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The gut microbiota has recently gained attention due to its association with cardiovascular health, cancers, gastrointestinal
disorders, and non-communicable diseases. One critical question is how the composition of the microbiota contributes to
cardiovascular diseases (CVDs). Insightful reviews on the gut microbiota, its metabolites and the mechanisms that underlie its
contribution to CVD are limited. Hence, the aim of this review was to describe linkages between the composition of the microbiota
and CVD, CVD risk factors such as hypertension, diet, ageing, and sex differences. We have also highlighted potential therapies for
improving the composition of the gut microbiota, which may result in better cardiovascular health.
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INTRODUCTION
Humans are surrounded, both externally and internally, by a
diverse range of microbes which profoundly affect wellbeing by
interacting with skin, respiratory, and digestive systems. They self-
organize, quickly mold to their changing environment and
develop a complex ecosystem within an otherwise uninhabitable
niche. The human halobiont is a very diverse assembly of
microbial species which makes a singular functional unit [1]. The
gastrointestinal tract harbors a complex community of over 100
trillion microbial cells that influence human physiology, metabo-
lism, nutrition, and immune function. Therefore, the gut micro-
biota is considered a singular functional unit sometimes termed
‘metabolic organ’ [2]. Some research estimates suggest that
human gut possesses ~1000 bacterial species with 100-fold more
genes than those found in the human genome [3, 4].
The gut microbiota can exert healthy benefits as well as

pathological effects on human health [5, 6]. Physiological
functions of the microbiota include metabolism of food,
fermentation of indigestible food, synthesis of vitamins, and
forming an epithelial barrier and barricade against pathogenic
bacteria [7]. Dysbiosis, a term referring to changes in the
composition of the microbiota and its metabolites has been
suggested to play a pivotal role in propagating inflammatory and
metabolic diseases including gastrointestinal disorders, cancers,
cardiovascular disease (CVD) [6], atherosclerosis, hypertension,
kidney disease, heart disease, obesity, type 2 diabetes mellitus,
and inflammatory bowel disease (Fig. 1) [5, 8]. Several metabolic
pathways may mediate the pathogenic effects of an altered
microbiota, including the trimethylamine (TMA)/trimethylamine
N-oxide (TMAO) and the bile acids pathways [8]. TMAOs have
been associated with increased risk for CVD [9]. In the last decade,
the relationship between the microbiota and cardiovascular
disease has become a major topic of interest. This review presents

a detailed and comprehensive overview of the published literature
in the last decade regarding some of the mechanisms, recent
advances, diagnostic approaches, and clinical implications of the
gut microbiota in contributing towards CVD.

