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The hallmarks of dietary intervention-resilient gut microbiome
Natalia S. Klimenko 1✉, Vera E. Odintsova2, Anastasia Revel-Muroz1 and Alexander V. Tyakht1,2

Maintaining equilibrium of the gut microbiome is crucial for human health. Diet represents an important and generally accessible
natural channel of controlling the nutrients supply to the intestinal microorganisms. Although many studies showed that dietary
interventions can specifically modulate gut microbiome composition, further progress of the approach is complicated by
interindividual variability of the microbial community response. The reported causes of this variability include the baseline
microbiome composition features, but it is unclear whether any of them are intervention-specific. Here, we applied a unified
computational framework to investigate the variability of microbiome response measured as beta diversity in eight various dietary
interventions using previously published 16S rRNA sequencing datasets. We revealed a number of baseline microbiome features
which determine the microbiome response in an intervention-independent manner. One of the most stable associations,
reproducible for different interventions and enterotypes, was a negative dependence of the response on the average number of
genes per microorganism in the community—an indicator of the community functional redundancy. Meanwhile, many revealed
microbiome response determinants were enterotype-specific. In Bact1 and Rum enterotypes, the response was negatively
correlated with the baseline abundance of their main drivers. Additionally, we proposed a method for preliminary assessment of
the microbiome response. Our study delineats the universal features determining microbiome response to diverse interventions.
The proposed approach is promising for understanding the mechanisms of gut microbiome stability and improving the efficacy of
personalised microbiome-tailored interventions.
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INTRODUCTION
Currently, there is lots of evidence for multifaceted interactions
between human health and gut microbial community structure.
Changes of microbiome composition were observed for diverse
diseases including inflammatory bowel diseases1–4, colorectal
cancer5,6, type 2 diabetes mellitus7,8 and obesity9,10. In addition to
the pathologies directly related to the gastrointestinal tract
functioning and digestion, the associations with microbiome were
also observed for cardiovascular diseases11,12 and allergies13, as
well as disorders affecting the nervous system - such as
Parkinson's disease14, autism15 and Viliuisk encephalomyelitis16.
The number of associations between disease states and gut
microbiome is steadily increasing. Moreover, multiple studies on
model animals colonised with defined microbial consortia
demonstrated the causality of microbiome changes in regards to
the host health disruption17.
Two important ecological properties of gut microbiome are its

abilities: (1) to maintain its taxonomic composition stability over
time and, on the other hand, (2) to alter its composition rapidly
under the influence of certain factors, in particular, diet changes.
Several studies with a large number of sampled time points per
individual showed that, in general, the interindividual variability of
the microbiome composition exceeds the intraindividual varia-
bility over time18–20. On the contrary, short-term changes in diet,
administration of medicines or probiotics, as well as onset of an
intestinal infection, can cause significant changes in the composi-
tion of the colon microbiota in a fairly short time (measured in
days)18. For at least some of these changes, their directions were
consistent across subjects and reproducible in different cohorts.
However, there are differences between the subjects in the
magnitude of these changes - in other words, the interindividual
variability of the microbiome response to intervention21–23. The

variability was observed for different types of interventions, such
as probiotic and prebiotic intake, specific foods, overall dietary
pattern changes24–26 and faecal microbiota transplantation27.
One of the most intriguing challenges in such studies is to

identify the possible causes of the observed variability. This issue
is interesting from both fundamental and practical perspectives. It
can elucidate the ecological mechanisms underlying diversity of
gut communities28; on the other hand, it can help tailor the
optimal intervention type for a particular person targeting health
improvements23,29,30. In several studies addressing this question,
the researchers have suggested that one of the main factors
influencing the rate of microbiome response to dietary interven-
tion is the individual prior long-term dietary pattern26,31 (Supple-
mentary Table 1). However, in some other studies, no associations
with long-term diet were observed32. Other factors suggested to
affect the magnitude of microbiome response included host gene
expression pattern25, various metabolic parameters33 as well as
baseline (initial) microbiome composition (Supplementary Table
1)24–26,32–45. Baseline features of gut microbiome composition are
outstanding among such factors, as due to the potential of
modulating gut community, there is an opportunity to control the
individual response in the perspective. The microbiome features
shown to influence the degree of response include alpha diversity,
relative abundance of specific taxa and metabolic pathways. Some
studies showed good performance of the subjects classification
into responders and non-responders based on baseline features
including microbiome content32,44. Moreover, some of the
predictions were confirmed mechanistically in interventional
experiments using animal models: transplantation of the respon-
ders’ microbiome to the animal caused a more pronounced
response to the subsequent intervention46.
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The majority of studies to investigate dependence of gut
community response to dietary interventions on its initial state
have small sample size (<50 subjects per intervention (Supple-
mentary Table 1)). Small sample size along with the differences in
study design and analytical approaches hamper generalisation of
the conclusions across these studies. Particularly, it remains
unclear whether among the baseline features associated with
the microbiome response there are universal for various interven-
tions. In the present study, we have analysed the microbiome
response variation and its dependence on the baseline micro-
biome composition under eight distinct dietary interventions
using previously published data on adult subjects. These
interventions utilised different ways of microbiome modulation
including change of dietary pattern, prebiotics and probiotics
intake, as well as intake of products that are believed not to affect
microbiome (placebo groups). By applying unified data analysis
methods to these studies, we explored the questions of how the
microbiome response can be measured, if there are microbiome
features associated with the response universal among interven-
tions and whether it is possible to partly predict the response prior
to the intervention.

