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Abstract: The body of mammals harbors two distinct types of adipose tissue: while cells within the
white adipose tissue (WAT) store surplus energy as lipids, brown adipose tissue (BAT) is nowadays
recognized as the main tissue for transforming chemical energy into heat. This process, referred to
as ‘non-shivering thermogenesis’, is facilitated by the uncoupling of the electron transport across
mitochondrial membranes from ATP production. BAT-dependent thermogenesis acts as a safeguard-
ing mechanism under reduced ambient temperature but also plays a critical role in metabolic and
energy homeostasis in health and disease. In this review, we summarize the evolutionary structure,
function and regulation of the BAT organ under neuronal and hormonal control and discuss its
mutual interaction with the central nervous system. We conclude by conceptualizing how better
understanding the multifaceted communicative links between the brain and BAT opens avenues for
novel therapeutic approaches to treat obesity and related metabolic disorders.
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1. Brown Adipose Tissue (BAT) Architecture and Thermogenic Function
1.1. Introduction: Metabolism Matters!

The year 2016 represents a dramatic and alarming turning point in the history of
humankind: According to the World Health Organisation (WHO), for the first time there are
more people killed by overweight than by underweight. With an incredible 2 billion adults
being overweight and 650 million obese (as defined by Body Mass Index/BMI ≥ 30 kg/m2),
the world is likely to harbor more than one billion obese adults by 2025, a health burden
which is a dramatic menace for the world-wide health systems. While this alarming trend
is global (with the exception of sub-Saharan Africa and Asia), obesity itself and the entirety
of associated comorbidities is, of course, preventable. Understanding how the human body
orchestrates the input of dietary fuels and output of energy and thus facilitates homeostasis
(and why this obviously does not work efficiently in obese patients) will be key to face
the upcoming obesity pandemic and to design smart prevention and treatment strategies.
Luckily, groundbreaking basic and translational research in the area of metabolism and
metabolic diseases has sparked the scientific interest in one peculiar (and often overlooked)
tissue which eventually could turn into the most attractive target to fight the imminent
health crisis. This review article focusses on the function and complex regulation of this
promising and exciting metabolic organ.

1.2. Overview of BAT Discovery and Architecture

Homoeothermic animals require tight control of their core body temperature in order
to keep up organismal functions and avoid systemic damage by hypothermia. With the
intention to investigate the cellular basis for this vital function, a peculiar tissue consisting
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of fat cells (adipocytes) with numerous small lipid droplets and an unusually high number
of mitochondria was discovered in the interscapular region at the back of marmots. Due to
the high iron content of the mitochondria and the distribution of lipid droplets throughout
the cytoplasm, this tissue appears histologically dark red to brown why it was referred
to as ‘Brown Adipose Tissue’ (BAT). This designation contrasts with the White Adipose
Tissue (WAT, located at the abdomen, around the waist and thighs), which usually contains
only limited mitochondrial mass and one big liposome conveying its typical yellowish
appearance. While WAT is well recognized as the main tissue for storing excess calories in
the form of lipids (i.e., triglycerides/TG), BAT was long thought to be exclusively devoted
to the regulation of body temperature during hibernation. It took until the beginning of the
20th century to discover that the BAT is not only a heat-producing organ in hibernating
mammals but is also regulating thermogenic function in non-hibernating organisms in
response to external stress conditions, i.e., acute cold stress and long-term cold acclimation
(for review see [1]). How far BAT thermogenic activity also contributes to hyperthermia
during fever is still a subject of ongoing debate (see below).

Technical advances in the field of imaging technology, particularly hybrid positron
emission tomography/computed tomography (PET-CT), and functional analyses using
traceable glucose analogs (such as 18F-fluoro-2-deoxy-d-glucose/FDG), have greatly con-
tributed to unraveling more important details on BAT morphology and function. The
relative mass and distribution of BAT dramatically change during early development and
across the entire life span. Neonatal mammals and infants are largely protected against
cold stress due to dense BAT depots within their interscapular regions. In contrast, adult
mammals (in addition to hibernating species) were long time believed to harbor only minor
remnants of BAT without physiological relevance. In this regard, the years 2007–2009
represent a major turning point since several groups independently demonstrated the
presence, functional activity and metabolic plasticity (i.e., the ability to adjust metabolically
to external conditions) of BAT conserved in adult humans [2–4] with six main anatomical
storage sites in the human organism: cervical, supraclavicular, mediastinal, paravertebral,
axiallary and abdominal [5] (Figure 1).
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Figure 1. Brown Adipose Tissue (BAT) localization, architecture and role in thermogenesis. ATGL,
adipose triglyceride lipase; fFAs, free fatty acids; GLUT, Glucose transporter; HSL, hormone-sensitive
lipase; NE norepinephrine, PKA, protein kinase A, TG, triglycerides.

1.3. Metabolic Function of BAT

BAT is now recognized as the main tissue in the organism for transforming chemical
energy (stored in the form of lipids) into thermic energy (i.e., heat). This process, referred
to as ‘non-shivering thermogenesis’ (as opposed to the shivering of muscles that generates
heat as a byproduct of muscle activity), fulfills at least two important functions: First, it
represents a safeguarding mechanism both under short-term cold stress and long-term
cold acclimation conditions to protect key organs from hypothermic damage by warm-
ing the blood flow. Second, BAT thermogenesis is a major regulatory process ensuring
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systemic metabolic homeostasis by increasing glucose uptake and combusting energy in
response to surplus nutrient conditions (reviews: [6,7]). In addition, recent research has
shown that the physiological role of BAT is not only to produce heat but also to act as an
endocrine/paracrine organ, secreting molecules that affect systemic physiology and thus
shape whole-body metabolism. The group of these secretory factors (collectively named
‘batokines’ [8,9]) comprises various types of signaling molecules, including peptides (such
as FGF-21, IGF-1, follistatin, IL-6 and RBP-4), lipid-based metabolites (e.g., 12,13-dihydroxy-
9Z-octadecenoic acid) and even exosomal microRNAs (e.g., miR-99b). Batokines enhance
the thermogenic capacity by promoting BAT hypertrophy, adipose tissue vascularization
and WAT beiging, but they also exert long-distance control of metabolism—particularly
whole-body glucose and lipid disposal—by conveying systemic signaling cues to metabolic
organs. Moreover, they mediate the general metabolic activity of the liver, heart and muscle,
and affect vascularization, WAT/BAT innervation and immune functions [10–12].