GUT MICROBIOTA, ATHEROSCLEROSIS AND CVDS
The source of many of the microorganisms that have been
associated with atherosclerotic plaques, endothelial dysfunction,
and resulting CVDs is their translocation from the gut into the
systemic circulation. Metabolites produced by the microbiota may
also promote kidney injury as they are concentrated and excreted
in the kidney [10]. Conditions that increase microbial translocation
from the gut, such as HIV infection, overproduction of TMAOs and
urea have been linked to systemic inflammation, heart failure, and
hypertension [11]. Microbial urease leads to overproduction of
waste products, such as ammonia and ammonium hydroxide,
which are especially important in patients with chronic kidney
disease (CKD), whose urea excretion is already compromised [12].
Overproduction of ammonia and ammonium hydroxide disrupt
the tight junctions between intestinal epithelial cells resulting in
further enhancement of microbial translocation and systemic
inflammation [8, 9]. While the precise mechanism by which the
microbiota contributes to atherosclerosis remains unknown,
dysbiosis has been consistently associated with a leaky gut, with
abnormalities of lipid and glucose metabolism that are associated
with inflammation, and with the size of atherosclerotic plaques,
which ultimately contribute to the development and progression
of CVD and to its prognosis [13]. It has been shown that
atheromatous plaques of patients with coronary artery disease
(CAD) contain pathogenic Staphylococcus species, Proteus vulgaris,
Klebsiella pneumoniae, and Streptococcus species [7]. Their guts
exhibit an increase in Lactobacillus, Streptococcus, Esherichia,
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Shigella and Enterococcus species, concomitant with a reduction in
Faecalibacterium, Subdoligranulum, Roseburia, Eubacterium rectale
and Bacteroides fragilis species, the latter group known to regulate
T-cell functions in the gut mucosa with consequent anti-
inflammatory effects and protection of the gut barrier [7, 14]. In
patients at high risk for stroke, there is a reduction in butyrate-
producing bacteria such as those of the Lachnospiraceae and
Ruminococcaceae family, resulting in reduced fecal butyrate levels
and concomitant increases in intestinal pathogens such as those
of the Enterobacteriaceae and Veillonellaceae family [7]. Whether
microbiota has a direct role in the pathogenesis of other CVDs
such as abdominal aortic aneurysm (AAA) or peripheral artery
disease (PAD) is yet unknown but likely, since they contribute to
inflammatory processes and colonization of atheromatic plaques
in blood vessels, thereby enhancing the progression of various
atherosclerotic processes (Fig. 2). More studies are required to
understand the mechanisms and so devise future therapeutic
interventions. For example, reduced bile acid synthesis by a
dysbiotic microbiota has been shown to decrease the amount of
cholesterol eliminated via feces, with increases in absorption and
plasma levels of low-density lipoproteins. This may be an
additional mechanism that contributes to increased risk for
atherosclerosis and CVD in subjects with a dysbiosis [7, 9, 15].

Gut microbiota and hypertension
The pathophysiology of hypertension involves various contribut-
ing factors including genetic, lifestyle, environmental, hormonal,
inflammatory, and hemodynamic changes. Mounting evidence
from human and animal studies suggests that gut microbiota play
an indispensable function in the regulation of blood pressure [16–
29]. The evidence for an association between gut microbiota and
hypertension emanates from studies in murine models showing
that rats lacking normal gut flora experience elevated blood
pressure [29, 30]. Moreover, alterations in the composition of fecal
microbiota have been linked to modulation of blood pressure and
poor response to antihypertensive drugs [8]. Alpha diversity is the
parameter that reflects microbial diversity within a particular
ecosystem, as captured in a biological sample. Reduced alpha
diversity of the microbiota has been identified in hypertensive
patients. [17–25, 28]. Similar trends were observed in obesity,

hyperinsulinemia, and dyslipidemia. Moreover, studies in humans
demonstrated an association between a higher abundance of
Gram-negative microbiota including Klebsiella, Parabacteroides,
Desulfovibrio, and Prevotella and higher blood pressure levels, but
not all studies confirmed this pattern [16, 18, 21, 26]. The cross-
sectional HELIUS cohort study (HEalthy Life In an Urban Setting
study) demonstrated positive correlations between Klebsiella spp.
and Streptococcaceae spp. and blood pressure [24], and confirmed
the results from previous studies [25, 26]. A causal relationship is
suggested by experiments with fecal microbiota transplantation
(FMT). It was clearly shown that germ-free (GF) mice, which
received FMT from a hypertensive patient not only developed a
similar gut microbiota as that of the donor, but also elevated
systolic and diastolic blood pressures after 8 weeks when
compared with GF mice that received FMT from normotensive
donors [22]. Also, stroke-prone SHRs (spontaneously hypertensive
rats) harbor a dysbiotic gut microbiota that differs significantly
from that of normotensive WKY (Wistar-Kyoto) control rats. FMT
from SHRs into WKY controls increased the systolic blood pressure
of these otherwise normotensive rats [29]. Additional studies in
Dahl salt-sensitive rats [31], angiotensin II infused mice [32], high
salt treated mice [17], and deoxycorticosterone acetate-salt
hypertensive mice [33] demonstrated that all these hypertensive
animal models exhibit dysbiosis. Santisteban et al. recently
showed that SHRs exhibit the pathophysiological changes and
disrupted integrity of the gut epithelium, characteristic of other
forms of dysbiosis [34]. Finally, it has been shown that abnormal
intestinal permeability and dysbiosis can be reversed by treatment
with the antihypertensive agent losartan [35], suggesting that the
relationship between dysbiosis and blood pressure may be
bidirectional.
Several studies have implicated high salt in contributing to the

