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Abstract: Obesity has become a worldwide epidemic that poses a severe threat to human health.
Evidence suggests that many obesity comorbidities, such as type 2 diabetes mellitus, steatohep-
atitis, and cardiovascular diseases, are related to obesity-induced chronic low-grade inflammation.
Macrophages are the primary immune cells involved in obesity-associated inflammation in both
mice and humans. Intensive research over the past few years has yielded tremendous progress in
our understanding of the additional roles of adipose tissue macrophages (ATMs) beyond classical
M1/M2 polarization in obesity and related comorbidities. In this review, we first characterize the
diverse subpopulations of ATMs in the context of obesity. Furthermore, we review the recent advance
on the role of the extensive crosstalk between adipocytes and ATMs in obesity. Finally, we focus on
the extended crosstalk within adipose tissue between perivascular mesenchymal cells and ATMs.
Understanding the pathological mechanisms that underlie obesity will be critical for the development
of new intervention strategies to prevent or treat this disease and its associated co-morbidities.
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1. Introduction

Obesity is a metabolic disease characterized by abnormal and excessive accumulation
of body fat. Obesity increases the risk of developing a wide variety of diseases including but
not limited to type 2 diabetes mellitus (T2DM) and cardiovascular diseases and has been
strongly associated with increased mortality [1,2]. In the past few decades, the prevalence
of obesity has increased dramatically in both developing and developed nations around the
world [3,4]. More recent statistics indicate that 39% of adults aged 18 years and over were
overweight, and 13% were obese worldwide in 2016 [5]. Obesity is a serious public health
problem with major health and economic consequences. Therefore, it is imperative that
we polish our understanding of the pathological mechanisms so we can develop effective
strategies to prevent or treat obesity and related comorbidities.

Insulin resistance is a key component in the etiology of T2DM, and obesity is clearly
the most common cause of insulin resistance in humans [6,7]. With the ongoing world-
wide obesity epidemic, there has been a parallel rise in the prevalence of T2DM [8]. It
has now been widely recognized that obesity-induced chronic low-grade tissue inflam-
mation, particularly when occurring in adipose tissue, can cause insulin resistance and
T2DM [9,10]. Under obese conditions, adipose tissue undergoes a series of dynamic re-
modeling, including adipocyte hypertrophy, apoptosis, immune cell infiltration, extensive
vascularization, and extracellular matrix remodeling [11,12]. Macrophages are the pri-
mary immune cells strongly involved in obesity-associated inflammation in both mice and
humans [7,13–15]. Emerging studies have implicated the crosstalk between adipocytes and
adipose tissue macrophages (ATMs) as critical regulators of obesity-associated inflamma-
tion and metabolic complications.
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In this review, we provide an overview of the distinct subpopulations of ATMs in the
context of obesity, with particular attention paid to some novel subsets of ATMs character-
ized by single-cell or single-nucleus RNA-sequencing (sc/snRNA-seq) technologies. We
also review the latest research progress on the extensive interactions between adipocytes
and ATMs mediated by miRNA-containing exosomes or mitochondria transfer. More-
over, we also describe the extended crosstalk between perivascular mesenchymal cells and
ATMs. Study searches in this review were performed using the PubMed database from the
National Library of Medicine.

2. Adipose Tissue Macrophage (ATM) Subpopulations

White adipose tissue (WAT) is comprised of a versatile group of interacting cells,
including adipocytes, immune cells, and other cell types. It is evident that ATMs, the most
abundant immune cells in WAT, can even represent up to 40–50% of the cells in obese
adipose tissue [13]. ATMs are an extraordinarily heterogeneous population of immune
cells with varied and diverse functions (as summarized in Table 1), which have been
highlighted as important factors contributing to the pathogenesis of obesity and related
comorbidities. Historically, ATMs have been categorized into classically activated (M1-like)
and alternatively activated (M2-like) macrophages [16]. However, more and more novel
ATM subpopulations have been identified [14,15,17–23].

Table 1. Adipose tissue macrophage (ATM) subpopulations.

