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Brown and brite adipocytes contribute to energy expenditure through nonshiv-

ering thermogenesis. Though these cell types are thought to arise primarily

from the de novo differentiation of precursor cells, their abundance is also con-

trolled through the transdifferentiation of mature white adipocytes. Here, we

review recent advances in our understanding of the regulation of white-to-

brown transdifferentiation, as well as the conversion of brown and brite adipo-

cytes to dormant, white-like fat cells. Converting mature white adipocytes into

brite cells or reactivating dormant brown and brite adipocytes has emerged as

a strategy to ameliorate human metabolic disorders. We analyze the evidence

of learning from mice and how they translate to humans to ultimately scruti-

nize the relevance of this concept. Moreover, we estimate that converting a

small percentage of existing white fat mass in obese subjects into active brite

adipocytes could be sufficient to achieve meaningful benefits in metabolism. In

conclusion, novel browning agents have to be identified before adipocyte

transdifferentiation can be realized as a safe and efficacious therapy.

Introduction

Mammalian adipose tissue is comprised of two main

types of adipocytes, white and brown, which inversely

contribute to energy balance regulation. White adipo-

cytes possess a large unilocular lipid droplet, reside in

white adipose tissue (WAT), and store excess energy as

fat. Brown adipocytes, on the other hand, possess a

multilocular appearance (multiple small lipids dro-

plets), reside in brown adipose tissue (BAT), consume

energy reserves, and produce heat. Brown adipocytes

have an enormous capacity for substrate oxidation

conferred by a very high abundance of mitochondria.

These mitochondria are equipped with uncoupling pro-

tein 1 (UCP1), a 32 kDa protein residing in the inner

mitochondrial membrane. When activated by sympa-

thetic nerves that control the lipolytic release of acti-

vating fatty acids and the degradation of inhibitory

purine nucleotides [1,2], UCP1 induces a proton leak

that uncouples oxygen consumption from ATP pro-

duction, facilitating macronutrient catabolism. This

adaptive mechanism increases energy expenditure and
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makes BAT an important heater organ, especially in

small mammals [3,4]. The same mechanism is found in

brown-like adipocytes which have been given multiple

names such as ‘inducible’, ‘beige’, or ‘brite’ (brown-in-

white) referring to their brown adipocyte-like appear-

ance and function but are found in WAT depots.

Brown and brite adipocytes are distinct cell types, yet

their transcriptomic signature and cellular function

become remarkably similar under conditions that

enforce adaptive heat production [5–8]. Brite adipocyte

recruitment (a process called ‘browning of WAT’) is

enhanced upon BAT loss, suggesting that these cells

complement brown adipocyte functions [9,10].

The abundance of mature adipocytes is controlled

by the balance between preadipocyte expansion, differ-

entiation, and eventual cell death. Canonically, adipo-

cytes are thought to arise from the de novo

differentiation of precursor cells committed to white,

brite, or brown adipocyte lineages. However, termi-

nally differentiated mature adipocytes exhibit pheno-

typic plasticity, and the morphological and functional

conversion of a fully differentiated mature adipocyte

into another type of fat cell has been termed ‘adipo-

cyte transdifferentiation’ [11]. Thus, mature adipocytes

can dynamically alter their phenotype from white to

brown/brite and vice versa to adopt to changing envi-

ronmental conditions and energy availability and

demand. Moreover, white, brite, and brown adipocytes

can transdifferentiate into ‘pink adipocytes’ and con-

tribute to milk secretion in lactating mice [12–14]. In
humans, white adipocytes are far more abundant than

brown and brite adipocytes [15,16], and the absolute

number of an individuals’ adipocytes is kept rather

constant throughout adulthood [17,18]. Thus, transdif-

ferentiation constitutes an important mechanism in the

control of brown, brite, and white adipocyte quantity.

We here analyze recent findings to reconcile de novo

differentiation and transdifferentiation as complemen-

tary origins of brown and brite adipocytes, summarize

our current understanding on the regulation of adipo-

cyte transdifferentiation in human adipose tissue, and

finally scrutinize the relevance of WAT browning as a

therapeutic concept in man.