Given this central role of BAT for both energy dissipation and endocrine/paracrine
control of metabolic balance, significant attention has been directed within the last years
toward exploiting BAT thermogenic function for the treatment of obesity and associated
comorbidities. In fact, there are several interesting arguments for targeting BAT activity in
the development of novel therapies for weight management and metabolic diseases. First,
concerning the overall metabolic function of BAT, it was demonstrated that cold-induced
BAT activity as determined by (18)FDG-PET correlates with human leanness [3] and that
BAT-positive persons at (18)FDG-PET had lower visceral and subcutaneous abdominal
adipose tissue and liver fat content than BAT-negative persons [13]. Moreover, subjects
with more active BAT exhibit better metabolic profiles [14], including lower fasting glu-
cose levels [15] and higher insulin-stimulated glucose disposal [16], as well as reduced
arterial inflammation and resulting arteriosclerosis [17]. Notably, a recent largescale epi-
demiological study indicates that BAT presence inversely correlates with hyperlipidemia,
type 2 diabetes (T2D) and major cardiometabolic diseases [18]. Overall, it was reported
that a fully-activated BAT organ could dissipate energy equivalent to approximately 4 kg
of WAT over one year [4,15]. Consequently, current evidence suggests that BAT-dependent
energy combustion significantly contributes to whole-body energy expenditure and that or-
gan activity is linked with multiple beneficial effects on energy homeostasis and metabolic
outcome parameters. As a consequence, recruiting BAT volume and boosting its activity
may represent an attractive target for the development of novel pharmacological drugs
against obesity and its comorbidities such as cardiovascular disease, diabetes and cognitive
decline (see Section 3).

1.4. Molecular Mechanisms of BAT Thermogenesis

However, how exactly do brown adipocytes accomplish their job? At the cellular level,
the greatest energy transformation in humans and other eukaryotes occur in the mitochon-
dria. Here, the electrochemical gradient of protons (H+) across the inner membrane of the
respiratory chain usually drives the phosphorylation of ADP to ATP via the activity of
the F0/F1-ATP synthase. Therefore, under physiological conditions, respiration is directly
coupled to ATP production. In BAT adipocytes, this fundamental mechanism is hijacked
and exploited to translate chemical energy into thermic energy by bypassing (‘uncoupling’)
the electron transport from ATP production (see [19] for an excellent review). The most
prominent and best-characterized effector of this process is a protein termed cold-inducible
mitochondrial uncoupling protein 1 (UCP1) [19–21].

UCP1 (also known as thermogenin) represents a member of the large mitochondrial
anion carrier family whose members facilitate the shuttling of ions across mitochondrial
membranes. It is a multi-pass transmembrane protein spanning the inner membrane
within mitochondria. In the presence of free fatty acids (derived from TG breakdown
by lipolysis), UCP1-channels mediate the leakage of H+ ions from the intramembrane
space to the mitochondrial matrix, thereby uncoupling the electron transport from ATP
synthesis [20,22] (Figure 1). As a consequence of this mitochondrial short-circuit, heat is
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produced within mitochondria and distributed across cell and tissue barriers via the blood
stream to increase the body core temperature.

The canonical activation pathway for cold- and diet-induced BAT thermogenesis relies
on neurotransmitter-mediated activation of β-adrenergic receptors (mainly of the β3 sub-
type, β3ARs) on brown adipocytes [23]. Engagement of these G-protein coupled receptors
leads to cAMP-mediated activation of protein kinase A (PKA), which activates adipocytic
lipases (such as adipose triglyceride lipase/ATGL and hormone-sensitive lipase/HSL)
that convert triglycerides (TG) into free fatty acids (fFAs). Synthesis of fFAs from TG in
BAT is further fueled by glucose uptake and generation of TG from glucose catabolism via
pyruvate and acetyl-CoA. After the import into the mitochondria, fFAs bind to UCP1 and
trigger steric changes of UCP1 binding domains that affect its tridimensional conformation,
eventually resulting in leakage of protons into the matrix and subsequent heat production.

Importantly, while UCP1-dependent mitochondrial uncoupling appears to be the
most prominent pathway for thermogenesis in BAT (mainly induced by cold and nutrient
surplus), recent reports have identified interesting alternative pathways that act either
in concert or entirely independent of UCP1. Adipocytes within the WAT that acquire
brown-like features upon appropriate stimulation (sometimes referred to as beige or brown-
in-white/‘brite’ adipocytes) have been shown to exploit a calcium cycling mechanism
selectively for heat production. This mechanism relies on Ca2+ ATPase 2b, an ATPase that
represents the pivotal pump for sequestering calcium from the cytosol into the endoplas-
matic reticulum (ER) and thus is involved in ER stress responses [24]. Moreover, it has
repeatedly been demonstrated in both beige and brown adipocytes that the mitochondrial
Creatine Kinase and its substrate Creatine elicit an ATP→ ADP turnover cycle that results
in thermogenesis by dissipation of stored energy and that this mechanism is downstream
of canonical β3-adrenergic signaling, thus acting in parallel to UCP1 (for review, see [25]).
Finally, a UCP1-independent but fatty acid-activated pathway has been described by Bert-
holet and colleagues that utilizes the ADP/ATP carrier (AAC) located at the mitochondrial
inner membrane. Patch-clamp measurements of isolated mitochondria could demonstrate
pronounced proton leaks dependent on AAC in the absence of UCP1 [26].

In general, the concept is emerging that molecular mechanisms that result in a decrease
in the cellular ATP/ADP ratio convene on exerting thermogenic activity, either via UCP1
or in a UCP1-independent fashion.

In the following paragraph, we would like to review current knowledge about how
the Central Nervous System (CNS), together with other signaling pathways, is equipped
to regulate BAT activity in a bidirectional manner systemically, and how these regulatory
pathways adapt during the process of metabolic disease, as such might offer interesting
options for complementary management of obesity and related diseases.