Macrophage Subpopulation Characteristics Function

M1-like
(classically activated) [16] F4/80+, CD11b+, CD11c+ Pro-inflammatory phenotype that secrete inflammatory

factors including TNF-α, IL-1β, IL-6, and NO
M2-like

(alternatively activated) [16] F4/80+, CD11b+, CD301+, CD206+ Anti-inflammatory phenotype that secrete
anti-inflammatory cytokines, such as IL-4 and IL-10

TIM4+ Adipose tissue-resident
Macrophages [21]

F4/80+, CD11b+, TIM4+, CD11c−;
expressing PDGFcc

Tissue-resident macrophages that modulate adipocyte
size and lipid storage

Sympathetic neuron-associated
macrophages [24,25]

expressing the NE transporter Slc6a2 and
the NE degradation enzyme MAOA

A novel resident macrophage subpopulation that
mediates noradrenaline clearance and dampens

SNS-to-adipocyte communication

CD9+ ATM [17] CD11b+, Ly6c−, CD9+; residing
within CLS Pro-inflammatory subpopulation

Lipid-associated macrophages [14] CD9+, CD63+, Trem2+ Tissue-resident macrophages that
counteract inflammation and adipocyte hypertrophy

Tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6), nitric oxide (NO), interleukin-
4 (IL-4), interleukin-10 (IL-10), platelet-derived growth factor (PDGFcc), norepinephrine (NE), solute carrier
family 6 member 2 (Slc6a2), monoamine oxidase A (MAOA), sympathetic nervous system (SNS), crown-like
structure (CLS).

ATMs were thought to be composed of two main phenotypes: classically activated
macrophages and alternatively activated macrophages, which are phenotypically and func-
tionally distinct [16]. The classically activated macrophages represent pro-inflammatory M1-
like macrophages, whereas the alternatively activated macrophages are anti-inflammatory
M2-like macrophages. M1-like macrophages express F4/80, CD11b, and CD11c and secrete
inflammatory factors including tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β),
IL-6, leukotriene B4 (LTB4), and nitric oxide (NO); whereas M2-like macrophages express
F4/80, CD11b, CD301, and CD206 and exhibit increased secretion of anti-inflammatory
cytokines, such as IL-4 and IL-10 [26,27]. The main roles of ATMs under lean condi-
tions are efferocytosis of dead adipocytes, the production of anti-inflammatory cytokines,
the regulation of adipocyte lipolysis, and the restriction of adipocyte progenitor prolif-
eration [28]. Conversely, as obesity progresses, most ATMs are converted from an anti-
inflammatory (M2-like) phenotype into a pro-inflammatory (M1-like) phenotype, secreting
pro-inflammatory cytokines (such as TNF-α, IL-1β) and causing localized and systemic
chronic low-grade inflammation, especially in WAT [29]. The insulin resistance and T2DM
would progress under the influence of this inflammatory state [30,31].

ATMs can be further widely divided into adipose tissue-resident macrophages and
recruited monocyte-derived macrophages. Tissue-resident macrophages are long-lived
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and self-renewing cells thought to have originated during embryonic hematopoiesis [32],
whereas monocyte-derived macrophages are short-lived cells recruited to adipose tissues
during inflammation [33]. Recently, multiple novel populations of adipose tissue-resident
macrophages have been discovered in adipose depots [21,22,34]. For example, a new
subpopulation of ATMs, TIM4+ adipose tissue-resident macrophages, has recently been
revealed to play essential roles in the formation and expansion of adipose tissue during
the development and diet-induced obesity [21]. Another novel resident macrophage
population (sympathetic neuron-associated macrophages, SAMs) has been discovered in
adipose tissue localized around neurons of the sympathetic nervous system (SNS) that
mediates noradrenaline clearance and dampens SNS-to-adipocyte communications [22,34].