The phenotypic versatility of
mammalian adipose tissue

Brown and brite adipocyte origins: de novo

adipogenesis versus transdifferentiation

Brite adipocytes can derive both from a distinct pre-

cursor population residing in WAT and from the

transdifferentiation of mature white adipocytes upon

thermogenic stimulation [19–24]. It is now quite clear

that both are complementary mechanisms controlling

brite adipocyte quantity throughout life and in

response to different environmental conditions. During

postnatal browning, some murine WAT depots tran-

siently increase the abundance of brite adipocytes soon

after birth with a subsequent decline after weaning

[25–28]. In posterior subcutaneous (inguinal) WAT,

this peak in the number of brite adipocytes around

weaning is influenced by both cell-intrinsic mechanisms

and sympathetic innervation, resulting in a greater

browning response of newborn pups at lower housing

temperature [26,29,30]. In adult mice, white adipocytes

with a history of Ucp1 expression can be found in

inguinal WAT, and a significant proportion of adipo-

cytes in this depot is capable of switching their pheno-

type from white to brite upon cold exposure

[21,26,31,32]. This proportion is considerably higher

when mice were born and raised at subthermoneutral

temperature or temporarily subjected to cold in the

adolescent stage [31]. Moreover, ablation of postna-

tally formed brite adipocytes results in impaired WAT

browning in adult mice [33]. Thus, brite adipocytes ini-

tially develop from committed precursor cells, a pro-

cess that can be enhanced by an initial phase of cold

exposure (either during the perinatal period or later).

In the absence of a thermogenic stimulus, newly differ-

entiating brite adipocytes can become ‘camouflaged’ as

white adipocytes, but retain their ability to rapidly

undergo white-to-brite transdifferentiation upon cold

exposure [5,21,24,31,33]. This coordinated sequence of

postnatal browning and subsequent brite adipocyte

camouflage is influenced by lipid species found in

breast milk, suggesting maternal nutrition and rearing

behavior as crucial determinants of browning capacity

[34]. Collectively, when assessing transdifferentiation in

mice, UCP1-positive cells may not exclusively originate

from the transdifferentiation of a white adipocyte, but

rather from the rerecruitment of a primed, quiescent

brite cell (Fig. 1).

As described above, the housing temperature history

of a mouse considerably influences the proportion of

brite adipocytes that emerge via mature adipocyte

transdifferentiation in response to a new cold chal-

lenge. Interestingly, upon selective agonism of the b3-
adrenoreceptor, which is primarily expressed by

mature murine adipocytes and pharmacologically mim-

ics a cold exposure challenge, the browning response

of WAT is different. The majority of the emerging

brite adipocytes is then derived from mature adipo-

cytes regardless of a prior cold exposure history

[24,31,35,36], suggesting that white-to-brite transdiffer-

entiation can occur via both the rerecruitment of a
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quiescent brite cell and the transdifferentiation of a

mature white fat cell that did not exhibit a brite phe-

notype previously (Fig. 1). In line with this view, bipo-

tent WAT-resident precursor populations have been

identified that give rise to both brite and white adipo-

cytes, the latter of which bears a transdifferentiation

potential [37,38].

The presence of brite adipocytes in murine WAT

depends on factors such as age and environment. Yet,

camouflage is not a unique property of brite adipo-

cytes. Aging or feeding mice a high-calorie diet chroni-

cally in a thermoneutral environment (‘physiologically

humanized mice’) not only favors the absence of brite

adipocytes but also enhances lipid storage in brown

adipocytes [39–41]. This ‘BAT whitening’ results in the

transformation of mature brown adipocytes into cells

with a white adipocyte-like appearance with attenuated

UCP1 expression. Thus, BAT whitening can be

roughly considered as the opposite of WAT browning

(Fig. 1).

Adipocyte transdifferentiation in the human

adipose organ

Browning of WAT in humans in vivo has been

observed in different anatomical locations as a sec-

ondary effect of pathophysiological conditions (such

as paraganglioma, pheochromocytoma, burn injury,

and cancer-associated cachexia), but also in response

to change of season and repeated localized cold expo-

sure [42–50]. Brite adipocytes are, however, largely

absent in the WAT of most adult humans under

normal conditions, possibly due to living in ther-

moneutral conditions. In human subcutaneous WAT,

distinct precursor pools with brite adipogenic potential

have been identified [51–53], and we have recently

shown that mature adipocytes also have the ability to

transdifferentiate into brite cells in vitro [19,54,55].

Thus, browning of WAT may be of a similar nature in

humans as it has been shown to occur in rodents, with

brite cells emerging from both differentiation of pre-

cursor cells and transdifferentiation from existing

white adipocytes (Fig. 1). Treating primary human

mature adipocytes or preadipocytes with a browning

compound during or after differentiation results in

equal UCP1 mRNA induction (Fig. 2), suggesting that

the potential of human adipocytes to brown can be

exploited at any stage of maturation.