2. Control of BAT Activity by the CNS, SNS and Endocrine Signals
2.1. Neuronal and Endocrine Control of BAT Activity

Given the pivotal importance of energy homeostasis for the organism, it is not surpris-
ing that BAT activity is regulated by various pathways that jointly integrate environmental
as well as internal signals in order to fine-tune thermogenesis and nutritional energetics in
an orchestrated manner [27,28] (Figure 2). Owing to its high oxygen consumption, BAT is a
highly vascularized tissue but also contains a high density of unmyelinated nerve fibers
that provide stimulation by the sympathetic nervous system (SNS). The CNS plays a key
role in sensing and controlling the energy status of the organism, while the hypothalamus,
in particular, has emerged as an integrating, superordinate master regulator of whole-body
energy homeostasis and expenditure. SNS innervation of BAT is largely facilitated by the
autonomous secretion of neurotrophic factors by the target organ, but it has recently been
shown that γδ-T cells significantly contribute to BAT sympathetic innervation by stimu-
lating expression of neurotrophic TGF-β via the key T cell cytokine IL-17 [29]. Adipose
tissue thermogenesis is highly dependent on the SNS outflow derived from specific regions
of the brain and the hypothalamus, whose neurons terminally secrete the postganglionic
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neurotransmitter norepinephrine (NE), which binds to and activates β3-adrenergic recep-
tors (β3ARs) on brown adipocytes. As outlined above, this receptor activation essentially
triggers BAT lipolysis and UCP1-dependent thermogenesis.
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Figure 2. Multifaceted regulation of BAT activity. Thermogenic activity in brown adipose tissue
(BAT) is controlled in response to cold exposure or caloric excess via various control mechanisms.
These include the Sympathetic Nervous System (SNS) originating within the hypothalamus, crosstalk
with White Adipose Tissue (WAT), modulation by thyroid hormones, transcriptional regulation
by the circadian rhythm and input from liver, muscles and gastrointestinal tract (GIT). The latter
mechanism can be mediated either directly via the secretion of gut hormones such as secretin by GIT
cells or by alterations in the gut microbiome and subsequent changes in microbial metabolite profiles
within the GIT or the circulation (with long-ranging effects on the entire body). Neuronal signaling
routes are displayed in red, and molecules exerting signaling effects are shown in blue. BAs, bile
acids, BCAA, branch-chained amino acids; GCG, Glucagon; GIP, gastric inhibitory peptide; GLP-1
Glucagon-like protein-1; HyT, hypothalamus; NE, norepinephrine; SCFA, short-chained fatty acids;
secBA, secondary bile acids; SNS, sympathetic nervous system; PG, pituitary gland.

It is important to note that, in addition to β3AR signaling, alternative ligand/receptor
systems for activation of BAT have been identified: Using animal models and both genetic
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and pharmacological intervention, Thorsten Gnad and colleagues from Alexander Pfeifer’s
group demonstrated convincingly that engagement of adenosine receptors A2A and A2B
can also efficiently activate BAT activity and differentiation (‘browning’) of WAT [30,31].
They conclude that in addition to canonical NE/β3AR signaling, the adenosine signaling
cascade may have therapeutic benefits for both aging and obesity.

Hypothalamic activation of this SNS-to-BAT signal is controlled by several upstream
input circuits whose exact identity, mode of regulation and interdependencies are only
beginning to be explored (for review, see [32]). So far, two main distinct neuronal pathways
have been characterized to regulate the hypothalamic control of SNS-to-BAT signaling. The
first one involves brain regions that facilitate the regulation of body temperature (termed
‘thermoregulatory pathway’), while the other one is defined by brain areas controlling
the response to dietary nutrient uptake and consumption (‘energy homeostasis pathway’).
Each of these circuits comprises a specific population of neurons and integrates signals
from different sources (Figure 3).
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Figure 3. Neural circuitry controlling BAT activity. Major neuronal signaling routes are displayed
in red, and molecules exerting signaling effects are shown in blue. β3AR, β3 adrenergic receptor;
AdR, adenosine receptor(s); BAT, brown adipose tissue; DMH, dorsomedial hypothalamus; ECs,
Endocannabinoids; GIT, gastrointestinal tract; HyT, hypothalamus; IML, intermediolateral nucleus;
LHA, lateral hypothalamic area; MCs, Melanocortins; NE, norepinephrine; PG, pituitary gland;
POA, preoptic area; Rp, Raphe pallidus; SNS, sympathetic nervous system; VMH, ventromedial
hypothalamus; WAT, white adipose tissue.

As part of the thermoregulatory pathway, thermoreceptive neurons monitor the tem-
perature of the skin. These neurons (which represent selective receptors for either warmth
or cold) transmit thermal signals to one prominent nucleus within the hypothalamus
termed the ‘preoptic area’ (POA) that serves as the central integrator of temperature signals.
As demonstrated in preclinical models, cold exposure or direct hypothermic sensations
within this nucleus result in POA-mediated SNS-to-BAT signaling and subsequent acti-
vation of BAT thermogenic activity [33–35]. The direct sensation of coldness or warmth
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is signaled via inhibitory GABAergic neurons within the POA, which in turn negatively
regulate other neuronal subpopulations within the dorsomedial hypothalamus (DMH) [28].
Signals are further transmitted from the DMH to other CNS regions (e.g., the Raphe pallidus
(Rp) located in the ventral tegmentum, the intermediolateral nucleus (IML) within the
spinal cord), finally resulting in sympathetic activation of BAT activity. An additional
level of inhibitory regulation is facilitated by neuropeptide Y (NPY) expressing neurons
within the DMH, which have been discussed to inhibit BAT activity by their negative
regulatory role on glutamatergic DMH neurons [28]. Importantly, these complex circuits
are also under the control of adiposity signals involved in energy control since both adipose
tissue-derived leptin and ß cell-derived insulin are capable of modulating the sympathetic
signal, presumably by activating GABAergic neurons within the DMH [32].

A recent report by Makwana et al. complements this picture by demonstrating in a
genetic mouse model that calcitonin gene-related peptide α (CGRPα)—expressing heat-
sensing neurons in the skin also significantly contribute to adaptive thermogenesis and diet-
induced obesity [36]. In the context of the thermoregulatory pathway, it is important to note
that the contribution of BAT thermogenic activity to hyperthermia as a result of inflamma-
tory fever is unresolved. Several studies used advanced model systems (e.g., Interleukin-1
beta/IL-1β dependent fever induction, RNAscope technology) to analyze the role of BAT
in heat production during febrile responses. These studies identified glutamatergic neurons
within the median preoptic area (MnPO) that project to the DMH to be crucial for fever-
related BAT thermogenesis [37–39]. On the other hand, Anna Eskilsson and colleagues used
Ucp-1 knock-out mice and lipopolysaccharide (LPS) administration to demonstrate that the
thermogenic activity of Ucp-1 positive BAT is not involved in LPS-induced inflammatory
fever [40]. Importantly, the experimental procedures to induce febrile responses and the
model systems used in this study were very different and hardly comparable. It is tempting
to speculate that various pro-inflammatory scenarios may result in different responses, with
a divergent contribution of BAT thermogenic activity. It, therefore, remains to be elucidated
how important BAT activity is for the control of body temperature during various types of
fever in humans.