With the recent advances in scRNA-seq technologies, emerging evidence suggests
that ATMs exhibit a wider spectrum of phenotypes and cellular identities than previously
described in the context of obesity both in mice and humans. By utilizing scRNA-seq
technology, Hill et al. identified three discrete ATM populations (CD11b+ Ly6c+; CD11b+

Ly6c− CD9+; CD11b+ Ly6c− CD9−), two of which (CD11b+ Ly6c+ and CD11b+ Ly6c−

CD9+) are associated with obesity [17]. CD11b+ Ly6c− CD9+ ATMs reside within crown-
like structures (CLS) and are lipid-laden and proinflammatory, whereas CD11b+ Ly6c+

ATMs reside outside CLSs and play angiogenic and adipogenic roles [17]. In a more recent
study, Jaitin et al. provided a comprehensive single-cell adipose tissue immune atlas in mice
and humans and described a novel Trem2+ ATM subpopulation, named lipid-associated
macrophages (LAMs), in obese adipose tissue [14]. These LAMs use lipid receptor Trem2
as a sensor of extracellular lipids and play protective functions to counteract adipocyte
hypertrophy, inflammation, and metabolic dysfunction [14]. Therefore, obese adipose
tissue contains multiple distinct ATM populations with unique origins, tissue distributions,
and functions. A comprehensive understanding of ATM heterogeneity in obesity is of great
importance for the development of future therapies.

3. Adipocytes and ATMs Crosstalk

The crosstalk between adipocytes and macrophages in adipose tissues is crucial
in obesity-induced metabolic complications. Adipocytes and macrophages can interact
with each other through a variety of mechanisms, including cytokine and chemokines,
microRNA-containing exosomes or microvesicles, and mitochondria transfer. These mecha-
nisms are discussed in this section and partly summarized in Figure 1.

3.1. Cytokines and Chemokines as Mediators of Crosstalk

It is well established that cytokines and chemokines secreted by immune cells ignite
localized and systemic inflammation, which builds up a pathogenic connection between
obesity and insulin resistance. Moreover, cytokines and chemokines are the major mediators
of ATM phenotype and crosstalk between adipocytes and ATMs which play critical roles in
the pathogenesis of obesity and associated metabolic complications.

The first evidence for a pathophysiological link between obesity, inflammation, and
insulin resistance was provided in 1901, when it was observed that the salicylate, an anti-
inflammatory drug as the principal metabolite in aspirin, could beneficially control glucose
in diabetics [35]. The concept was revisited, approximately a century later, when Hotamis-
ligil et al. demonstrated that TNF-α was elevated in the adipose tissue of obese mice and
neutralization of TNF-α ameliorated insulin resistance [36]. Subsequent studies reported
that TNF-α-deficient mice were free from high-fat diet-induced insulin resistance [37]. In-
creased TNF-α production was also observed in the adipose tissue of obese humans, while
the decline of TNF-α level was associated with weight loss in humans [38,39]. A milestone
forward in this field was provided by two simultaneous publications that reported inde-
pendently that obesity was associated with macrophage accumulation in adipose tissue,
which was known as the major source of inflammatory mediators (such as TNF-α) [13,40].
Mounting studies have demonstrated that monocyte-derived macrophages are recruited
into tissues (particularly into adipose tissue) via C-C chemokine receptor type 2 (CCR2) and
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secrete inflammatory cytokines such as TNF-α during obesity, thereby causing systemic
inflammation and insulin resistance. Therefore, all these studies suggested the central
role of macrophage-secreted inflammatory cytokines in the development of obesity and
related comorbidities.
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interact with each other through a variety of mechanisms, including cytokine and chemokines,
microRNA-containing exosomes or microvesicles, and mitochondrial transfer. ATMs, adipose tissue
macrophages; miRNA, microRNA; EVs, extracellular vesicles; HS, heparan sulfates.

Many other inflammatory cytokines and mediators such as IL-1β, IL-6, monocyte
chemotactic protein 1 (MCP-1), and macrophage inhibitory factor (MIF) have been impli-
cated in the pathogenesis of insulin resistance [26,41–45]. The production of inflammatory
cytokines during obesity has been well demonstrated to be regulated by the signaling
pathway of inhibitor of κB kinase-β (IKK-β) and nuclear factor-κB (NF-κB) [46,47], c-
Jun N-terminal kinase (JNK) [48,49], and the NLR family pyrin domain containing 3
(NLRP3) inflammasome [50–52]. There is enormous and excellent literature available on
this topic [53–56]. It is worth noting that novel pathways were found to regulate the inflam-
matory processes. For example, Yao et al. demonstrated that the iroquois homeobox gene3
(IRX3) in ATMs functions as a novel transcriptional factor for cytokine expression and
therefore accelerates the development of obesity and T2DM [57]. In addition, Fgr tyrosine
kinase, which is activated by reactive oxygen species (ROS), has been highlighted as a key
regulator for proinflammatory macrophages during diet-induced obesity [58].