Rodents possess a significant amount of BAT dis-

tributed across different anatomical locations. The

interscapular BAT depot is the largest and most stud-

ied. A corresponding depot is found in human infants,

which disappears after the first decade of life, but is

found as a remnant in some individual adults [56–59].
Adult humans possess most BAT in the cervical, supr-

aclavicular, axillary, mediastinal, paraspinal, and

abdominal region [15]. However, thermogenic activity

is only detected in a portion of the total depot volume

[15], suggesting attenuated overall BAT function due

to whitening. Indeed, the vast majority of adipocytes

in perirenal adipose tissue seems to exist as dormant

brown adipocytes camouflaged as UCP1-expressing,

unilocular fat cells [60,61], a phenotype that somewhat

resembles the BAT in ‘physiologically humanized mice’

Fig. 1. Adipocyte plasticity in WAT and

BAT. Brite and brown adipocytes can

originate from the differentiation of

preadipocytes in WAT and BAT,

respectively. Additionally, preadipocytes in

WAT give rise to mature white adipocytes

with the potential to become brite

adipocytes at a later point of time. In the

absence of thermogenic stimulation or in

response to an obesogenic diet, brown and

brite adipocytes can become camouflaged

as white adipocytes (‘whitening’). Upon

thermogenic stimulation, these quiescent

cells can be rerecruited and undergo a

phenotypical change from white to brown/

brite (‘browning’). BAT, brown adipose

tissue; WAT, white adipose tissue.

3630 The FEBS Journal 288 (2021) 3628–3646 ª 2020 The Authors. The FEBS Journal published by John Wiley & Sons Ltd on behalf of

Federation of European Biochemical Societies

White-to-brown adipocyte transdifferentiation S. Maurer et al.



[39]. In line with the reversible nature of BAT whiten-

ing in mice [39], intermittent cold exposure of adult

humans increases cold-induced BAT activity [62–64].
Given the substantial browning capacity of human adi-

pocytes in vitro (Figs 2 and 4) and the evidence that

dormant brown and brite adipocytes appear to be

recruitable by thermogenic stimulation throughout the

human body [42,44,65,66], achieving meaningful

improvements in patient health through thermogenic

activation appears to be a realistic and viable opportu-

nity.

Mechanisms of white-to-brown/brite
transdifferentiation

Transcriptional regulators

Mechanistic insight into the transcriptional regulation

of a brown fat transcriptional program has been

gleaned through years of study on predominantly

in vitro-differentiated brown preadipocytes and the

brown fat of genetically modified animals. Many tran-

scription factors and other signaling proteins have

been found to regulate browning (the breadth of this

topic has been extensively reviewed elsewhere [67–71]).
However, only a small number of factors including

peroxisome proliferator-activated receptor-c (PPARc)
coactivator 1a (PGC1a), PR domain containing 16

(PRDM16), and early B-cell factor 2 (EBF2) have

been deemed ‘master regulators’ of browning for their

ability to dictate brown adipocyte lineage specificity

and/or an ability to orchestrate a complete browning

program when overexpressed in adipocytes [72–74].
These proteins, like many other regulators of brown

adipogenesis, interact with PPARc [72,75–87], a mem-

ber of the PPAR family of nuclear receptors that is

required for adipogenesis in vivo and in vitro [88–91].
Upon ligand binding, PPARc functions as a heterodi-

meric transcription factor regulating the expression of

PPAR-responsive genes. Selective agonism of PPARc
by thiazolidinediones (TZDs) is sufficient to drive a

brown fat program [92–94]. TZDs drive a sirtuin 1-de-

pendent deacetylation of PPARc promoting its interac-

tion with PRDM16, which facilitates the interaction of

PPARc with the mediator complex involved in chro-

matin looping [87,95–97]. Although PPARc can

directly bind DNA, it is thought that it is recruited to

brown fat-specific enhancers and promoters via inter-

actions with its binding partners and transcriptional

coactivators such as EBF2 [79] (Fig. 3). Through this

mechanism, PPARc is recruited and bound to multiple

enhancers near and proximal to the promoters of

brown fat-selective genes (i.e., genes enriched in brown

and brite adipocytes). Through chromatin looping,

many enhancers can be brought together forming clus-

ters of high transcriptional activity known as super-en-

hancers [98–100]. These super-enhancers are found

predominately at genes that are responsible for cell

identity, and a loss of them can convert BAT into a

white-like fat depot [100].