RESULTS
The metrics of microbiome response to dietary interventions
One of the widely applied ways to evaluate microbiome response
is to calculate beta diversity between paired samples collected

before and after the intervention. As mentioned above, the aim of
this work is to find the dependence of microbiome response on its
initial composition. In this context, one of the problems of using
beta diversity for assessing sustainability is its dependence on the
alpha diversity of the compared communities, known from
previous research in ecology47. The problem is that this
dependence can have both a biological component (that is of
high interest to investigate) and a purely computational one (that
it is desirable to exclude). Computational component arises from
the mutual dependence of alpha and beta diversities from the
specific sample characteristics such as sparsity, and depends on
the chosen diversity metrics. We explored the computational
component on 500 sample pairs from the FGFP (Flemish Gut Flora
Project) cohort48. By using two abundance randomisation
techniques (see Materials and Methods, Fig. 1a), we showed that
the computational dependence exists for two diversity metrics
widely used in microbiome research - Aitchison49 and Bray–Curtis
dissimilarities (Fig. 1b, c, randomised data).
One way to evaluate differences between communities taking

account of the computational dependence on alpha diversity is
the one based on the so-called null-models. The approach
originally developed by Raup and Crick50 and adopted for ecology
and microbiome analysis by Chase et al.47 and Stegen et al.51

allows one to estimate how much the observed beta diversity
differs from that expected for a given alpha diversity, average taxa
abundance and prevalence in communities. We have chosen
the variant of the Raup–Crick metric based on Bray–Curtis

Fig. 1 Investigation of computational components in the relationship between alpha and beta diversity. a Scheme of the two
randomisation strategies (see Methods), b–d Relationship between average alpha diversity and beta diversity calculated for the 500 random
pairs of samples from the FGFP cohort (p values obtained using linear regression). The colours denote initial data and data randomised by the
two strategies (see legend for panel a). Alpha diversity was assessed via the Shannon metric, while beta diversity - via Bray–Curtis (b),
Aitchison (c) and RCbray (d) metrics.
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dissimilarities proposed by Stegen et al. and denoted as RCbray51. It
varies from −1 to 1, where −1 corresponds to completely identical
communities, and 1 - to the most distinct ones. It can be seen that,
in contrast to the beta diversity, such an estimate does not carry a
computational dependence on the alpha diversity (Fig. 1d,
randomised data). This is unsuprising, since RCbray was developed
specifically to correct for the computational dependence and the
procedure for its calculation even includes a randomisation similar
to the “randomisation 2” in our analysis. This fact makes RCbray the
metric of choice for our purposes. For validation purposes, the
analyses involving adjustment for alpha diversity were additionally
conducted using other beta diversity metrics.

Dependence of response on the baseline microbiome
composition
We explored the microbiome response to dietary interventions in
five independent studies resulting in eight different interventions
lasting from 2 to 10 weeks (see Materials and Methods). Briefly, the
interventions were: high fibre diet (HFD)44, fermented dairy
product fortified with probiotic (FDP)45, resistant starch from
potatoes (F.POT)37, resistant starch from maize (F.HIM)37, inulin
from chicory root (F.INU)37, accessible corn starch (F.ACC)37,
maltodextrin (MAL)35 and non-meat diet (NM)43. The overall
dataset included 1242 microbiomes from 641 individuals. The
countries where the studies took place were USA, Russia and New
Zealand (Supplementary Fig. 1); the metadata collected in the
studies are summarized in the Supplementary Table 2.
As expected, baseline taxa abundances strongly differed across

the studies (Fig. 2a). However, enterotyping in the context of the
large FGFP cohort (see Materials and Methods) showed that each

original FGFP enterotype (named Bact1, Bact2, Rum and Prev as in
ref. 52) included samples from more than one study (Fig. 2b).
Therefore, all further tests including the combined set of the
interventions were conducted with the correction for the
intervention (in most cases - by including it as a random effect
in mixed effect models); this affects the variants of tests both with
and without stratification by enterotype.
The microbiome response was measured as RCbray within the

pairs of samples collected before and after the intervention. In all
investigated studies, the microbiome response to dietary inter-
vention varied notably and exceeded the variance of the mean
response in different studies (intrastudy variance 0.3722 ± 0.0612,
interstudy variance of the mean response 0.0080, Fig. 2c, d). The
variance was not correlated neither with the mean response nor
with the intervention time period (linear regression, p > 0.1). The
response was not correlated with any of the baseline sample
factors collected in the studies either (Supplementary Table 2).
The overall variance of the response did not correlate with the

microbial composition at the first time point (dbRDA, p= 0.3017,
R2= 2%, Fig. 3a). However, the effect was observed when
stratification by enterotype was performed: significant associa-
tions were revealed for the Rum (dbRDA, p= 0.0003, R2= 1.2%,
N= 212, p) and Bact2 (dbRDA, p= 0.0403, R2= 8.0%, N= 195)
enterotypes, while for the Prev (dbRDA, p= 1, R2= 1.5%, N= 67)
and Bact1 (dbRDA, p= 0.4031, R2= 1.4%, N= 167) enterotypes
the results remained non-significant. When the studies were
analysed separately, association was detected in 5 of 8
interventions: HFD, FDP, F.POT, F.INU and MAL (dbRDA, p < 0.1,
R2 - from 1% to 5%).
As for distinct microbiome features, dependence of response from