Although dramatic progress has been made in our understanding of the role of in-
flammation in obesity-associated insulin resistance, clinical trials targeting inflammatory
mediators of obesity and T2DM (such as TNF-α and IL-1β) to improve glycemic control in
T2DM have shown limited benefits [25,59], indicating that there must be other factors con-
tributing to decreased insulin sensitivity. Bu et al. demonstrated that growth/differentiation
factor 3 (GDF3) produced from CD11c+ ATMs acts as a ligand of ALK7 in adipocytes to
inhibit lipolysis and expand adipose tissue under obese conditions [60]. The GDF3-ALK7
signaling pathway within WAT might represent an important interactive mechanism be-
tween adipocytes and ATMs in the modulation of adiposity [23,60]. In a more recent study,
Sharma et al. demonstrated that the neuroimmune guidance cue netrin-1 is essential for
orchestrating macrophage fate and function that accumulate in the obese adipose tissue [61].
Myeloid-specific netrin-1 deletion reduces the ATM accumulation in adipose tissue and
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reprograms the ATM phenotype during obesity. Therefore, mice lacking netrin-1 in myeloid
cells are protected from diet-induced obesity and metabolic dysfunction [61]. In addition,
Wang et al. identified a novel cytokine Slit3 which was secreted by M2-like macrophages
under cold exposure and regulated WAT beiging via stimulating norepinephrine secre-
tion [57].

3.2. MicroRNA and Exosomes as Novel Mediators of Crosstalk

MicroRNAs (miRNAs) are small non-coding RNAs consisting of 19–22 nucleotides
that govern gene expression at the post-transcriptional level via inhibiting the translation
of target mRNA [62,63]. Mature miRNAs are formed inside the cell and perform various
functions in the cytoplasm or after being released into the extracellular spaces, blood
circulation, and other body fluids, (i.e., urine and saliva) [64]. Notably, miRNAs can be
packaged into extracellular vesicles (EVs), including exosomes and microvesicles [65].
These EVs, cell-derived membranous structures, can deliver functional miRNAs to target
cells, thereby exerting intercellular communications and interorgan crosstalk [66].

The importance of miRNAs in the immunometabolism field is increasingly recognized.
Mounting evidence suggests that in addition to cytokines and chemokines, miRNAs or
miRNA-containing exosomes also mediate powerful paracrine functions between ATMs
and adipocytes. New mechanistic pathways involving the secretion of miRNA-containing
exosomes [67,68] or microvesicles [69] by adipocytes or ATMs have been demonstrated
to facilitate metabolic and inflammatory interactions between adipocytes and ATMs as
well as distal target tissues, which can regulate insulin sensitivity and modulate metabolic
homeostasis. Therefore, miRNAs have now been recognized as a new class of endocrine
factors and are strongly implicated in the pathogenesis of obesity and related comorbidities.

Evidence is accumulating that numerous adipocyte-derived miRNAs can modulate
macrophage phenotype and function and regulate insulin sensitivity via their paracrine
actions. For instance, miR-155 is secreted by adipocyte-derived microvesicles from obese
adipose tissue in mice. Adipocyte-derived miR-155 downregulates the protein level of
suppressor of cytokine signaling 1 (SOCS1), one of its proven targets [70], and promotes
pro-inflammatory M1-like macrophage polarization [69]. MiR-27a, a proven adipogenic
miRNA [71,72], is significantly upregulated in the serum of obese mice and humans [73,74].
Adipocyte-derived exosomal MiR-27a facilitates macrophage activation and induces insulin
resistance via inhibiting PPARγ during diet-induced obesity [73,74]. Moreover, miR-34a is
elevated in the adipose tissue of obese mice and clinical patients. Adipocyte-specific deple-
tion of miR-34a reprograms ATMs from pro-inflammatory M1-like to anti-inflammatory
M2-like phenotype and protects mice from obesity-associated inflammation, glucose intol-
erance, insulin resistance through repressing Krüppel-like factor 4 (KLF4) expression [75].
Taken together, this evidence suggests that adipocyte-derived microvesicles or exosomes
can transport miRNAs to mediate adipocyte-macrophage communications and modulate
metabolic homeostasis.

