, in addition to other covariates: age, race,

sex, coronary artery disease, cancer, body mass index, systolic blood pressure,
education level, smoking, and alcohol use. Bout cadence referred to steps per
minute computed by averaging the steps over the time when participant engaged
in>2 consecutive minutes at >60 steps/minute across all the valid days. Shaded
arearepresents 95%confidence interval.
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Extended Data Fig. 10 | Relation between daily bout cadence (step intensity) cadence addition to other covariates: age, race, sex, coronary artery disease,
and incidentrisk of chronic diseases. Relation between daily bout cadence cancer, body mass index, systolic blood pressure, education level, smoking,
(step intensity) and incident risk of chronic diseases. a: Hazard ratio as a function and alcohol use. Bout cadence referred to steps per minute computed by

of average daily bout cadence (step intensity) for each outcome. b: Cumulative averaging the steps over the time when participant engaged in >2 consecutive
incidence as a function of average daily bout cadence for each selected outcome minutes at >60 steps/minute across all the valid days. Shaded area represents
by year. Results of Cox model with average daily steps, average daily bout 95%confidence interval.
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of Us Research Program and 26 months of Fitbit monitoring data.

Sampling strategy Ml of Us Research Program is an initiative that is accumulating multiple streams of health-related information (e.g., electronic health
records (EHRs), genomics, physical measures, participant surveys and wearables such as Fitbit) in 1,000,000 or mare Americans and
includes a focus on populations usually under-represented in biomedical research to date.

Data collection For this study, we used the All of Us Registered Tier Dataset version 5 (R202103R2 Curated Data Repository) available o the All of Us
Researcher Workbench, a secure cloud-based platform. This dataset included information on physical measurements and vital signs
collected at enrollment, surveys, EHR and Fitbit data from participants enrolled from May 30, 2018 to April 1, 2021, Our analyses
focused on participants who owned a Fithit and agreed to share their Fithit and EHR data. We excluded participants who did not
wear a Fitbit for at least 6 months.

Timing For this study, data from participants enrolled from May 30, 2018 to April 1, 2021 in All of Us Research Program were used.

Data exclusions Of the 329,070 All of Us participants available at the time of our analysis, 214,206 participants had consented to share EHR data. Of
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Data exclusions those sharing EHR data, 6,042 participants linked their own Fitbit device, had valid Fitbit data over at least 6 months of total
monitoring and were aged at least 18 years at any time during the monitoring period.

Non-participation We are using data from All of Us Research Program. As noted in the All of Us Responsible Conduct of Research training, the
Researcher Workbench employs a data passport model, through which we are not conducting human subjects research with All of Us
data for two reasons:(1) The research will not directly involve participants, however, it only includes their data; and (2) the data
available in the Researcher Workbench has been carefully checked and altered to remove identifying information while preserving its
scientific utility. Therefore, we do not have access to information around non-participation to the program. However, for our study,
of the 329,070 All of Us participants available at the time of our analysis, 323,028 participants were not included in the analyses
because they did not consent to share EHR data or had missing/invalid Fitbit data.

Randomization Observational longitudinal study design was employed to investigate the research question. Therefore, instead of randomization,
covariate adjustment method was used. All Cox models were adjusted for age, sex (Male, Female), race (Black or African American,
White, other), coronary artery disease [CAD] (yes, no), cancer (yes, no), body mass index (BMI), systolic blood pressure, Education
level (no college, some college, college degree), all time smoking (< 100 cigarettes, >= 100 cigarettes), and alcohol use (alcohol
participant, not an alcohol participant). All covariates except BMI, systolic blood pressure, CAD and cancer were assessed at
enrollment visit via participant surveys. Baseline BMI and systolic blood pressure was extracted using EHR data. CAD and cancer were
ascertained using ICD9CM/ICD10CM or Current Procedural Terminology (CPT4) codes as well as ICD9CM/ICD10CM codes,
respectively.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
n/a | Involved in the study n/a | Involved in the study
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