It is presumed that many mechanisms of the tran-

scriptional cascade occurring in a differentiating brown

adipocyte also hold true in an adipocyte precursor cell

undergoing brite adipogenesis in WAT [101,102].

Fig. 2. Brite adipogenic potential of human adipocytes. Human primary preadipocytes were isolated from subcutaneous abdominal white

adipose tissue, grown to confluence, and differentiated in vitro. The cells were exposed to vehicle or rosiglitazone (1 µM) during (day 0 to

12) or after (day 12 to 20) the differentiation. Human mature adipocytes were freshly isolated from subcutaneous abdominal white fat and

cultured in the presence of vehicle or rosiglitazone (1 µM) for 7 days. The expression of UCP1 was determined by quantitative real-time PCR

and normalized to the expression of TATA-box-binding protein. Data are expressed as fold change compared to the vehicle-treated controls.

UCP1, uncoupling protein 1.
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However, brown and brite adipocytes are distinct cell

types with inherent plasticity, and although they pos-

sess similar gene expression profiles [5,23,103,104], dif-

ferences in the regulation of these two cell types are

likely to exist. For instance, the transcription factors

transducin-like enhancer of split 3 (TLE3) and zinc fin-

ger protein 423 (ZFP423) are enriched in WAT and, in

the absence of a browning stimulus, repress a brown

fat-like transcriptional program through EBF2 inhibi-

tion [105–107]. Similarly, other transcriptional coregu-

lators have the capacity to prevent browning by

repressing the levels and transcriptional activity of

PGC1a and by disrupting its interaction with PPARc
[84,108–113] (Fig. 3). Conversely, overexpression of

PGC1a and PPARc agonism sufficient to drive brown-

ing in human mature white adipocytes [19,54,76].

Thus, key transcriptional regulators of browning seem

to be conserved in mouse and man, and have similar

functions in preadipocytes and transdifferentiating adi-

pocytes (Fig. 3). Human adipocyte transdifferentiation

has been further associated with transcription factors

enhancing the transcriptional activity of PPARc.
While Kruppel-like factor 11 (KLF11) stabilizes the

TZD-induced expression of brite adipocyte genes, cell

Fig. 3. Cell-extrinsic mediators and intracellular signaling pathways involved in the white-to-brite conversion of human mature adipocytes. In

the unstimulated state, the activity of transcription factors involved in brown/brite adipogenesis (displayed in green and blue) is attenuated

by corepressors (displayed in red) to maintain white adipocyte identity. Different cell-extrinsic mediators are able to overcome this

repression, resulting in the suppression of corepressors, and the formation and stabilization of transcriptional complexes in the enhancer

regions of brown-selective genes such as UCP1. Rosiglitazone, tesaglitazar, and cPGI2 activate this process via a direct interaction with the

transcription factor PPARc. FGF21 enhances the effect of rosiglitazone via an unknown mechanism presumably involving an activation of

the FGF21 receptor. Noradrenaline (released via sympathetic nerve fibers), CL-316,243, and mirabegron activate the b3-adrenoreceptor,

while cPGI2 signals via the IP receptor. Both receptors elicit adenylyl cyclase activation leading to elevated cAMP levels and PKA activation,

the disinhibition of brown-selective gene transcription, and the lipolytic release of free fatty acids from intracellular stores. The same effects

occur after ANP-mediated activation of the NPRA receptor, which signals via guanylyl cyclase and cGMP to activate PKG. Fatty acids serve

as thermogenic substrates and as direct activators of UCP1 in mitochondria. AC, adenylyl cyclase; ANP, atrial natriuretic peptide; b3, b3-

adrenoreceptor; cAMP, cyclic adenosine monophosphate; cGMP, cyclic guanosine monophosphate; CIDEA, cell death-inducing DFFA-like

effector a; cPGI2, carbaprostacyclin; EBF2, early B-cell factor 2; FGF21, fibroblast growth factor 21; FGFR, fibroblast growth factor 21

receptor; GC, guanylyl cyclase; IP, prostaglandin I2 receptor; KLF11, Kruppel-like factor 11; LXR, liver X receptor; NPRA, natriuretic peptide

receptor-A; PGC1a, peroxisome proliferator-activated receptor-c coactivator 1a; PKA, protein kinase A; PKG, protein kinase G; PPARc,

peroxisome proliferator-activated receptor-c; PRDM16, PR domain containing 16; RIP140, receptor-interacting protein 140; RXR, retinoid X

receptor; TLE3, transducin-like enhancer of split 3; TWIST1, twist basic helix–loop–helix transcription factor 1; UCP1, uncoupling protein 1;

ZFP423, zinc finger protein 423.
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death-inducing DFFA-like effector a (CIDEA) seem-

ingly shuttles from the cytosol to the nucleus and acts

as a transcriptional coregulator directly modulating

UCP1 expression in white adipocytes via the suppres-

sion of liver X receptor (LXR) [82,114,115] (Fig. 3).