ATMs can also regulate in vitro and/or in vivo insulin sensitivity by secretion of
miRNA-containing exosomes. Ying et al. found that treatment of lean mice with ATM-
derived exosomes harvested from obese mice causes glucose intolerance and insulin resis-
tance, whereas treatment of obese mice with lean ATM-derived exosomes improves insulin
resistance [68]. Notably, miR-155 is demonstrated to be one of the miRNAs overexpressed
in obese ATM-derived exosomes which mediates the deleterious effects [68]. Moreover,
it is demonstrated that mice with miR-155 knockout exhibit improved insulin sensitivity
when fed with high fat diet [68]. In another work, Ying et al. treated mouse bone marrow-
derived macrophages (BMDMs) with IL-4 and IL-13 to induce M2 BMDMs generation and
harvested the released exosomes [76]. Treatment with M2 BMDMs-derived exosomes can
improve insulin sensitivity in vivo in obese mice and in vitro (in adipocyte, myocyte, and
hepatocyte) [76]. Moreover, as the authors illustrated, miR-690 is highly expressed within
M2 BMDM-derived exosomes and acts as a key insulin-sensitizing miRNA which improves
insulin sensitivity [76]. In addition, Liu et al. demonstrated that miR-29a is increased in
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ATM-derived exosomes from obese adipose tissue of mice which can be transferred into
adipocytes, myocytes, and hepatocytes causing insulin resistance in vitro and in vivo [77].
These works suggest that ATM-derived exosomal miRNAs can regulate insulin sensitivity
and metabolic homeostasis.

In summary, adipocytes and ATMs, residing within adipose tissue, can secrete miRNA-
containing exosomes or microvesicles and elicit phenotypes via various mechanisms in
obesity and associated complications. Therefore, it is promising that obesity-associated
miRNAs are new therapeutic targets for obesity and related diseases.

3.3. Mitochondria Transfer as Novel Mediators of Crosstalk

Mitochondria are essential organelles within eukaryotic cells and play important
roles in the processes such as oxidative phosphorylation, energy production, metabolic
homeostasis, redox regulation, and apoptosis [78,79]. Therefore, it is not surprising that
mitochondrial dysfunction is associated with many diseases, such as metabolic diseases
and neurodegenerative disorders. Intercellular mitochondria transfer has attracted more
and more attention within the scientific community in recent studies.

The first evidence for functional mitochondria transfer comes from the report that
genetic defects in mtDNA of A549 ρ◦ cells can be rescued by the transfer of healthy mito-
chondria from human stem/progenitor cells [80]. Emerging evidence now exists suggesting
that cells can release functional mitochondria that are transferred to and captured by re-
cipient cells [81–84]. Notably, mitochondria also can be loaded in EVs and acquired by
recipient cells via an EV-cell fusion manner [85,86]. Moreover, it is noted that functional
mitochondria, EV-related mitochondria, and mitochondria DNA can circulate in blood both
in mice and humans [84,87,88]. The intercellular mitochondrial transfer has been implicated
in a variety of physiological and pathological processes, including cardiac homeostasis [89],
acute lung injury repair [83], pulmonary hypertension [90], allograft rejection [87], and
ischemic stroke [91].