three variables - baseline alpha diversity, Bacteroidetes:Firmicutes

Fig. 2 Variation of microbiome composition in the analysed data. a Distribution of baseline samples in the species abundance space
visualised using the UMAP algorithm65 (n= 641 samples). Colours denote interventions (abbreviations are disclosed in the text). b Distribution
of baseline samples by enterotypes. c Microbiome composition shifts occurring during the interventions visualised in the species abundance
space using the UMAP algorithm. Grey lines connect paired samples from the same subject collected before and after the intervention
(n= 1242 samples). d Intra- and interindividual variation calculated using RCbray metric for each of the analysed interventions.
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ratio (B:F) and mean number of genes per organism in the
community (AGN, average gene number) - were analysed using
partial correlation network due to potential correlations between
the predictors (correlation between two components are com-
puted with the correction for all the others, with intervention used
as a random effect, see Methods). Baseline AGN was negatively
associated with the response, while alpha diversity and B:F -
positively (partial correlations, FDR < 0.05). The same effects were
observed for most of the interventions analysed separately (partial
correlations, FDR < 0.05, Fig. 3b). Enterotype stratification showed
that associations of AGN and alpha diversity with the response
were observed in each enterotype except for the Prev (partial
correlations, FDR < 0.05, Fig. 3b, c); association with the B:F ratio
was detected only in the Bact2 enterotype (partial correlations,
FDR < 0.05, Fig. 3b, c). Since partial correlation networks include a
correction for alpha diversity, we were able to validate the results
for B:F and AGN using seven other beta diversity metrics for
response calculation (Bray–Curtis, Aitchison, generalised UniFrac,
weighted UniFrac, unweighted UniFrac, Jaccard and inverse
Pearson correlation) (Fig. 3b). According to the analysis type
including all samples the most reproducible was negative
association with AGN (observed for all five weighted metrics),
while positive association with B:F ratio was reproduced using
three metrics.

Since the estimate of the AGN from 16S rRNA data might be
quite imprecise, we performed additional validation of partial
correlation results using “shotgun” metagenomic dataset related
to a dietary intervention53. The intervention included 126 subjects
who consumed blended cooking oils or refined olive oil for
8 weeks (three time points were collected: baseline, 2 weeks and
8 weeks). For both time intervals (2 weeks and 8 weeks), we
confirmed negative association of the response with AGN (partial
correlations, p= 0.0024 and 0.0025, respectively) and positive
association with alpha diversity (partial correlations, p= 0.0084
and 0.0096) (Supplementary Fig. 2). For B:F ratio, no significant
associations were observed. The validity of our AGN measure was
supported by its high correlation with the average genome size
estimate calculated using MicrobeCensus54 (linear regression,
p < 2·10−16, Supplementary Fig. 3).
As for the associations of the response with the baseline

abundance of individual microbial species, there were 52 signifi-
cant taxa for combined interventions, 55 - for at least one
enterotype under enterotype stratification and 37 - for at least one
intervention when the stratification was conducted by interven-
tion (Supplementary Table 3, linear mixed effect regression and
simple linear regression, FDR < 0.05). Almost all significant results
with enterotype stratification were identified for the Rum and
Bact2 enterotypes, several associations - for Bact1 and zero - for

Fig. 3 Associations between microbiome response to interventions and baseline microbiome composition. a Distribution of baseline
samples in the species abundance space coloured in the value of response - RCbray between samples before and after the intervention (UMAP
algorithm). b Seven alternative beta diversity metrics were used for the response calculation: Bray–Curtis (BC), Aitchison (Ait), generalised
UniFrac (GUni), weighted UniFrac (WUni), unweighted UniFrac (UUni), Jaccard and inverse Pearson correlation (InvCor). Colours denote partial
correlation coefficients between the response and each of the analysed features. Asterisks denote significant associations (partial correlations,
FDR < 0.05). Inconsistency for associations with alpha diversity between response metrics had been expected due to the computational
component. c Enterotype-wise partial correlation networks between the response, baseline alpha diversity, AGN and B:F. The edges width is
proportional to the absolute correlation coefficient. Blue colour denotes significant negative associations, red - significant positive and white –
insignificant (significance estimated using partial correlations, FDR < 0.05).
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Prev (the latter fact was possibly due to its lower number of
samples). The majority of results were enterotype-specific: 28
associations were unique to Bact2 and 14 - to Rum, while 13
associations were shared among more than one enterotype. The
most reproducible associations were negative dependence of
response with the abundance of unclassified species from Blautia
genus (detected in three enterotypes and four interventions) and
[Ruminococcus] gnavus (detected in two enterotypes and six
interventions). Among the enterotype-specific associations, the
strongest were negative dependencies of response from unclassi-
fied Bacteroides abundance in Bact2 enterotype and with
unclassified (Clostridiaceae/Ruminococcaceae) - in Rum enterotype
(“the strongest” here means the one characterised by the
maximum number of separate interventions where it was
observed, Supplementary Table 3). We also repeated this analysis
with the adjustment for alpha diversity, keeping in mind that we
will lose taxa associated with alpha diversity (Supplementary Table
4). However, in this case, we will be able to assess reproducibility
of the results using various beta diversity metrics to response
calculations. The majority of the significantly associated taxa were
metric-specific, with the largest number of associations being
detected for RCbray. The only association that was replicated for all
weighted metrics was a positive response to [Eubacterium]-

biforme abundance in the Bact2 enterotype and overall mixed-
effect model.