The hypothalamic energy homeostasis pathway comprises several distinct yet prob-
ably interconnected signaling systems which receive input from other extrahypothala-
mic brain regions (such as the nucleus of the solitary tract) to regulate food intake and
energy expenditure:

The endocannabinoid system has recently emerged as a major contributor to the
beneficial effects of bariatric surgery on metabolic improvements through its effects on ther-
mogenesis. Endocannabinoids (EC) are endogenous fatty acid-based neurotransmitters that
act via their cognate receptor proteins (endocannabinoid receptor—1/CB-1 and CB-2) in the
CNS and the periphery. Responding to a plethora of stimuli (including physical exercise,
food intake, glucocorticoids and general stress sensation), they mediate several vital biolog-
ical functions, including regulation of energy balance, development, immune functions,
mood and appetite regulation [41–45]. In the context of psychoactive compounds, CB-1,
which is primarily expressed in the brain, is effectively activated by tetrahydrocannabinol
(THC), the chemical exerting most of the psychological effects of cannabis. Under physio-
logical conditions, CB-1 activation increases energy expenditure and mediates nutritional
homeostasis via the engagement of sympathetic efferent pathways. Interestingly, CB-1
signaling has also been discussed to be involved in the regulation of epithelial barrier
function in the intestine and control of gut microbiota composition [46,47]. These data
argue in favor of the currently heavily discussed interaction between nutrient supply, gut
microbiota composition and control of energy homeostasis via CNS-mediated neuronal
circuits [48–50]. In a recent report, Yuanchao Ye and colleagues demonstrate that the benefi-
cial metabolic effects of Roux-en-Y gastric bypass (RYGB) surgery in diet-induced obese
mice are partly attributable to increased activity of the splanchnic nerve (a part of the SNS)
by activation of CB-1 which result in visceral WAT (vWAT) browning, enhanced visceral
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thermogenesis and increased resting metabolic rate [51]. These observations emphasize the
role of potential pharmacological modulation of SNS-associated signaling cascades.

Melanocortins (MCs, e.g., adrenocorticotropic hormone/ACTH, melanocyte-stimulating
hormones/MSHs) represent a family of peptide hormones also involved in the regulation
of food intake and energy homeostasis. Responding to the respective nutritional status and
eating behavior, MC release from the pituitary gland is controlled by two important hormones
which are functionally intertwined, the adipose tissue-derived leptin (sometimes dubbed
the ‘starvation hormone’) and the ‘hunger hormone’ ghrelin, secreted predominantly by
endocrine cells within the gastric mucosa. Secreted MCs act via binding to G-protein coupled
receptor (GPCR)—type MC receptors (with MC3-R and MC4-R being mainly expressed within
the brain). These receptors are both activated by the binding of α-MSH and inhibited by
the intrinsic antagonist Agouti-related peptide (AgRP). Using transneural retrograde tracing
by Pseudorabies virus, the group of Timothy J. Bartness has shown that SNS innervation of
interscapular BAT (iBAT) originates in brain regions that significantly express MC4-R [52].
In line with this observation, the injection of an MC4-R agonist directly into the brain is
capable to activate iBAT thermogenesis [45,46]. Focusing on the link between CNS and white
adipocytes, Jenna Holland and colleagues demonstrated that Mcr-4-/- mice with reduced brain
MC signaling experience gain in WAT fat mass due to increased lipogenesis and proliferation
of WAT cells. These effects were conveyed by efferent innervation of the vagus nerve, as
shown by subdiaphragmatic vagotomy [53]. The vagus nerve represents the longest and
probably most important nerve of the parasympathetic system and controls various vital
organ functions, such as heart activity and digestion. The authors could demonstrate that
vagal signals contribute to obesity caused either by Mcr-4 deficiency or high-fat feeding.
Intriguingly, as demonstrated by pair-feeding of wildtype and Mcr-4 knock-out animals, the
vagus-mediated gain in fat mass was independent of caloric intake. These data emphasize the
role of the vagal signals for energy homeostasis and may demonstrate that brain-melanocortin
signaling controls the fat mass of the organism at least by two mechanisms, indirectly by
controlling energy balance and directly by SNS-mediated lipid mobilization in BAT.

It is important to note that most of the above-mentioned experiments concerning MC
signaling were performed in hibernating animals whose major BAT depot is located in the
interscapular region. As evidence for the functionality of iBAT depots in human adults
is still limited, the scope to which these mechanistic insights of BAT activation via MCs
from rodent models could be used for the treatment of metabolic disease in humans is still
unclear (for critical review see [54]). On the other hand, since the MC system represents
one of the pivotal downstream signaling axes activated by leptin, it is tempting to speculate
that involvement of leptin gene variants or impaired leptin receptor signaling in early
onset obesity [55] may at least partially be promoted by impaired crosstalk between leptin
and MC signaling cascades. These preclinical data could underscore the potential role of
leptin-controlled MC signaling as a contributor to SNS-mediated BAT activity, suggesting
MC receptor signaling also as a potentially interesting drug target for the treatment of
metabolic disorders (for review see [56]).

Although the POA and dorsomedial hypothalamus (DMH) were originally considered
to be the major hypothalamic nuclei in the thermoregulatory network [27], recent molecular
studies further point toward the lateral hypothalamic area (LHA) and the ventromedial
hypothalamus (VMH) to also be involved in BAT regulation [57]. The VMH harbors neu-
rons that are characterized by highly specific expression of the developmentally essential
transcription factor SF1 (steroidogenic factor 1). Genetic ablation of SF1 neurons (another
essential component of the hypothalamic energy homeostasis pathway) in sophisticated
model systems demonstrates that this VMH-residing neuronal population controls energy
expenditure, BAT architecture and thermogenic activity [58,59]. While retrograde viral
tracing was not suitable to show direct VMH-to-BAT neuronal linkage [52], it is currently
speculated that the signal from VMH may be relayed by hindbrain structures (such as
the Raphe pallidus) or even regions in the brain stem (e.g., the nucleus of the solitary tract).
Mechanistically, VMH-to-BAT signaling via SF1 neurons is dependent on AMPK and mTOR
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signaling pathways and is effectively activated by both leptin and insulin (for review: [28]).
This also demonstrates that, for the purpose of BAT activation, both main pathways (ther-
moregulation and energy homeostasis) closely interact via hypothalamic integration.