dysbiosis of both human and experimental animals. A seminal
study from Muller and colleagues demonstrated that high salt
treatment depleted Lactobacillus murinus from the gut microbiota,
resulting in an increase in TH 17 cells and salt-sensitive
hypertension, findings that were replicated in a pilot study in
humans [17]. Since high salt depleted Lactobacillus spp. and raised
blood pressure both in human and animals, this study indicates
that the link between gut microbiota and hypertension is not

Fig. 1 Diseases associated with dysbiosis. Abnormal changes in the composition of the microbiota (dysbiosis) is positively associated with
pathogenesis and propagation of heart disease, atherosclerosis, hypertension, obesity, type 2 diabetes mellitus, cancer, and gastrointestinal
disorders.

S.K. Masenga et al.

953

Journal of Human Hypertension (2022) 36:952 – 959



species-specific. Interestingly, other studies demonstrated that
either reduced salt or increasing Lactobacillus spp with probiotic
treatment improved blood pressure regulation, arterial compli-
ance, vascular function, and insulin sensitivity [17, 36, 37]. An
elegant systematic review and meta-analysis of randomized,
controlled trials showed that probiotics containing Lactobacillus
spp are effective in blood pressure regulation if used in sufficient
amount for at least 8 weeks [38].
Short-chain fatty acids (SCFAs) resulting from microbiota

metabolism have been linked to blood pressure mediated by
G-protein coupled receptor (GPCR) pathways in renin secretion
and blood pressure regulation [39]. Olfactory receptor (Olfr) 78
and GPR41 free fatty acid receptor stimulation by SCFA results in
elevated and decreased BP, respectively [8]. SCFAs such as acetate
and propionate produced by gut microbiota have antihyperten-
sive effects by decreasing systemic inflammation and athero-
sclerotic lesions which are independent predictors of hypertension
[39]. A composition of the microbiota characterized by abundant
Lactobacilli is known to have BP lowering effects. Other SCFA
produced by the gut microbiota such as lactate and butyrate also
have a significant impact on BP through vasodilation and
vasoconstriction mediated by GPR43, GPR41, and Olfr 78 [39]. A
summary of the relationship between the gut microbiota and
blood pressure is illustrated in Fig. 3.
Although research data indicate a great potential to target the

gut microbiota in contributing to treatment of hypertension by
using probiotics, changing lifestyle, and diet, further research is
warranted to better understand the role of various gut microbial
species and their metabolites in the regulation of blood pressure
and associated diseases. Further, it would be interesting to
understand the interaction among environmental factors, gut
microbial species, and blood pressure regulation.

Dietary lifestyle, microbiota, and CVD
Evidence suggest that diet potentially modulates the gut microbiota
by regulating the balance between pathogenic and beneficial
microbes or microbial products [40]. Vegetarian diets foster a

beneficial microbiota composition by increasing Prevotella enter-
otype whereas diets high in animal protein foster Bacteroides
enterotype and other species associated with proatherogenic
metabolites and CVD [40, 41]. The production of the proatherogenic
metabolite TMAO, resulting from TMA oxidation by the liver enzyme
flavin monooxygenase 3 and its release into the systemic circulation
have been linked to coronary plaques, peripheral artery disease, the
severity of CVD, and its complications including stroke, myocardial
infarction, and death [42, 43]. Common dietary nutrients possessing
a TMA moiety, such as the choline, phosphatidylcholine, and L-
carnitine present in red meat, fish, and eggs after microbial
metabolism, are the main contributors of TMAO-mediated effects
that promote artherosclerosis [9]. The underlying mechanisms by
which TMAO contributes to CVD remain unknown. However,
preliminary evidence suggests that TMAO stimulates inflammatory
pathways with activation of cells of the innate immunity response
that propagate atherosclerosis. Also TMAO interferes with platelet
function through stimulus-dependent calcium signaling, promoting
atherothrombotic events (Fig. 4) [44].
Diets rich in fiber such as whole grains increase the acetate-