Microbiome response potential
According to our observations, some microbiome features
associated with the response were shared between distinct
interventions. In this connection, we proposed the following
assumptions and definitions:
Assumption 1: There exist microbiome markers that partly

determine the response of the microbiome a priori, regardless of
the intervention type.
Definition 1: Response potential - the component of the

response that is determined solely by the individuals’ initial
internal microbiome characteristics.
Thus, the observed response to an intervention is represented

by the superposition of the response potential and the
intervention-specific component.
Definition 2: Landscape of response potential - the distribution of

response potential in a multidimensional space of taxa
abundances.
Assumption 2: Areas of the landscape with low response

potential would be characterised by increased sample density

Fig. 4 Associations of microbiome response potential with the baseline microbiome composition features and response to the
interventions. a Partial correlation networks between the response potential, response, baseline alpha diversity, AGN and B:F calculated in
each enterotype. The edge's width is proportional to absolute correlation coefficient. Blue colour denotes significant negative associations,
red - significant positive and white – insignificant (significance estimated using partial correlations, FDR < 0.05). b Relation between predicted
and true response (or response potential) for different interventions. Predicted response was calculated based on baseline species
abundances using XGBoost machine learning algorithm. c Partial correlation networks between the response potential, baseline alpha
diversity, AGN and B:F calculated in each enterotype on the FGFP cohort.
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in cohorts with sufficiently large sample sizes and one sample
per subject.
The latter assumption is based on the ergodicity property,

which is used for macroecological communities55. We propose to
further extend this property for microbiomes in the sense that
during the adult period of life of a generally healthy individual, its
microbiome can with a certain probability take on a configuration
that is close enough to almost any of the compositions observed
in other individuals (of the same age range). Then, such property
of ergodic systems as “time average is equal to the average over
space” can be interpreted as the ability to assess the stability of a
single community a priori based on its position relative to the
communities of other subjects in a sufficiently large cohort.
Proceeding from Assumption 2, the response potential can be

estimated from its position relative to samples of other individuals
in a multidimensional space of taxa abundances. One way to do
this is to calculate the average beta diversity between a given
sample and the samples of a relatively large number of other
individuals from the same enterotype. We performed such
calculations for each baseline sample in each intervention using
the FGFP cohort samples and all other baseline samples as a
reference (see Materials and Methods).
We introduced response potential to the partial correlation

network (along with AGN, alpha diversity and B:F ratio) to explore
its relation to response and baseline microbiome characteristics.
A significant positive correlation between response and response
potential was observed both in combined data and in all
enterotypes except for the Bact1 (partial correlations, FDR < 0.05,
Fig. 4a). These observations support our assumptions stated
above. Among the associations with baseline microbiome
composition, the response potential replaced the response in
association with AGN, but not with the alpha diversity and B:F
(Fig. 4a). The correlation of response potential with the response
and AGN were validated using other beta diversity metrics
(Supplementary Fig. 4).
We also tested the selected method of response potential

evaluation using a machine learning approach. In particular, we
estimated the extent to which the response component
predictable by the initial microbiome composition is correlated
with our estimate of the response potential. We trained a gradient
tree boosting model (XGBoost) to predict the response based on
baseline microbiome content (Materials and Methods, Fig. 4b). The
model showed better cross-validation performance characteristics
compared to a random model (Fig. 4b, Table 1). Then we tested
the model initially trained to predict response using the values of
response potential instead of response in the testing set.

This substitution improved the performance characteristics for the
majority of studies (Fig. 4b, Table 1), showing that the proposed
approach to calculate response potential is reasonable. In other
words, the result of the machine learning algorithm, which is a
complex function of baseline taxa abundance, converged with the
assessment of the response potential proposed by us via the
position of the analysed microbiome relative to others. The
robustness of our response potential concept was further
supported by the fact that a response potential calculated for the
second time point samples was highly correlated with the above-
described calculations from the baseline values suggesting that this
characteristic is only slightly affected by the analysed interventions
(Supplementary Fig. 5).
The response potential, according to our definition, does not

depend on the type or presence of intervention, and can be
calculated from a single time point. To validate the associations of
the response potential with microbiome features, we tested them
on the FGFP cohort dataset48. Association with AGN was
confirmed for all the enterotypes as well as for the entire cohort
(partial correlations, FDR < 0.05, Fig. 4c). Associations with alpha
diversity and B:F were detected for the entire cohort as well as for
several enterotypes (partial correlations, FDR < 0.05, Fig. 4c).