The recent identification of key regulatory factors

involved in murine adipocyte browning [116] will cer-

tainly help to further characterize the transcriptional

circuitry involved in the white-to-brite conversion of

mature human adipocytes.

Cell-extrinsic mediators

The last decade has revealed a plethora of substances

and stimuli associated with the recruitment and activa-

tion of brown and brite adipocytes, which have been

extensively reviewed elsewhere [117–120]. However,

only several of these have been reported to act directly

on human adipocytes and act via a transdifferentiation

mechanism.

In mice, cold exposure is perhaps the most potent

and physiologically relevant stimulus that drives the

recruitment of thermogenic capacity and activity in

BAT and WAT. In human WAT, changes in brown-

selective gene expression have been observed after a

single exposure to locally restricted cold (ice pack

application) [48]. Such rapid changes suggest the

recruitment of human brite adipocytes in vivo to be

influenced by transdifferentiation. During cold expo-

sure, sympathetically released noradrenaline acts on

adrenergic receptors on the plasma membrane of adi-

pocytes to orchestrate the activation and recruitment

of thermogenic capacity [2] (Fig. 3). In mice and

humans, these effects can be mimicked by CL-316,243

and mirabegron, selective agonists of the b3-adrenore-
ceptor, which triggers the direct white-to-brite conver-

sion of mature adipocytes [31,49,114,121–123]. The G

protein-coupled b3-receptor signals via cyclic adeno-

sine monophosphate (cAMP) and protein kinase A

(PKA) increasing lipolysis, UCP1 activation, and the

transcriptional recruitment of thermogenic capacity [2]

(Fig. 3). Similarly, the heart-derived hormone atrial

natriuretic peptide (ANP), which is an endogenous

ligand of the natriuretic peptide receptor-A (NPRA)

that signals via cyclic guanosine monophosphate

(cGMP) and protein kinase G (PKG), mediates the

white-to-brite conversion of human adipocytes

[114,124] (Fig. 3). We assume that in vivo, many stim-

uli have the potential to affect human adipocyte trans-

differentiation via increasing the sympathetic tone and

noradrenaline release.

Among the several members of the TZDs, rosiglita-

zone is well known for its effect on brown and brite

adipogenesis, especially in murine cells [125,126], but

also in human adipocytes [19,54,94,114,127,128]. Inter-

estingly, fibroblast growth factor 21 (FGF21) enhances

the transdifferentiation effect of rosiglitazone on cul-

tured human adipocytes, while FGF21 itself seems to

have only minor effects on this conversion [54]. This

liver-derived, PPARa-responsive hormone confers the

dual PPARa/c agonist tesaglitazar a superior efficacy

to induce WAT browning in vivo in mice compared to

rosiglitazone [54]. While TZDs constitute synthetic

agonists, oxygenated derivatives of fatty acids (i.e.,

oxylipins, commonly referred to as eicosanoids) serve

as an endogenous class of PPARc ligands. These mole-

cules have recently emerged as novel regulators of adi-

pocyte-based thermogenesis [129]. Oxylipins are

produced via several distinct pathways including

cyclooxygenase, which has been implicated in adipose

tissue browning in mice [130,131]. Carbaprostacyclin

(cPGI2), a stable analog of the naturally occurring

cyclooxygenase derivative prostaglandin I2, induces

the formation of a brite adipocyte phenotype in

human multipotent adipose-derived stem cells

(hMADS cells) [132]. When applied to mature adipo-

cytes during the final stage of the adipogenic differenti-

ation, cPGI2 induces UCP1 mRNA and protein

expression accompanied by the recruitment of mito-

chondrial capacity. These effects seem to originate

from a combined activation of the G protein-coupled

prostaglandin I2 receptor of the plasma membrane

(the IP receptor) and an interaction with PPARc
(Fig. 3). Many compounds among the plethora of

known oxylipins interact with membrane-bound recep-

tors or PPAR transcription factors [133]. Thus, the

ability of oxylipins to mediate adipocyte transdifferen-

tiation may not be restricted to prostaglandin I2.