producing Bifidobacteriaceae, which are protective against patho-
genic bacteria, lower blood pressure, improve insulin sensitivity,
and decrease cardiac hypertrophy and fibrosis [8, 45]. Polyphenols,
a large class of aromatic compounds found in plant-based
beverages have been shown to improve cardiovascular health
through their antiplatelet and anti-inflammatory actions, and by
inducing nitric oxide formation in blood vessels, promoting
vasodilation and improving gut microbiota with increased
Firmicutes and decreased Bacteroides. Quercetin, a member of
the subclass of flavonoid polyphenols increases the abundance of
Bacteroides vulgatus and Akkermansia muciniphila and concomi-
tantly reduces Eubacterium cylindroides and Bilophilia wadsworthia
to reduce the risk for diet-induced obesity which is a risk factor for
CVD and hypertension. Quercetin also improves cellular energy
homeostasis, fatty acid oxidation, and availability of nitric oxide by
upregulating adenosine monophosphate-activated protein kinase
(AMPK) expression.

Fig. 2 Microbiota’s contribution to atherosclerosis and CVD. Ammonia (NH3) and ammonium hydroxide (NH4OH) resulting from kidney
disease or the action of microbial urease and HIV infection in the gut contributes to microbial translocation and systemic inflammation.
Microbes colonize atherosclerotic plaques enhancing progression of various atherosclerotic processes. Dysbiosis contributes to decreased bile
formation that results in decreased cholesterol elimination and increased plasma levels of low-density lipoproteins. LEESE Lactobacillus,
Esherichia, Enterococcus, Shigella, and Streptococcus, FREBS Faecalibacterium, Roseburia, Eubacterium rectale, Bacteroides fragilis, and
Subdoligranulum.
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Diet induced alterations in the gut microbial composition may
also trigger disease states via immune activation. Regulatory
T cells (Tregs) are essential immune cells to maintain immunologic
self-tolerance that are categorized into two; thymus-derived and
peripherally derived Tregs [46]. Importantly, SCFAs, especially
butyrate, are known to induce the differentiation of peripherally
derived Tregs in the colon, through G-protein coupled receptors
[47]. This process is crucial to limit inflammatory activation.
Furthermore, SCFAs are essential nutrients for Tregs as well as
colonic epithelial cells [48]. Therefore, reduced consumption of
fermentable dietary fibers may decrease colonic Treg population
and predispose to chronic inflammatory states by reducing the
abundance of SCFA-forming bacteria [49].
There is increasing evidence showing the link between high

dietary salt and hypertension by modulation of the composition
and function of the gut microbiota [50, 51]. Additional blood
pressure phenotypes termed as salt sensitive and salt resistant
blood pressure have an impact on the magnitude of the effect of
salt on the gut microbiota. Excess dietary salt alters the gut
microbiota and activates dendritic cells that in turn activates
T cells and stimulate production of interleukin 17 (IL-17), tumor
necrosis factor alpha (TNF-α) and interferon gamma (IFN-γ)
leading to hypertension [51]. A high-salt diet may likely also
disrupt the gut barrier, which results in systemic inflammation,
insulin resistance, and increased blood pressure [52]. These studies
indicate a link between the diet and the gut microbiota. However,
more studies are needed to understand the underlying
mechanisms.