DISCUSSION
Pronounced interindividual variability of response to dietary
interventions has been observed in numerous studies examining
diverse intervention types - from modifying a dietary pattern to
introducing a certain nutrient or probiotic microorganism to diet.
The measures of response were also quite different across the
studies (Supplementary Table 1). Beta diversity is often used as a
measure of microbiome response. However, its computational
dependence on alpha diversity is rarely taken into account. In our
work, we emphasised that this is an important point, especially
when searching for the baseline microbiome markers of the
microbiome response. In this regard, we proposed to use the
Rbray51 metric as a response measure, for which the above-
mentioned computational dependence is much less pronounced,
according to our results. Still, this metric is not flawless. One
disadvantage is its dependence on the total pool and abundance
of bacterial taxa in all analysed samples. On the one hand, this
leads to the changes in pairwise dissimilarity between samples
when they are analysed in different contexts47. On the other hand,
average taxa abundance in the context is implicitly taken into
account during metric calculation. This may be one of the reasons
why we observed more associations with the baseline microbiome

Table 1. Average model quality characteristics obtained in 50 iterations of cross-validation trained and tested on initial data, on the data with
randomly permuted sample names, and after substitution of response values with the response potential values in the testing sets.

Model Caret R2a Does the mean caret R2 increase while testing on response potential
compared to the initial model?

Intervention Initial model Random model Initial, tested on response
potential

HFD 0.11 ± 0.07 0.01 ± 0.02 0.15 ± 0.08 yes

FDP 0.1 ± 0.09 0.02 ± 0.06 0.05 ± 0.06 no

F.POT 0.13 ± 0.15 0.04 ± 0.1 0.18 ± 0.16 yes

F.HIM 0.2 ± 0.16 0.00 ± 0.1 0.25 ± 0.18 yes

F.INU 0.45 ± 0.19 0.02 ± 0.06 0.35 ± 0.14 no

F.ACC 0.15 ± 0.19 0.04 ± 0.1 0.2 ± 0.17 yes

MAL 0.06 ± 0.16 0.00 ± 0.12 0.08 ± 0.17 yes

NM 0.09 ± 0.09 0.00 ± 0.04 0.17 ± 0.13 yes

acalculated as it is proposed in the caret package [72]: the square of the Pearson correlation coefficient between the true values in the test set and the
predicted values.
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features for RCbray metric compared to other metrics in the
analyses where adjustment for alpha diversity was performed. This
observation, coupled with the notable differences between the
results obtained using different response metrics (Supplementary
Table 4) emphasise the need for a future detailed study on
appropriate response measures.
Although the investigated interventions were quite different in

both duration and the expected effects on microbiome, the
intrastudy variance of mean response still notably exceeds the
interstudy response variance. The dependence of response on initial
microbiome state was significant for the majority of interventions.
However, when the interventions were combined, this dependence
remained significant only when stratification into enterotypes was
applied for the two enterotypes with the highest number of
samples. This fact may indicate that the intervention-independent
microbiome signatures of response are enterotype-specific. This is
also supported by the results observed for individual taxa. Most
associations were detected for a specific enterotype, despite a lower
statistical power compared to the mixed-effect models over all
samples. Interestingly, the main enterotype-specific signatures were
negatively associated with the response and included taxa
phylogenetically related to the enterotype drivers: unclassified
Bacteroides in Bact2 and (Clostridiaceae/Ruminococcaceae) in Rum.
This may indicate that in each enterotype, the stability of a sample
increases, the closer it is to the enterotype centre - suggesting the
latter is an attractor in a certain sense. However, to confirm this
hypothesis, a deeper study of this problem is required. Several
associations revealed at the level of individual taxa reproduced
previously found microbiome stability markers: positively associated
with the response Prevotella copri and negatively - unclassified
Bacteroides (in the previous study where “shotgun” sequencing was
used it was Bacteroides uniformis, in our study this taxon was
included in the group for unclassified Bacteroides species)19.
The relationship with the average number of genes per

microorganism in the community (AGN) was observed for the
entire pool of samples, as well as for all enterotypes except the
Prev. This may be due to a smaller number of samples in the Prev

enterotype, as well as a lower compositional variation within it.
Average number of genes per organism in the community can be
considered as an indicator of the prevailing ecological roles in the
community. It is known that a predominance of generalist taxa
possessing a higher number of genes and, accordingly, a wider
metabolic potential - compared to the specialist taxa - contributes
to the microbiome stability56. The AGN, together with alpha
diversity, determines the functional redundancy of the commu-
nity: AGN - at the level of an individual organism and alpha
diversity - at the community level. Indeed, it is functional diversity
and redundancy that are considered in theoretical ecology as
stability markers57.
Interestingly, however, the association of response with alpha

diversity in our study was not negative, as might be expected from
the above statements and as it had been observed in several
previous studies32,34,41,43. This discrepancy can have several causes.
Firstly, we have used RCbray response measure, which considers for
the computational component in the alpha and beta diversity
relationship, and had not previously been applied in the studies
investigating microbial communities stability markers. Noteworthy,
for other response metrics that did not include a correction for the
computational component, the association had an opposite sign
(Fig. 3b). Secondly, a negative correlation is observed between
AGN and alpha diversity. This means that more diverse commu-
nities are formed by microorganisms with fewer genes (Figs. 3, 5),
which also corresponds to the literature data58. Thus, functional
redundancy is achieved through a trade-off between the number
of genes per organism and the number of organisms (Fig. 5).
However, we would stay cautious in drawing unambiguous
conclusions about the relationship between response and alpha
diversity. As we mentioned above, a further detailed study of
response measures is needed to confirm and understand the
nature of this relationship. As for the negative association with
AGN, it was observed with multiple response metrics in different
analysis types, which makes this association more reliable.
The identification of intervention-independent response mar-