Mitochondria transfer is emerging as a novel mediator of endogenous crosstalk be-
tween adipocytes and macrophages within adipose tissue. Brestoff et al. demonstrated that
intercellular mitochondria transfer occurs in mice WAT and identified a novel adipocyte-to-
macrophage mitochondria transfer axis that modulates energy homeostasis and is impaired
in obesity [92]. These findings implicated a decrease in mitochondria transfer in WAT
as a sign of obesity, which might be considered a promising therapeutic target [92]. It is
demonstrated that intercellular mitochondria transfer is mediated by a heparan sulfates
(HS)-dependent mechanism in vitro and in vivo [92]. Moreover, mice with myeloid cell-
specific deletion of HS biosynthetic gene Ext1 exhibit impaired mitochondria transfer to
macrophages and increased susceptibility to diet-induced obesity [92]. In a more recent
study, Rosina et al. reported that thermogenic stimuli induce the EVs released from brown
adipocyte which contains damaged mitochondria [93]. These brown adipocyte-derived
EVs are captured and removed by brown adipose tissue (BAT)-resident macrophages via
the CD36-lysosome pathway, thereby maintaining the BAT thermogenic program [93].
Macrophage depletion causes the accumulation of mitochondria-containing EVs, sup-
presses the expression of mitochondrial proteins and thermogenic genes, and inhibits
BAT’s thermogenic response to cold exposure [93]. These findings highlighted the brown
adipocyte-to-macrophage mitochondria transfer axis as an important regulator to maintain
brown adipocyte mitochondria quality control and preserve BAT homeostasis [93]. The au-
thors even postulate that failure to remove damaged mitochondria in BAT due to impaired
EV production or macrophage phagocytic activity might contribute to the progressive
impairment of BAT function during obesity [93].

These findings illustrate a new pattern of immunometabolic crosstalk, adipocyte–
macrophage mitochondria transfer, which contributes to maintaining systemic metabolic
homeostasis. Further work is needed to elucidate how the mitochondria transfer to
macrophages affects metabolism homeostasis. However, treatment targeting intercel-
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lular mitochondrial transfer may be a promising strategy for the treatment of obesity and
related comorbidities.

4. Adipose Tissue-Resident Macrophages Directly Regulate Adiposity and
Energy Storage

In addition to short-lived monocyte-derived macrophages originating from hematopoi-
etic stem cells, there are long-lived tissue-resident macrophages that serve tissue-specific
purposes [94]. However, whether adipose tissue-resident macrophages serve their tissue-
specific purposes and support the function of energy storage in adipose tissue has not been
completely understood.

A new subpopulation of ATMs, CCR2-independent TIM4+ resident macrophages, has
recently been reported to modulate adiposity and energy storage in a paracrine manner via
the production of platelet-derived growth factor (PDGFcc) in mice WAT [21]. Genetic dele-
tion and pharmacological blockade of PDGFcc reduce adiposity, energy storage, and body
weight, and redirect excess lipids mostly toward thermogenesis [21]. This study challenges
the outdated M1/M2 macrophage polarization model in which adipose tissue-resident
macrophages can serve to sense increased nutritional status and support energy storage,
whereas recruited macrophages are responsible for characterizing systemic inflammation of
obesity and metabolic complications. Therefore, these data strongly indicate that different
developmental subsets of macrophages (including adipose tissue-resident macrophages
and recruited monocyte-derived macrophages) exert different functions within adipose
tissue and are independent targets of CCR2 and PDGFcc blockade. This study highlighted
the additional roles of macrophages beyond classical M1/M2 polarization in obesity de-
velopment and has the potential to inspire new immunomodulatory therapies that could
separately manipulate energy storage and inflammation during obesity.

5. Sympathetic Neuron-Associated Macrophages Indirectly Affect Energy Storage

Adipose tissue is densely innervated by the sympathetic nervous system (SNS), which
locally releases noradrenaline into adipose tissue and drives lipolysis and brown or beige
adipocyte thermogenesis [24,95,96]. Recent advances in three-dimensional adipose tissue
imaging have improved our understanding of how different cell types in adipose tissue
are organized and how they interact with one another [97,98]. Moreover, the interwoven
relationships between adipocytes, sympathetic nerves, and immune cells in the context of
obesity have attracted widespread attention.