Sex differences in cardiovascular events and microbiota
Sex differences have been proposed to account for differential
effects of gut microbiota and resulting metabolite effects on
cardiovascular health owing to hormonal regulation and differ-
ences in dietary intake between males and female adults [39]. Sex
differences in the composition of gut microbiota have been
shown in both animal and human studies, although inconsistently.
Using two different mice strains, Elderman et al. [53] showed that
male mice had lower microbial diversity than female counterparts,
with almost 12% of the variance in diversity explained by sex.
Similarly, analysis of 89 different mice strains revealed significant
differences in microbial composition between the sexes, although

the direction of the change in each strain varied, suggesting that
the influence of sex on microbiota may depend on the animal
overall genotype [54].
Human studies showed similar inconsistencies. In the Human

Microbiome Project Consortium males had decreased Bacteriodes
and increased Prevotella populations [55], whereas in other
studies, these findings were not replicated [56]. The Belgian
Flemish Gut Flora Project and the Dutch LifeLines-DEEP study
revealed that sex had the 10th effect size among the 69 factors
shown to associate significantly with overall microbiota variation
[56]. Investigation of cohorts from different ethnicities did not
reveal a consistent sex-dependent microbial composition [56].
Therefore, whether sex effects on the microbiota are a determi-
nant of the different cardiovascular risk profiles in men and
women is a question awaiting answers in future studies.

The intersection between aging and the gut microbiota in
cardiovascular disease
Aging is associated with adverse cardiovascular health regardless
of one’s biological sex and race [57]. The primary acquisition of
microbiota occurs by exposure to the maternal one and this is
heavily influenced by birth mode. The microbiota later matures,
starting to resemble an adult microbiota as early as 2 years of age.
During aging, there is additional exposure to external microbes
through diet and contact with other environment factors such as
farm animals and pets [58]. This maturation of the gut microbiota
influences the development of the immune system and in some
individuals it may provide an imprint for increased risk of
inflammatory diseases such as inflammatory bowel syndrome,
obesity, and hypertension [59]. Aging is also associated with
reduction in bacterial diversity, unusual phylum proportions and
decline in health promoting bacteria species [60, 61]. Specifically,
the aging microbiota has been characterized by a reduction in the
Firmicutus:Bacteroidetes ratio [62, 63] and by overpopulation of
facultative anaerobes [64]. In conventionally housed mice,
microbial dysbiosis, intestinal permeability, and circulating bacter-
ial products increase with age, whereas these changes are not
observed in germ-free mice, which live longer [65]. FMT from old
donors is sufficient to induce phenotypes associated with aging in
young recipients. For example, FMT from aged mice increases fat
body mass, and food consumption, thus inducing an obesogenic

Fig. 3 Gut microbiota and high blood pressure. Microbiota metabolites SCFAs modulate distinct GPCRs and thereby affect blood pressure.
For example, activation of Gpr43 and 41 results in vasodilation and blood pressure attenuation. In contrast, activation of olfr78 increases SNA
and renin secretion resulting in blood pressure elevation. Moreover, high salt depletes lactobacillus spp. causing dysbiosis and activation of
inflammatory immune response by releasing IL-17 and other inflammatory signaling molecules consequently causing blood pressure
elevation. FMT is strong evidence to show that gut microbiota plays an indispensable role in the contribution of high blood pressure. SCFAs
short-chain fatty acids, GPCRs G protein-coupled receptors, SNA sympathetic nerve activity, FMT fecal microbiota transplantation, GF
germ free.
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phenotype in previously healthy adult mice [66]. Interestingly,
metformin attenuates obesity in old mice by increasing mucin
production and goblet cell mass in the gut. Metformin-induced
improvement in gut health leads to decreased low-grade
inflammation, a very important phenomenon seen in the elderly
population that has been named inflammaging [67, 68]. Indeed,
whereas healthy microbiota is associated with attenuation of
markers of inflammation [64], old microbiota induces differential
regulation of pathways including T cell differentiation, B-cell
development, and recognition of microbes by pattern recognition
receptors in young mice, further supporting a role of the gut
microbiota in inflammation [69]. TMAO supplementation induces
an aging-like endothelial dysfunction via reduced nitric oxide
bioavailability and increased superoxide-driven oxidative stress in
young mice [70]. Since TMAO and p-cresylsulfate are eliminated
through the kidney [71], the age-related decline in kidney
function, which is seen in both men and women, may exacerbate
the systemic accumulation of these metabolites further enhancing
pathways that lead to cardiovascular disease [72]. Age-associated
inflammation is a risk factor for adverse cardiovascular events,
thus, therapeutic approaches that target the gut microbiota may
be a potential approach to promote healthy aging.