As sketched above, BAT thermogenesis is not exclusively controlled by hypothalamic
signaling via the SNS alone, but a variety of other neuronal populations in other regions of
the CNS appear to contribute to the hormonal regulation of BAT-mediated thermogenesis.
These include hindbrain neurons [60], GABAergic neurons in the brainstem [61] and
parapyramidal neurons within the medullary raphe, which are negatively regulated by
midbrain GABAergic cells within the substantia nigra [62]. The complex interplay between
these neuronal subpopulations and their intrinsic activating and/or inhibitory crosstalk
warrants further investigation to fully understand (and potentially harness) neuronal
control of thermogenic activity in the context of obesity.

While the neuronal control of BAT activity by the CNS is well established in preclinical
models, recent data may point to an unexpected direct neuronal link between the two major
adipose tissue types: Using a Siberian hamster model Garretson and colleagues analyzed
BAT innervation by neurons residing within WAT depots. They tested the hypothesis that
lipolysis in WAT activated neuronal activity of WAT afferent neurons and demonstrated
that lipolysis-dependent fFA production triggers neuronal activity in WAT, which is capable
of activating BAT thermogenesis [63]. This mechanism may have important implications,
especially under conditions that favor high levels of lipolysis, such as cold exposure, thus
warranting further investigation as to its level of translation to the human disease state.

2.2. Hormonal Regulation of BAT Activation

In addition to the CNS, a number of non-neuronal endocrine signaling systems have
emerged as important players in the control of BAT thermogenic activity. Interestingly, they
derive primarily from the gastrointestinal (GI) system. The involvement of the GI tract and
its signaling to the brain in multiple aspects of energy homeostasis and metabolic control has
clearly been demonstrated by the impressive clinical success of bariatric surgical procedures.
In fact, nothing currently available is nearly as effective in yielding sustained weight
management and improvement of cardiometabolic complications. Adaptive mechanisms
of the intestine involving increased numbers of endocrine cells have raised enormous
interest in the possibly therapeutic role of postoperatively altered gut signals that act in the
brain and other organs to modulate energy balance and metabolic control. Only within the
last two decades have the molecular mechanisms of appetite control advanced to a point
where drug discovery can be rationally pursued with suitable tolerability and safety [64].

In fact, recent clinical trials with advanced therapeutic candidates, including the gut-
derived glucagon-like peptide 1 (GLP1)-, the glucose-dependent insulinotropic polypeptide
(GIP)- and the pancreatic glucagon (GCG)-receptor signaling agonists arouse huge clinical
expectations as to successful weight management based on carefully designed drug combi-
nations. The current weight loss drugs in clinical development signal via specific cognate
receptors, which all belong to the G-protein coupled receptor (GPCR) family and thus
represent attractive pharmacological targets. Importantly, while the downstream signaling
mechanisms of the three hormones are very similar, the expression profile of the cognate
receptors is highly specific and thereby conveys their tissue-specific effects.

The peptide hormone Glucagon/GCG is produced by alpha cells of the pancreas and
represents the main catabolic hormone of the human body. Together, insulin and GCG
control glucose levels in a counter-regulatory manner. The Glucagon receptor (GCGR)
is expressed dominantly in the liver (and to a minor extent in the kidneys) but not in
the CNS. After engagement by its ligand, GCGR mediates hepatic glucose production
via hydrolysis of glycogen and gluconeogenesis. GCG has also been shown to increase
energy expenditure and influence BAT function under cold exposure conditions, i.e., during
adaptive thermogenesis [65,66]. As a potential mechanism for this effect, GCG-mediated
secretion of Fibroblast Growth Factor 12 and bile acids from the liver and downstream
engagement of BAT have been discussed [65].



Brain Sci. 2022, 12, 1646 10 of 20

Based on their shared function in orchestrating post-prandial glucose- and lipid metabolism,
GLP-1 and its sister hormone, GIP, are collectively referred to as incretins [67–69]. GLP1 is a
30-amino acid peptide produced in the intestinal epithelial endocrine L-cells by differential
processing of pro-glucagon, the same precursor protein that gives rise to GCG. GLP-1 mainly
acts by stimulating insulin and inhibiting glucagon secretion by the pancreas. In contrast to
GCGR, the GLP-1 receptor (GLP-1R) is prominently expressed not only in pancreatic cells
but also in the hypothalamus, where its signaling controls appetite and food intake. The
hypothalamic expression of GLP-1R significantly contributes to the central role of GLP-1 in
regulating BAT thermogenesis in response to the nutrient status but also by browning effects in
WAT [66,70,71]. GIP is produced by enteroendocrine K-cells and is released as a response to
increased nutrient status. While it is a weak inhibitor of gastric acid secretion, its main function
is to exert incretin activity in a glucose-dependent manner along with its sister hormone GLP-1,
i.e., to augment insulin secretion and drive utilization and disposal of post-prandial blood sugar
excursions. GIPR is highly expressed in several tissues, including the stomach, pancreas, heart
muscle, neuronal tissues and fat tissue. In the CNS, GIPR expression can be found in almost all
brain areas [72]. Importantly, a contribution of GIP signaling to BAT thermogenesis is expected
but has to date not been demonstrated experimentally.

These three molecules, GLP-1, GIP and GCG, are currently taking center stage in
promising drug development strategies focusing on obesity and diabetes. The current
status of this fascinating quest for novel therapies is further described in chapter 3.

Another major breakthrough in understanding nutrient handling was made by re-
cent findings of Martin Klingenspor’s group, which demonstrated that food-dependent
release of the gut hormone secretin results in the activation of secretin receptors on BAT
adipocytes [73]. Stimulation of the receptor signaling pathway induces BAT lipolysis and
post-prandial thermogenesis, finally resulting in increased cellular glucose uptake and
sensation of satiety induced by secretin-dependent BAT-activation. This study thereby
established BAT as a post-prandial satiety-mediating organ triggered by food-dependent
signals such as secretins. It will be interesting to investigate which other gut-derived signals
are able to trigger this inter-organ crosstalk and how these pathways are controlled or
impaired under physiological and pathological conditions, respectively.