Interestingly, prostaglandin E2 acutely increases UCP1

mRNA levels in tissue explants and primary mature

adipocytes isolated from human WAT, while it inhibits

rosiglitazone-mediated white-to-brite transdifferentia-

tion of hMADS cells [134,135]. Thus, the presumed

function of oxylipins on adipocyte transdifferentiation

requires validation and more detailed investigations.

Collectively, the current state of the art suggests the

existence of endogenous and exogenous mediators cap-

able of mediating a direct phenotypic conversion of

human adipocytes. In addition to the above-mentioned

factors, several others have been reported to influence

human adipocyte browning in different cell models

and experimental settings, including triiodothyronine

(T3), bone morphogenic proteins (BMP) 4 and 7, and

fibronectin type III domain-containing proteins

(FNDC) 4 and 5, as well as the FNDC5 cleavage pro-

duct irisin [136–141]. It remains to be determined how
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robust these effects are in the context of the transdif-

ferentiation of human mature white adipocytes [19].

Nevertheless, future research will undoubtedly reveal

further cues with translational relevance.

Therapeutic potential of white-to-brite
transdifferentiation

How much browning do we need?

In the past decade, considerable progress has been

made to estimate and quantify the amount of active

BAT in humans. As discussed above, BAT can be

recruited and activated acutely by both cold exposure

and treatment with the b3-agonist mirabegron

[15,63,121,142,143]. Importantly, prolonged treatment

with either mirabegron or mild cold exposure leads to

a significant improvement in metabolism (although this

might not be mediated entirely by BAT activation),

providing support to the notion that safe and effica-

cious BAT activation, or converting WAT into BAT,

is a promising strategy for the treatment of metabolic

diseases in human [123,144,145]. However, it is extre-

mely difficult to accurately determine BAT mass in

subjects, and most studies rely on the uptake of radio-

labeled tracers (radiolabeled glucose in particular),

which reflects BAT activity more than mass. Thus,

total BAT mass is likely underestimated in many stud-

ies, especially in overweight or obese subjects and in

insulin-resistant states [15]. However, detectable BAT

mass/activity decreases with age and obesity [146–149],
raising concerns that there may not be enough recrui-

table BAT to treat patients with age-related and obe-

sity-associated diabetes. On the other hand, there is no

shortage of WAT in a typical diabetic person and con-

verting white fat cells into brite adipocytes may repre-

sent a more attractive strategy to increase energy

expenditure for the treatment of metabolic diseases.

It has been demonstrated recently that the contribu-

tion of brite adipocytes to systemic energy expenditure

in mice is significantly less compared to brown adipo-

cytes [150], raising questions about the quantity of

brite adipocytes required for a significant therapeutic

benefit. Determining how much browning of WAT

would be required to achieve a meaningful improve-

ment in metabolism in humans is a difficult question

to answer with a good level of confidence, but one can

try to, with some approximations in spite of many

unknown parameters. A moderate weight loss of about

5% in obese patients has considerable health benefits,

including decreased intra-abdominal and intrahepatic

fat, and increased multi-organ insulin sensitivity and

b-cell function [151]. Assuming an average energy

intake of ~ 2850 kcal�day�1, increasing energy expen-

diture by 175 kcal�day�1 is predicted to give ~ 4%

body weight decrease in one year for an obese individ-

ual [152]. Although estimates about BAT-related

energy expenditure can vary greatly across studies,

200 g of activated BAT has been hypothesized to lead

to an increase of ~ 175 kcal�day�1 [15,121]. If one esti-

mates the WAT mass in an overweight subject to be

> 20 kg, the full conversion of just 1% of this WAT

would lead to an additional 200 g of brite fat equiva-

lent. Expression of the unequivocal brown/brite adipo-

cyte marker UCP1 is considerably higher in BAT

compared to WAT (Fig. 4), also in humans [153,154].