Diagnostic and research approaches on gut microbiota state
Although the gut microbiota is too numerous to characterize, a
few analytical tools are available to aid in the study of specific
organisms of interest to disease. Metagenomic analysis is one of
the powerful tools currently used to reconstruct microbial species
and their function by examining genetic sequences. Quantification
of TMAO in systemic blood is helpful in assessing CVD severity and
complications. For example, elevated TMAO is present in patients
with stable PAD and is a significant predictor of acute coronary
syndrome, stroke, and death [7], in some cases independent of
traditional risk factors [7]. In addition to TMAO, plasma levels of
choline and betaine are elevated in patients with chronic heart
failure. The pathogenic mechanisms of TMAO in heart failure have
been previously described [11].

Drugs and the microbiota
Certain microbial species in the gut can inactivate or lessen the
potency of drugs prescribed to aid the management of CVDs. The
therapeutic effects of statins are attenuated by abundant presence
of Lactobacillus, Eubacterium, Faecalibacterium, and Bifidobacterium
and decreased proportion of genus Clostridium [5], which renders
these drugs relatively ineffective in decreasing LDL levels. Similarly,
treatment of atrial fibrillation, atrial flutter, and heart failure using
digoxin may not be efficacious when Eggerthella lenta strains are

abundant, since they inactivate this drug [5]. Conversely,
therapeutic drugs may alter the microbiota. For example,
metformin, the glucose lowering drug used in diabetes mellitus
treatment, cancers, CVD and other conditions increases the
amount of pathogenic Escherichia-Shigella species [5].

Microbiota potential therapy targets to improve
cardiovascular health
We have reviewed the evidence that diet has a profound impact
on microbiota composition and consequently, disease. Specific
vegetarian diets that foster a good microbiota environment that is
protective against CVD are recommended as the mainstay to
prevent or attenuate adverse cardiovascular effects via modula-
tion of the gut microbiota [73]. Dietary supplementation with
polyphenols is quite beneficial for cardiovascular health [8].
Caloric restriction and caloric restriction mimetics are emerging

as additional tools to modulate the gut microbiota and thereby
promote health. Intermittent fasting and molecules such as
polyphenols and beta-hydroxybutyrate decrease blood pressure
by modulating the gut microbiota and attenuating inflammatory
pathways [74–77]. Intermittent fasting is associated with changes
in the gut microbiota including enrichment of species of the
genus Lactobacillus, Oscillospira, and Ruminococcus and reduction
of species of the genus Akkermansia, Bacteroides, and Bifidobacter-
ium [78]. Most notably, the resulting gut microbial changes are
associated with changes in bile acid metabolism. Microbes are
responsible for modifying primary bile acids, synthesized in
the liver and released into the small intestine, to form secondary
bile acids [79]. Bile acids activate receptors such as the farnesoid x
receptor (FXR) and TGR5 to modulate inflammation, blood
pressure and vascular function [80–83]. Intermittent fasting
improves availability of bile acids, which are depleted in disease
states, and attenuates hypertension [84–86]. Thus, available
evidence supports modulating the gut microbiota via calorie
restriction modalities that improve health through mechanisms
such as bile acid signaling.
Administration of probiotics (live bacteria) may offer a protection

against CVDs [73]. In murine models, administration of Lactoba-
cillus plantarum, and Lactobacillus rhamnosus GR-1 mitigated the
effects of left ventricular hypertrophy, heart failure and myocardial
infarction [8]. Prebiotics, nondigestible food ingredients, are known
to promote bifidobacterial species and acetate-producing bacteria,
thus improve gut microbiota composition and cardiovascular
health [39, 44, 50]. Acetate regulates many pathways related to
cardiovascular health including the upregulation of early growth
response protein 1 (Egr1) transcription factor that decreases
inflammation, cardiac fibrosis, and hypertrophy [7].