Given the tight interaction between nutrient uptake, energy homeostasis and hormonal
control of metabolic traits, it is not surprising that hormonal signals from the gastrointestinal
tract and the thyroid gland (thyroid hormones/THs, i.e., thyroxine/T4 and its bioactive
product triiodothyronine/T3) are pivotally involved in BAT activation. The TH receptor
expression is high in BAT, and activation of these receptors results in the upregulation of
UCP1 and amplification of NE–mediated BAT thermogenesis (review: [74]). The importance
of human disorders is further underscored by the findings that chronic exposure to TH
results in enhanced BAT mass and activity, as well as improved metabolic control of the
response to glucose [75].

2.3. Additional Mechanisms Regulating BAT Activity

Another currently fervently discussed concept in line with the gut-adipose tissue
crosstalk is the capability of the intestinal microbiome (iMB, i.e., the entirety of several
trillions of microorganisms, including bacteria, archaea, fungi and viruses residing within
our intestines) to modulate adipose tissue activity effectively. It is well accepted that the
iMB (sometimes considered as an additional metabolic ‘organ’) represents an important
modulator of host metabolism and thus contributes to the modulation of the health status
of its host. By taking up and converting nutrient components by anaerobic fermentation,
the iMB produces and provides a plethora of metabolites to the portal vein system and
systemic circulation. These metabolites include short-chain fatty acids (such as butyrate and
acetate), branched-chain amino acids and secondary bile acids (such as glycine- or taurine-
conjugates). By activating GPCR-mediated signaling cascades on host cells, microbial
metabolites can affect their host’s nutrient and energy balance. In particular, rodent models
have provided evidence that alterations in the gut microbiota composition (rather than the
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presence or absence of one particular bacterial taxon) affect the thermogenic program in
BAT and modulate browning effects in WAT, presumably via altered metabolite signaling
and/or by the involvement of the endocannabinoid system (reviewed in [76]). Moreover,
there is growing evidence showing that iMB composition also affects metabolic dysfunction
linked to comorbidities such as cardiovascular diseases [77]. While the concept of a direct
association between iMB structure and BAT activity in humans is still being debated [78], the
accessibility to targeted, non-invasive modulation (e.g., by fecal microbiota transfer/FMT
or spiking-in of selected bacterial communities with beneficial effects on host metabolism)
still renders the gut microbiome an attractive target for therapeutic interventions [79].

Finally, novel findings suggest that BAT exhibits circadian rhythms in its thermogenic
activity and is entrained into the environment via external cues (called “zeitgebers”) such
as light exposure and timed food intake. While several routes of control may exist [72–74],
it was recently demonstrated by Orozco-Solis and colleagues [80] that the circadian clock
region within the VMH integrates dark-light cycle oscillations and food intake behavior to
control BAT thermogenesis via the SNS. Using neuronal subtype-specific knock out of the
core clock gene Bmal1 in mice, they uncovered the underlying mechanism, demonstrating
that the observed oscillations in BAT activity over 24 h day–night cycles are mediated
by clock genes such as RevErb-alpha which (controlled by master circadian rhythm genes
such as Clock and Bmal1) acts as a transcriptional inhibitor of Ucp1 [81], thus leading to
oscillatory Ucp1 abundance and activity.

Taken together, multiple pathways converge to control the activity of BAT cells, thus in-
tegrating various extrinsic and intrinsic signaling cues. However, does this communication
network also work in the opposite direction?

2.4. Feedback from BAT to Brain

While the scientific focus layed a long time on the outgoing signals from CNS to
functional BAT control, it is clearly less well understood how fat tissue returns activation
signals to the CNS in order to orchestrate energy homeostasis. Sophisticated transneu-
ronal tracing tools involving specific strains of herpes simplex virus-1 (HSV-1) that travel
anterogradely along the outflow of sensory nerve signals have been utilized to study po-
tential feedback circuits between fat tissues and the brain [60,82–84]. As shown by Song
and colleagues [82] and further described by Bartness et al. [60], one general mechanism
for vital WAT-to-brain feedback is mediated by sensory neurons that innervate WAT and
afferent signaling to dorsal route ganglia (DRG). Moreover, recent studies support the
existence of SNS-mediated sensory feedback between BAT and the CNS, pointing to areas
in the brain stem and the forebrain as target regions of these signals [60]. Vitaly Ryu and
colleagues used a combination of retrograde pseudorabies virus and anterograde HSV-1
tracing to demonstrate that BAT is innervated by sensory neurons, which potentially signal
changes in temperature (caused by BAT thermogenic activity) via DRG to several brain
regions involved in energy homeostasis, e.g., the raphe pallidus and the hypothalamic paraven-
tricular nucleus [83]. Cheryl and Bartness also used anterograde transneuronal viral tract
tracing in Siberian hamsters to analyze the role of sensory circuits from BAT to the CNS for
body temperature control. Depletion of sensory neurons originating in iBAT by injection
of the neurotoxin capsaicin in combination with cold exposure treatment convincingly
demonstrated that calcitonin gene-related peptide (CGRP)/substance P—positive sensory
neurons constitute components of a central sensory circuit from BAT to the CNS involved in
thermogenesis [84]. Taken together, the fat tissue is not only receiving input from the CNS
but, importantly, is also providing sensory feedback to orchestrate storage or mobilization
of lipids, thus conveying energy homeostasis. It is important to note that these feedback
mechanisms, while potentially forming the basis for future therapeutic strategies, are far
less understood than the signals going out from the brain to BAT, thus urgently calling for
further investigations.
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3. BAT—A Promising Target for Management of Obesity-Related Diseases?

Over the last 50 years, we have faced a world-wide and further proceeding epidemic
of obesity, which is essentially driven by a chronic energetic imbalance where energy
intake chronically exceeds energy expenditure. All efforts to prevent a further rise in
prevalence, together with currently available pharmacological anti-obesity strategies, have
proven ineffective in solving the pandemic development. All the more has the control of
excess ectopic fat depots become one of the greatest healthcare challenges of our time, and
the demand for novel weight-centric strategies as a primary treatment goal for obesity-
associated cardiometabolic diseases is high. The rediscovery of functionally active BAT
in adults almost 15 years ago triggered a resurgence in BAT research combined with the
hope to exploit physiological thermogenesis to achieve the necessary net energy balance
required for sustained weight management (see summary in Table 1).