kers is an important step for an assessment of an individual's
microbiome stability. However, we have also looked at the
problem of assessing stability from the other side. We have
estimated stability based on the sample relative position to other
individuals’ samples in the space of taxa abundances. We showed
a high correlation of this estimate, called the response potential,
with the real response in the interventional studies. In addition,
using machine learning, we have isolated the part of the response
that can be explained by the baseline microbiome, and have
shown that for most interventions this variable correlates better
with the response potential than with the response itself.
However, in the partial correlation networks analysis, some of
the intervention-independent associations of the response with
the baseline microbiome composition persisted when the
response potential was introduced into the networks. This may
indicate that the method of the response potential estimation can
be improved. One way of such improvement may be stratification
of the acceptable microbiome configurations landscape by certain
phenotypes, such as sex and age. This is particularly true when the
age range is wider than in the data we used (17–65 years). For
example, infants’ microbiomes will form a completely different
part of the landscape. The same problem will appear when
analysing subjects with a certain disease if the disease affects the
microbiome composition. It is also noteworthy that the space of
analysed interventional studies was generally well covered by the
FGFP cohort (Supplementary Fig. 6). Therefore, we performed the
calculation of the response potential in the context of the FGFP
data. However, it is unlikely this will hold true for any other given
study. In such cases, the reference context for calculating the
response potential will have to be modified. Finally, we confirmed
the associations between the microbiome response markers and
the response potential on an independent cohort.

Fig. 5 Relation between the response, baseline alpha diversity
and baseline AGN. Scatterplot showing negative relationship
between alpha diversity and AGN, AGN and response and positive
relationship between alpha diversity and response for baseline
samples from all analysed interventions (n= 641). Variation of data
explained by each axis is given in brackets.
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Compared to the 16S rRNA sequencing data, “shotgun”
metagenomics/WGS provide a more detailed microbiome portrait,
especially its functional potential, subspecies-level diversity and
gene content. It might be interesting to confirm our findings on
WGS data - when a sufficient number of relevant publicly available
datasets of this format is accumulated. As a pilot step, we have
validated them - as well as our approach for AGN calculation -
using one large “shotgun” dataset (Supplementary Figs. 2, 3).
To conclude, meta-analysis of diverse dietary interventions

studies suggests existence of universal baseline microbiome
features defining microbiome response. One of the most common
features of intervention-resistant communities is high average
number of genes per microorganism in the community, likely
reflecting enrichment of generalist microorganisms compared to
the specialists. Reproducible specificity of response markers across
enterotypes, predictability of response from the baseline location
in microbiome landscape and problem of dissecting biological
and computational components in alpha diversity and response
relationship highlight key points to be considered during future
gut microbial ecology studies.

METHODS
Datasets description
To investigate the dependence of microbiome composition change
from its initial state, we used the data from five previously published
studies35,37,43–45. All the studies investigated microbiome response to
the diet intervention using 16S rRNA gene sequencing of stool
samples. For the studies where subjects underwent consequential
interventions (e.g., a course of one fibre type intake followed by a
course of another fibre), we picked a subset of time points
corresponding to a single intervention per subject. Overall, we
prepared data on eight distinct interventions where each individual
was characterised by two time points in the resulting dataset - before
and after the intervention. The selected interventions were:

● change of dietary pattern towards higher fibre intake for
2 weeks (HFD, N=215)44;

● intake of a fermented dairy product with Bifidobacterium
animalis strain BB-12 for 2 months (FDP, N= 150)45;

● intake of fermentable fibres/placebo for 2 weeks: resistant
starch from potatoes (F.POT, N= 43), resistant starch from
maize (F.HIM, N= 43), inulin from chicory root (F.INU, N= 50)
and accessible corn starch (F.ACC, N= 39)37;

● intake of maltodextrin for 3 weeks (MAL, N= 33)35;
● 2 weeks washout period followed by 4 weeks of non meat

protein source intake (NM, N= 109)43.

Additionally, the FGFP dataset (N= 1106)48 including one time
point per individual was processed for the purposes of:

● enterotyping;
● investigating a computational relationship between alpha and

beta diversity;
● validating the dependencies discovered for the response

potential.

One “shotgun” metagenomic dataset53 described microbiome
changes during the intervention including intake of blended
cooking oils or refined olive oil for 8 weeks (N= 126 subjects,
3 time points); it was used for:

● validation of response associations with alpha diversity, AGN
and B:F;

● validation of AGN calculation.

Data processing
For all 16S studies in the analysis, the raw data generated using
Illumina MiSeq or HiSeq sequencing were downloaded from the

NCBI Sequence Read Archive (ERP01819244, ERP10900945,
SRP12025035, SRP12812837 and SRP16667243). The FGFP raw reads
had been provided by the request via the European Genome
Archive (EGAD00001001936). In all studies but the MAL study, the
V4 16S rRNA gene region was sequenced. In MAL, V3-V4 regions
were analysed, therefore, in order to unify the studies we trimmed
the raw reads from this dataset using V4 primer sequences
(GTGBCAGCMGCCGCGGTAA, GACTACNVGGGTMTCTAATCC) with
cutadapt software59. Taxa abundance profiles were calculated on
Knomics-Biota platform60 using “16S dada2 GreenGenes V4”
analysis protocol, which included the following main steps:

● denoising by DADA2 algorithm61 implemented in QIIME262;
● taxonomic classification of obtained amplicon sequence

variants (ASV) with QIIME263 classifier trained on preprocessed
GreenGenes database (database preprocessing steps included
trimming of 16S rRNA sequences using the primers given
above with TaxMan64 software and further clustering 97%
identical sequences with CD-HIT software65);

● microbial abundance tables at the levels of species and genus
were obtained by summing the relative abundance levels of
ASV included in the corresponding clade.