Fig. 4 TMAO biosynthesis and metabolism. Choline, phosphatidylcholine, and L-carnitine found in fish, red meat and eggs are metabolized
into TMA by colonic microbiota. The TMA that enters the systemic circulation is oxidized into TMAO by FMO3 in the liver, which is released back
into the circulation, leading to platelet and inflammatory pathway activation. Inflammatory injury in the endothelium, along with increased
foam cell formation and platelet activation, contributes to the progression of atherosclerosis and development of atherothrombotic events.
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FMT, commonly used in treatment of Clostridium difficile
infection and in inflammatory bowel diseases like ulcerative
colitis is another emerging technique that has also been
targeted to mitigate CVD [7, 8]. Evidence that FMT improves
the components of the metabolic syndrome has been already
provided [7]. However, the risk for introducing pathogenic
microbes and toxins and increasing the risk for other patholo-
gical processes is high. An example reviewed above is that FMT
from a hypertensive to a germ-free mice induces hypertension
in the latter [7]. Hence, implementation of microbiota trans-
plantation is still a challenge that needs further investigations.
Targeted therapy against gut microbiota metabolites such as

TMAO may prove to be helpful as the administration of 3,3-
dimethyl-1-butanol which blocks the TMA/TMAO ameliorated the
harmful effects of a high-sugar and high-fat Western die on
cardiac health [7].

Clinical implications of gut microbiota and future aspects for
research
It is clear that gut microbiota science has far-reaching clinical
implications for management of CVDs. Diagnosis, prognosis, and
monitoring of CVDs can be supplemented with characterization,
quantification, and to a lesser extent, transplantation of specific gut
microbiota and its metabolites. Dietary supplementation remains
the safest probable method to improve the gut microbiota and its
associated detrimental cardiovascular effects.

CONCLUSION
Dysbiosis increases the risk for various CVDs through several
mechanisms. It is associated with microbial translocation from the
gut into the interstitium and perivascular tissues resulting in
systemic inflammation, abnormalities of lipid and glucose meta-
bolism, atherosclerosis, and hypertension. Western diet and timing
of feeding contribute to the risk for CVD by modulating the gut
microbiota. High dietary salt intake contributes to dysbiosis and
development of hypertension and increases the risk for various
CVDs. Sex-dependent microbial composition is emerging as one of
the risk factors for CVD. However, there is still scarcity of data on
this subject and it warrants further investigation. Aging is
associated with a decline in health-promoting bacteria species
and with enhancement of metabolic pathways that lead to
cardiovascular disease. Thus, the gut microbiota is intricately
involved in various CVDs. Understanding this relationship is critical
for future targeted therapy to prevent and improve CVDs and to
ameliorate cardiovascular adverse events. Quantification of TMAOs
is an important marker for prognosis of certain cardiovascular
events such as stroke, heart attack and death. Use of pre- and
probiotics and TMAO inhibitors, has great potential for future
therapy in managing CVDs.

Summary

What is known about the topic

● The gut microbiota affects cardiovascular health. Although the
mechanisms are unknown, the composition of the gut
microbiota modulates risk for cardiovascular disease.

● Leaky gut is associated with inflammation. Microbial translo-
cation elicits an inflammatory cascade that may exacerbate
existing disease or induce cardiovascular diseases.

What this study adds

● Dysbiosis is associated with increased risk for specific diseases.
Abnormal composition of the gut microbiota is linked to the

pathogenesis and propagation of heart disease, atherosclero-
sis, hypertension, obesity, type 2 diabetes mellitus, cancer, and
gastrointestinal disorders.

● High salt diet depletes lactobacillus spp. causing dysbiosis and
activation of inflammatory immune response by releasing IL-
17 and other inflammatory signaling molecules consequently
causing blood pressure elevation.

● Gut metabolites contribute to vascular injury and thrombotic
events. Choline, phosphatidylcholine, and L-carnitine found in
fish, red meat, and eggs are metabolized into compounds that
activate platelets and activate inflammatory pathways result-
ing in endothelial injury, and contributing to the progression
of atherosclerosis and development of atherothrombotic
events.
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