Considering that UCP1 mRNA levels are ~ 1000-fold

higher in BAT compared to WAT, we estimate that a

therapeutically relevant browning agent should elevate

UCP1 levels in WAT by at least 10-fold in order to

raise total UCP1 expression in WAT to ~ 1% of the

levels present in BAT. This would represent the equiv-

alent of doubling the existing BAT mass considering a

ratio of WAT/BAT of 100. This is a strict minimum

estimated under the assumption that the brite cells

formed would be fully activated, and with large uncer-

tainties in estimating the exact thermogenic potential

of BAT. UCP1 has been shown to function either as

monomer or as oligomer [155,156], and there are many

UCP1-independent effects of brown and brite adipo-

cytes, as discussed below. Therefore, UCP1 levels

likely do not linearly correlate with thermogenic

capacity. It is also important to note that UCP1 itself

does not possess intrinsic basal uncoupling activity,

which prevents proton conductance in the absence of

an activating stimulus [157]. A clear distinction should

be made between thermogenic capacity and thermo-

genic activity. Thus, the extent of WAT browning

required for a therapeutic benefit largely depends on,

and must be inversely proportional to, the level of

activation expected in vivo [158]. A better understand-

ing of sympathetic nervous system activity in the dif-

ferent adipose tissue depots in obese and diabetic

conditions is required. A combination therapy consist-

ing of a browning agent and an activator (mirabegron,

cold or other) is likely to result in synergistic metabolic

benefits. Interestingly, the simple overexpression of

UCP1 in human adipocytes in vitro leads to increased

basal glucose uptake [159]. Moreover, the browning

agent tesaglitazar significantly increases energy expen-

diture in mice in vivo even in thermoneutral conditions

[54]. This suggests that the recruitment of brown and

brite adipocytes may lead to some degree of metabolic

improvements due to the endogenous basal activity of

these cells, even in the absence of an activating

stimulus.
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Heterogeneity in WAT browning

Estimations on the degree of browning required to

induce metabolic benefits are rendered more complex

by the large heterogeneity among WAT depots. It

appears clear that a simple classification of adipocytes

as white, brite, or brown is insufficient. Different

WAT depots, but also adipocytes within a single WAT

or BAT depot, display a large range of characteristics

with varying gene expression profiles, different devel-

opmental origins, and differences in adipocyte function

[51,52,160–168]. This appears to be the case in both

murine and human fat, with a subset of human adipo-

cytes surprisingly lacking the b2-adrenoreceptor, par-

ticularly in metabolically impaired obese patients [169].

It is therefore not surprising that different adipose tis-

sue depots have different capacities to undergo brown-

ing and that brite adipocytes are not homogeneously

dispersed within a single depot, as characterized in

detail in mice [170–174]. Recent evidence for the

existence of a novel, natural ‘brite fat depot’ in mice

further underlines that the structure of the adipose

organ is more complex than previously anticipated

[175,176]. Among the murine WAT depots, the subcu-

taneous inguinal fat seems to have the largest capacity

to brown, while visceral and mesenteric fat have the

lowest [170–172]. A corresponding difference in

brown/brite adipocyte marker gene expression between

these depots is even found in the absence of a brown-

ing stimulus [171,172]. Interestingly, humans and mice

display opposing patterns of browning genes, with

human visceral adipose depots having significantly

higher expression of BAT markers compared to subcu-

taneous fat [177–179]. Still, human mature subcuta-

neous white adipocytes have the capacity to

transdifferentiate into brite adipocytes when treated

ex vivo with PPAR ligands (Fig. 2) [19,54]. It Is tempt-

ing to speculate that adipocytes from other human

WAT depots would have an even greater capacity to

brown. A better characterization of human adipose

Fig. 4. Absolute levels of UCP1 transcript in white, brown, and brite fat of different species. Transcript levels were quantified by

quantitative real-time PCR using species-specific standard curves with known UCP1 cDNA copy numbers. Murine brown and white adipose

tissue were obtained from lean and diet-induced obese mice kept at room temperature (22 °C) or acclimated to thermoneutrality (30 °C)

[54]. Nonhuman primate brown and white adipose tissues were obtained from the axillar/supraclavicular and subcutaneous abdominal region

of Rhesus monkeys, respectively. Mature adipocytes were isolated from human subcutaneous abdominal white fat and exposed to vehicle

or rosiglitazone (1 µM) for 1 week to obtain white or brite adipocytes, respectively. Fold differences (brown/brite versus white) in UCP1

absolute transcript levels are indicated for each model. UCP1, uncoupling protein 1.
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tissue heterogeneity and their respective capacity to

respond to different browning stimuli will certainly

advance the field.