Only samples with >3000 reads post-denoising were included
in the analysis. For HFD and FDP studies, we also excluded
samples with outlying abnormal composition (e.g., those with
dominating Enterobacteriaceae). In F.POT, F.HIM, F.INU and F.ACC
interventions having 1–5 samples per time point and subject,
we calculated the resulting microbiome profiles by averaging the
abundances across the replicates. After preprocessing, the
number of subjects per intervention was the following: HFD -
206, FDP - 130, F.POT - 43, F.HIM - 42, F.INU - 50, F.ACC - 39, MAL -
33, NM - 98, FGFP - 1,061. All samples included in the analysis are
listed in Supplementary Table 5.
Filtering of relative abundance tables was done by excluding

the taxa with abundance >20 reads in <20 samples. All analyses
but the enterotyping (see below) were conducted at the level of
species. Alpha diversity was calculated using Shannon index after
rarefying all abundance tables to the minimum read count in each
dataset. We calculated beta diversity using Bray–Curtis, three
UniFracs, Jaccard and inverse Pearson dissimilarities after rarefac-
tion and Aitchison dissimilarity - after substituting all zero values
in the dataset by pseudocounts (0.5). The Raup–Crick metric based
on Bray–Curtis dissimilarities (RCbray)51 was calculated after
rarefaction (iCAMP package). As RCbray depends on the overall
species pool in the abundance matrix, the values of the metric for
the pair of samples - for example, in the context of specific
intervention and in the context of all samples from the same
enterotype - can slightly differ. Therefore, we provide a description
of the abundance tables used to calculate RCbray metric for
different analyses in Supplementary Methods. Visualisation of the
relative position of samples in the taxa space was carried out by
applying the UMAP algorithm with the default parameters to the
matrices of the relative species abundance values66.
The “shotgun” dataset used for validation of partial correlation

analysis results53 was downloaded from the NCBI Sequence Read
Archive (PRJNA728374) (N= 378 samples). The reads were processed
using KneadData (https://huttenhower.sph.harvard.edu/kneaddata/)
and MetaPhlAn3 software67 with “-t rel_ab_w_read_stats” option to
obtain the read counts. Only the taxa detected at the level of species
were included in further analysis. For computational purposes, the
abundance tables were rarefied to 10,000 reads per sample prior to
the RCbray calculation.

Evaluation of computational component in beta and alpha
diversity relation
To explore the computational component in alpha and beta
diversities relationship, we used two randomisation options on
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500 sample pairs from the FGFP cohort (Fig. 1a). In both cases,
randomisation allowed us to obtain random taxa abundances
while maintaining the alpha diversity value of the sample. Thus,
the biological relationship between alpha diversity and micro-
biome composition was eliminated. After randomisation, we
recalculated beta and alpha diversities on randomised abundance
tables and used a linear model to explore the relationship
between them. In this analysis, Shannon index was used as the
metric for alpha diversity, while the Bray–Curtis and Aitchison49

dissimilarities, as well as RCbray51 - as metrics for beta diversity.
In the first randomisation variant, the names of taxa in each

sample were randomly permuted, independently of other samples
(Fig. 1a, “randomisation 1”). In the second variant, the procedure
similar to the one used in the RCbray calculation algorithm51 was
applied (Fig. 1a “randomisation 2”). It included the following steps:

● average taxa abundances and average taxa prevalence were
calculated using the whole abundance table;

● for each sample, the list of taxa names equal to the number of
unique taxa in the sample were randomly sampled without
replacement from the whole taxa pool with the taxa
probability proportional to average taxa prevalence.

● for each sample, taxa counts equal in sum to the number of
reads in this sample were randomly sampled with replace-
ment using only taxa from the list obtained on the previous
step with the taxa probability proportional to average taxa
abundance.

The first randomisation gave beta diversity values between
pairs of samples higher in average than the initial ones, while
the second - lower ones. The first randomisation preserves
the Shannon index of the sample, while after the second
changes it slightly.

Enterotyping
We performed enterotyping in the context of the FGFP cohort on
the level of genera48. Firstly, we calculated enterotypes on genus-
level abundance tables for the FGFP cohort using Dirihlet
multinomial mixture models68 (R package DirichletMultinomial69).
Enterotypes’ names for the FGFP cohort were matched with
those described by Vandeputte et al.52 using the criteria listed by
Valles-Colomer et al.70. Then, we performed classification of the
samples from the interventional studies into obtained enter-
otypes by calculating Bray–Curtis dissimilarity between the
classified sample and each enterotype medoid. The sample was
assigned an enterotype according to the medoid providing the
lowest dissimilarity value.