While the past decades have witnessed great advances in the mechanistic understand-
ing of cellular thermogenesis and revealed an important role of thermogenic dissipation of
excess calories in modulating systemic energy homeostasis and recovery of metabolic health
in preclinical disease models, the clinical translation of these findings as a possibly future
complementary therapeutic approach to human obesity and cardiometabolic diseases is still its
infancy (for detailed review, see [85]). Overall in humans, BAT contribution to thermogene-
sis has been reported to range from 27–123 kcal per day at room temperature to 46–211 kcal
per day during mild cold exposure [86], whereas fully activated BAT could dissipate energy
equivalent to approximately 4 kg of WAT over one year [15]. Interestingly, a recent large epi-
demiological study indicates that BAT presence in humans inversely correlates with lower
blood glucose and triglyceride levels, higher HDL levels, and improved cardiometabolic
health [18]. As to its overall energetic function, BAT activity has been reported to correlate
with leanness [3] and fat liver content [13]. Moreover, subjects with more active BAT exhibit
improved metabolic profiles [14] as well as reduced arterial inflammation and calcifica-
tion [17]. Interestingly, the reported beneficial metabolic effects of BAT presence/activity
in humans may not be necessarily related to adiposity reduction. Recent data indicate
that pharmacological, chronic BAT activation increases insulin sensitivity and glucose
effectiveness as well as high-density lipoprotein and adiponectin levels in the blood, even
without significant changes in body weight or body composition [87]. Thus, while studies
in humans suggest several positive effects of BAT activation on energy homeostasis and
metabolic outcome parameters, its fundamental physiological role and clinical significance
as a putative novel therapeutic target in the context of obesity and related cardiometabolic
diseases is still under investigation. Today more than 100 clinical have been conducted
focusing on human BAT as a therapeutic target for obesity and related cardiometabolic
diseases. The intended approaches are either targeting directly the thermogenic activity or
the recruitment of BAT mass in patients with obesity [6,7,88] combined with the hope that
pharmacological regulation of thermogenesis will not only support a reduction in visceral
obesity but also improve or even prevent subsequent cardiometabolic dysfunctions.

The early and conceptual appeal to pharmacologically activate BAT metabolic activity
via sympathomimetics and enforced induction of β3AR signaling was mainly hampered
by adverse effects on the cardiovascular system (as exemplified by the dramatic effects of
adrenergic receptor agonists like ephedrine [89] and mirabegron [90]) and dissimilarities in
receptor structure and engagement [91,92]. In particular, the potential positive effects of
sympathetic activation on energy expenditure and fat mass reduction by β3AR agonists (or
supraphysiological thyroid hormone supplementation) are voided by deleterious effects on
the cardiovascular system, namely elevation in heart rate and blood pressure. This is even
more relevant in the cohort of obese patients with substantially increased cardiovascular
risk and has led to the sub sequential failure of several weight loss drugs in the past.

Up to date, controlled cold exposure is the best-studied therapeutic approach for BAT
activation in human subjects (see expert review: [93]). However, the studies conducted so
far were only short-term by design, and potential application for a wide set of patients might
be unfeasible. Moreover, a compensatory increase in caloric intake has to be considered
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(such as seen in cold-induced thermogeneration models in mice [94] and male human
subjects [95]). More research is needed to better understand the implications of controlled
cold exposure as a means to increase resting energy expenditure and reduce fat mass.

Table 1. BAT-based therapeutic strategies under investigation for treatment of obesity and/or
cardiometabolic diseases. See main text for details.

Therapeutic Strategy Status (2022) References

Enforced adrenergic signaling via β3AR agonists hampered by deleterious effects on
cardiovascular system [89–93]

BAT activation/WAT depletion by
thermogenesis-promoting diet, supplements
or physical exercise

Pilot studies, promising, safe, feasibility
has to be tested [85]

BAT activation/WAT depletion via controlled cold exposure promising, safe, but feasibility
has to be tested [93]

Targeting Melanocortin receptors (downstream of leptin) pleiotropic function of MCs
questions applicability [56]

Mimicking incretins (GLP-1, GIP mimetics) promising strategy, first results from clinical
studies are encouraging [70]

Designing Triple agonists (mimicking GLP-1, GIP, GCG in a
single molecule)

clinical trials successful, awaiting
market entry [96–102]

BAT transplantation Pilot studies, experimental [85]

Mediating differentiation of pre-adipocytes/progenitor
cells/stem cells Pilot studies, experimental [85]

Targeted modulation of the gut microbiome Pilot studies, experimental [85]

Altering gut metabolite and/or bile acid profiles Pilot studies, experimental [85]

Precise modulation of gut-to-brain/brain-to-BAT signaling Pilot studies, experimental [85]

Promotion of WAT beiging by batokines, metabolites,
pharmacological agents and/or miRNAs Pilot studies, experimental [85]

Activation of thermogenesis in WAT and/or muscle Pilot studies, experimental [85]

One current strategy focusses on targeting Melanocortin receptors as potential drug
targets in the context of obesity and eating disorders [56]. This is motivated by the role
of MC signaling as an effective downstream effector of leptin, but also by the multitude
of biological processes regulated by MCs, encompassing energy homeostasis but also
inflammatory signaling, regulation of blood pressure, pain sensation and behavioral traits.

The emerging role of incretin hormones (GLP-1, GIP) and the insulin-counteracting
Glucagon/GCG on metabolic function has sparked huge interest in targeting the associated
GPCR-mediated pathways for therapeutic purposes. In the context of obesity, GLP-1 and its
receptor GLP-1R have prominently entered center stage in the pharmacological treatment of
T2D and obesity. Sequence-optimized GLP-1 agonists (such as Semaglutide and Liraglutide)
have been shown to induce weight loss and improvement of glucose homeostasis via
complementary signaling effects, like modulation of hunger and satiety sensation, delaying
gastric emptying, facilitating insulin secretion and decrease of hepatic gluconeogenesis.
However, BAT activation and thermogenesis also take part in the orchestration of GLP-1-
induced weight loss. For example, it was demonstrated in mice that the central application
of Liraglutide induced BAT thermogenesis and WAT browning [70]. Moreover, in obese T2D
patients, Liraglutide and Exenatide increased resting energy expenditure independently
from physical activity [70].