In 2017, two landmark studies simultaneously identified noradrenaline-degrading
macrophage populations in WAT, which directly modulate the sympathetic innervation of
adipocytes [22,23]. Pirzgalska et al. demonstrated that adipose tissue-residing SAMs exhibit
specialized morphology for association with SNS neurons in WAT [22]. These SAMs that
import and catabolize noradrenaline via noradrenaline transporter (SLC6A2) and degrada-
tion enzyme (MAMO) are dramatically increased under obese conditions [22]. Mice with
genetic deletion of SLC6A2 from SAMs are resistant to obesity owing to decreased nora-
drenaline removal, enhanced SNS-to-adipocyte communications, and increased SNS-driven
lipolysis [22]. In another study, Camell et al. found that a specialized ATM subpopulation
(a SAM-like macrophage population) was activated in aged mice [34]. They further demon-
strated these ATMs regulate the age-related reduction in adipocyte lipolysis in adipose tis-
sue by degrading norepinephrine in an inflammasome-dependent manner [34]. In addition,
in the more recent study by Wang et al., it is demonstrated that under cold exposure M2-like
macrophages secret Slit3, which binds to ROBO1 receptor on sympathetic neurons and stim-
ulates noradrenaline release, leading to enhanced white adipocyte beiging and thermogen-
esis [99]. These studies identify a sympathetic neuroimmunological role for macrophages
in obesity and have opened up a whole new field of neuroimmunometabolism.

It is now well demonstrated that BAT is much more densely innervated by sympa-
thetic nerves than WAT [100]. The triangular relationship between brown adipocytes,
macrophages, and SNS has also been recognized. Wolf et al. reported that the nuclear
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transcription factor MECP2 is an important modulator of BAT function [101]. Mice lack-
ing MECP2 spontaneously develop obesity due to the impairment of BAT function [101].
Further mechanistic investigation indicates that MECP2-deficient macrophage upregu-
lates PlexinA4 expression which prevents the axonal outgrowth of Sema6A+ nerves and
diminishes sympathetic innervation of BAT [101].

6. Novel View—Cross-Talk between Perivascular Mesenchymal Cells and ATMs

Although recent research mainly focuses on the role of adipocytes and macrophages
in the development of metabolic adipose tissue inflammation, a new study recently high-
lighted that perivascular mesenchymal cells play a significant role in the regulation of
chronic adipose tissue inflammation during obesity.

In the study, Shan et al. utilized scRNA-seq and identified a mouse WAT perivas-
cular cell subpopulation, named fibro-inflammatory progenitors (FIPs) that stimulate
pro-inflammatory signaling and modulate accumulation of pro-inflammatory macrophage
in the adipose tissue during obesity [102]. These perivascular mesenchymal cells of the
adipose tissue are critical “gatekeepers” of macrophage accumulation in obesity. It is also
reported that the transcriptional regulator zinc-finger protein 423 (ZFP423) governs the
inflammatory response of perivascular mesenchymal cells [102]. Using in vitro studies and
in vivo mouse genetic models they determined that ZFP423 modulates NF-κB activity and
that expression of ZFP423 in perivascular mesenchymal cells suppresses inflammatory
signaling in FIPs and attenuates metabolic inflammation in obesity [102]. These studies
highlighted an important role for perivascular mesenchymal cells in the modulation of
chronic inflammation in adipose tissue during obesity, and indicate that proinflammatory
perivascular mesenchymal cells are potential targets for therapeutic treatment tailored to
control obesity and associated co-morbidities.

7. Conclusions

Mounting evidence has revealed that metabolism and immunity are inextricably
interwoven. Adipocytes and ATMs are the two most important cells within adipose
tissue which mediate obesity-associated inflammation and metabolic compilations. The
interactions between adipocytes and ATMs have been implicated to have a key role in the
development of obesity. Recently, new evidence has shown that aside from the well-known
cytokines and chemokines, miRNA-containing exosomes and mitochondria transfer are also
important mediators for cell–cell and organ–organ communications, especially adipocytes
and macrophages interaction in obesity. Moreover, it is found that ATMs have additional
roles beyond M1-M2 polarization and modulate adiposity and energy storage directly
and indirectly. In addition, it is demonstrated that adipose tissue-derived perivascular
mesenchymal cells are a significant “safeguard” of macrophage accrual in obesity. In a
word, we now have a much deeper understanding of the sophisticated interactions between
macrophages and adipocytes during obesity. This progress reveals several advances that
may be exploited in treatment to suppress the inflammatory response of effector ATM and
treat obesity and related complications.
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