Estimation of the mean number of genes per microorganism
in the community
We estimated the average number of genes per microorganism in
the community (AGN) using information from the NCBI database
about prokaryotic genome assemblies (https://www.ncbi.nlm.nih.
gov/genome/browse/#!/prokaryotes/). The evaluation was per-
formed on the level of species. For all ASVs whose taxonomic
assignment was resolved on the level of species (no “unclassified”
term in the taxonomy), we calculated the average number of
genes in the NCBI assemblies corresponding to this species
(Supplementary Fig. 7). For ASVs taxonomically resolved only at
the genus level (for example, “Bacteroides unclassified”), we
performed averaging over all assemblies belonging to a specific
genus. We excluded from the analysis the ASVs resolved only at
the family level or higher (for example, “Clostridiaceae unclassi-
fied”), as well as the ASVs with taxonomies having no match in the
NCBI database. Next, we calculated the weighted average number
of genes per organism in the sample by multiplying the number of
genes determined for each ASV by its relative abundance
(read count) and dividing by the total number of reads belonging

to all ASVs that were taken into account in the analysis for this
sample. The obtained AGN was compared to estimation of
average genome size with MicrobeCensus54 using “shotgun” data
described above.

Statistical analysis
Most statistical tests aimed to investigate microbiome response
dependence on initial composition were performed in three
variants:

● using the samples from all eight interventions in one model
with the correction for the intervention;

● using samples from each enterotype separately with the
correction for the intervention;

● using samples from each intervention separately.

Firstly, we analysed overall variance of response associations
with baseline microbiome content using distance-based redun-
dancy analysis dbRDA with 7000 permutations71 (R vegan
package72). For dbRDA analysis, we scaled RCbray metric to the
[0;1] interval. Correction for the intervention was implemented
through stratification of the data during permutations.
Then we analysed associations of the response with alpha

diversity, B:F ratio and AGN using a partial correlation network.
This analysis method was chosen because all four components
have significant correlations between each other, and we are
interested in the strongest ones. During a partial correlation
network analysis, an association between two components i and j
is calculated as a Pearson coefficient between two linear models
residuals. Each linear model includes one of the analysed
components (i or j) as a predicted variable and all components
of the network except i and j - as predictors. Correction for the
intervention was conducted by using a mixed effect linear model
with intervention as a random effect instead of a simple linear
model. Correction for multiple comparisons was performed using
the Benjamini–Hochberg method. The partial correlation network
from five components (including response potential) was con-
structed in the same way. For this analysis, we performed a
validation using a “shotgun” dataset described above53.
We analysed association of individual taxa abundance with the

response using a linear model after clr transformation of the
abundance tables49. The analysis was performed at the level of
species. Zero abundance values were replaced with pseudocounts
(0.5). Correction on intervention was conducted by using a mixed
effect linear model with intervention as a random effect instead of
a simple linear model. Correction for multiple comparisons was
performed using the Benjamini–Hochberg method.
Correlation of response with baseline metadata collected in

studies was evaluated using a mixed effect model with interven-
tion as a random effect or simple linear model (the former was
used when the factor was available for several interventions, while
the latter - when the factor was collected in only one intervention.)

Microbiome response potential
To investigate the universality of discovered associations between
microbiome composition and response, we introduced the
definition of the response potential as a response component
determined solely by the initial microbiome state (see Results). We
proposed an approach to estimate response potential as the mean
RCbray value between the sample and the samples from the same
enterotype belonging to a relatively large number of other
individuals (we used more than 300 individuals per enterotype)
(the justification can be found in the Results section). This
approach allows one to estimate response potential from the data
including 1 time point per individual.
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Machine learning approach to test the response potential
estimate
A machine learning approach was used to determine the extent to
which the response component predictable from the baseline
microbiome composition is correlated with the proposed estimate
of the response potential. For this purpose, we constructed a
model aimed to predict the response based on baseline taxa
abundances. It was constructed separately for each intervention
using the gradient boosted trees (XGBoost)73. The arcsine square
root transformed baseline relative abundances on the species
level were used as predictors. The following parameters were used
in the model: tree depth - 15, number of trees - 1000, learning rate
(step size) - 0.3. Model quality was evaluated via a cross-validation
procedure by randomly dividing the data into training and testing
sets 50 times in 2:1 ratio. We performed predictors filtration and
selection on each iteration based on the information in the
training set. During filtration, taxa with zero abundance in >30% of
the samples were removed. Predictors selection included training
of 10 additional XGBoost models on the training set of the
iteration, followed by evaluation of the predictors’ importance.
These additional models had the same parameters and structure
as the main one, except for the number of trees (300). We
estimated predictors importance as its relative contribution to the
improvement of the prediction in each tree in the model (xgboost
R package74). The 30 predictors with the highest importance were
chosen to construct the main model on specific iteration. To
assess the quality of the resulting regression, we calculated R2

values by the method proposed in the caret package75

(representing the square of the Pearson coefficient between the
true and predicted response) at each iteration. The average R2

values across all iterations were used as a model quality measure.
We compared the regression quality with the quality of a

random model. The latter was obtained by repeating cross-
validation for the abundance matrices with randomly shuffled
sample names. After that, we analysed how the quality of the
regression has changed when the response values were replaced
by the values of response potential in testing set during cross-
validation. If we observed similarity of R2 values between this and
initial models in comparison to the random model, that would
indicate that the proposed method of response potential
calculation is a good estimate for the component of response
determined by baseline microbiome state.
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