Intriguingly, recent developments in drug development focus on the use of molecules
that engage not only one but multiple relevant pathways at the same time to harness the
complementary metabolic effects of specific signaling pathways via this complementary
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approach. These efforts aimed to design, optimize and finally apply single molecules that
activate GLP-1R in parallel to receptors for GIP and/or GCG to optimize effects on nutrient
uptake, lipolysis and energy expenditure. Chimeric peptides resembling a molecular
mosaic of two or three of these ligands (dubbed ‘dual’ (GG) and ‘triple’ (GGG) agonists),
which are chemically modified for improved stability and uptake, have successfully passed
clinical trials and/or are awaiting approval for clinical use and market entry [96]. By adding
the anorectic, lipolytic and insulinotropic properties of these agents in a single molecule,
effects on weight loss and glucose metabolism are maximized without the disadvantages
of polypharmacy at the cost of tolerability. In preclinical models, it had been shown before
that dual GLP-1/GCG as well as dual GLP-1/GIP agonists improve metabolic parameters
and are capable of fighting obesity [97,98]. Moreover, a rationally constructed tri-agonist
that mimics the activity of GLP-1, GIP and GCG in one single poly-receptor agonist is
able to dramatically improve the outcome of both obesity and diabetes [99]. Proving the
clinical applicability of this concept, the dual agonist Tirzepatide (TZP), a GIP/GLP-1
analog that shows higher affinity to GIPR than to GLP-1R, demonstrated safety and efficacy
by improving glycemic control and weight management in a clinical trial program for
T2D [100]. Moreover, TZP was superior to the mono-agonistic drug Semaglutid with
respect to glycemic control [101] and successfully demonstrated profound effects on body
weight reduction over a 72-week trial in obese patients without diabetes [102]. This series
of successful clinical studies resulted in the approval of TZP in combination with diet and
exercise for the improvement of blood sugar control in adults with T2D by the U.S. Food
and Drug Administration (FDA) in May 2022. These promising data suggest that it may
not take too long until the first GLP-1/GIP/GCG triple receptor agonist passes registration
and enters the market for the treatment of obesity and diabetes.

It is important to note that the three receptor types display a very distinct expression
profile which may result in organ-specific effects of the chimeric drugs, depending on the
exact combinatorial structure. This phenomenon is part of the drug design strategy but
may also lead to unexpected cross-reactions (For details on this fascinating topic, we refer
the reader to the expert review by Capozzi et al. [96]). Nevertheless, it is anticipated that
the current clinical trials aiming at the approval of dual and triple agonists for metabolic
disorders will demonstrate the usability of this approach in the very near future. It will
be interesting and important to see how these next-generation anti-obesity drugs will
deal with safety and long-term efficacy concerns. The biggest challenge for upcoming
pharmacological approaches is to combat the organism’s homeostatic drives to return the
weight back to higher levels over time (metabolic adaption). Despite a seemingly simple
equation (“energy in less than energy out”) it remains difficult to achieve long-term weight
loss as the body tends to adapt or resist by modulating energy expenditure, hormonal and
psychological drive.

In this context, it is also noteworthy that the combined effect of these designer drugs
on several additional pathologically relevant pathways (e.g., oxidative stress, inflamma-
tion and cellular proteostasis) may, in the future, also be relevant not only for targeting
BAT as a therapeutic option against obesity but also for fighting other diseases types,
e.g., neurodegenerative disorders like Alzheimer Disease [103,104].

The engagement of BAT as a therapeutic target in metabolic diseases implies several
advantages but also some disadvantages (for an in-depth review, see [88]): On the up side,
there lies a great chance in utilizing BAT’s broad metabolic adaptation potential for the
treatment of metabolic disorders, especially in approaches that aim at increasing activity
and/or mass of brown adipocytes (e.g., via browning or beiging of WAT). In line with this
concept, additional BAT functions such as glucose usage and lipolysis are also beneficial
for metabolic improvement [54,105,106]. On the other hand, β3-R agonists failed in human
trials due to receptor sequence dissimilarities and adverse effects such as tachycardia
caused by the β3-R expression on cardiac myocytes [90], as outlined above. Finally, there is
a certain risk of a compensatory increase in energy intake.
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It follows from these observations that it may be useful to conceptualize the pharma-
cological treatment of obesity diseases as one would approach other chronic conditions,
such as essential hypertension or T2D. Just as hypertension is often treated with combina-
tions of sympatholytics, ion channel blockers, and enzyme inhibitors, the pharmacological
approach to obesity will likely require a combination of drugs that suppress appetite,
impair absorption and increase energy expenditure in parallel (or at least in an orchestrated
manner). While a BAT-centric approach may be one facet in this composite endeavor, the
above-mentioned pitfalls render this strategy challenging, at last, unless pharmacological
intervention succeeds in designing non-adrenergic signaling control of BAT thermogenesis.
Interestingly, there is a number of alternative BAT-centered approaches that could harness
the knowledge of underlying BAT-regulating mechanisms for the design of successful
therapy. These include BAT transplantation, usage of progenitor or stem cells that give rise
to brown adipocytes (or precursor cells that can be further differentiated), modulation of
the gut-brain signaling axis either by targeted shifts in the gut microbiome or by tweaking
of metabolite or bile acid profiles, or precise modulation of brain-to-BAT signaling (or its
feedback signaling route) by tailored agonists of respective signaling pathways. Along this
line, a major aim of current and future therapeutic approaches would thus be to harness
known neural signal routes in order to fine-tune BAT activity in obese patients. Conse-
quently, drugs that fine-tune CNS to BAT neuronal signaling or feedback signaling will
open avenues for therapy or even prevention of obesity and its comorbidities. Intriguingly,
there is another fascinating perspective: The recent realization that cold-induced thermo-
genesis is not exclusively restricted to BAT but is also happening in beige adipose tissue
and in muscle (reviewed in [6]) may provide another entry point to therapeutic strategies
in the future. It is still important to note that the current knowledgebase is insufficient to
provide a rationale for respective approaches and will require more in-depth studies on
this fascinating option.

In conclusion, as non-surgical therapies for obesity are urgently needed, harnessing
the growing knowledge about brain-to-BAT-to-brain signaling in combination with other
controlling instances may provide promising future therapies for metabolic diseases. One
major task will be the identification of feedback mechanisms, e.g., how body weight and
the energy storage state are monitored within the body and integrated into the CNS to
orchestrate energy expenditure and homeostasis. Further research in this area, leading
to a detailed understanding of this ‘Baristat’ and its regulatory mechanisms, will help us
to identify promising targets and open novel avenues for therapies against the imminent
obesity pandemic.
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fatty acids; secBA, seconday bile acids; SNS, sympathetic nervous system; T2D, type 2 diabetes;
TG, triglycerides; TGF-beta, transforming growth factor beta; TH, thyroid hormone; THC, tetrahy-
drocannabinol; TZP, Tirzepatide; VMH, ventromedial hypothalamus; WAT, white adipose tissue;
WHO, World Health Organization.
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