UCP1 is not everything

The determination of browning capacity of adipose tis-

sue depots is often quantified as changes in UCP1

expression. However, browning of murine WAT

in vivo can occur even in the absence of UCP1 [180–
183] and the conversion of human white into brite adi-

pocytes in vitro results in metabolic reprogramming

and an increase in UCP1-independent mitochondrial

uncoupling [184,185]. Thus, it is overly simplified to

restrict the therapeutic potential of browning agents

solely to their ability to induce UCP1-dependent

energy expenditure. Several distinct mechanisms of

adipocyte-based nonshivering thermogenesis have been

described, including a mitochondrial creatine/creatine-

phosphate futile cycle controlled by creatine kinase,

ATP-dependent calcium cycling by the sarcoplasmic/

endoplasmic reticulum calcium ATPase 2b and the

ryanodine receptor 2, the circulating enzyme peptidase

M20 domain containing 1 (PM20D1) catalyzing the

formation of N-acyl amino acids that function as

endogenous uncouplers, AMP-activated protein

kinase-dependent thermogenesis, and the proton trans-

port function of the mitochondrial ADP/ATP carrier

[182,186–192]. Whether these pathways are all present

and significantly contribute to thermogenesis in human

adipose tissue will require further studies.

Browning of WAT for diabetes or obesity

treatment?

Transplantation studies in mice support a beneficial

effect of thermogenic adipocytes on body weight con-

trol [193,194]. However, we believe that the weight loss

that can be achieved by adipocyte-based thermogenesis

alone is unlikely to be sufficient to qualify as an obe-

sity treatment in humans. Firstly, as described above,

there are uncertainties about the amount of BAT pre-

sent in diabetic/obese patients, and browning of WAT

may not lead to a massive increase in energy expendi-

ture considering the sedentary and thermoneutral envi-

ronment most humans live in. Moreover, BAT-

centered therapies in humans have failed to show

effects on body weight thus far [62,123,195]. Secondly,

while body weight loss can be achieved acutely, it is

much harder to maintain in the long term due to com-

pensatory mechanisms and a drive of the organism to

come back to the original body weight set point. Simi-

lar to weight loss induced by lifestyle changes, recent

antidiabetes drugs cause a certain amount of weight

loss initially, which progressively decreases over time

[196]. This is due to a decrease in resting metabolic

rate and a concomitant compensatory increase in food

intake, which prevents further weight loss and con-

tributes to weight regain. Interestingly, it has been

hypothesized that meal-induced but not cold-induced

BAT activation is accompanied by a limitation of

energy intake [197]. This view is, on the one hand,

based on the essential role of food energy to ensure

the maintenance of BAT thermogenesis for body tem-

perature regulation upon prolonged cold exposure. On

the other hand, the gastrointestinal hormone secretin,

which is released upon food consumption and is able

to acutely activate BAT in both mice and humans,

was recently shown to be a mediator of a novel gut–
BAT–brain axis that controls prandial satiation [198].

Although food intake stimulates human BAT activity

to a similar degree as cold exposure, it is unlikely that

chronic secretin is sufficiently capable of achieving sig-

nificant weight loss [197,199]. Combination strategies

of drugs acting on increasing energy expenditure with

drugs acting on reducing food intake may act more

potently to achieve synergistic weight loss [200].

At least some of the beneficial metabolic effects of

increasing thermogenesis appear to be weight reduc-

tion-independent. In fact, BAT has a high capacity to

clear circulating glucose, lipids, and triglycerol-rich

lipoproteins [181,201,202]. Accordingly, an acute

increase in BAT activity in human subjects can result

in immediate effects on glucose and lipid homeostasis

[145,203], which are likely to improve metabolic health

in the long term [123,195]. Moreover, transplantation

of human brite adipocytes into mice results in an

improvement of glucose homeostasis [204]. These

effects may originate, for instance, from ‘BATokines’,

that is, factors with autocrine, paracrine, and endo-

crine actions secreted by brown and brite adipocytes

[205–209]. Overall, browning of WAT and BAT acti-

vation can cause both body weight-dependent and

body weight-independent improvements in metabolism,

but the case for antidiabetic effects appears stronger

than for the treatment of obesity in humans. However,

browning of WAT and BAT activation may be useful

in combination with other weight-reducing agents to

achieve greater weight reduction, or as an add-on ther-

apy to help prevent weight regain.

Availability of pharmacological browning

inducers

To date, there are no approved drugs for the treatment

of diabetes or obesity whose main mode of action is
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WAT browning. As described above, the ligand-acti-

vated nuclear receptor PPARc is a central hub in the

regulation of brown and brite adipogenesis and thus

may be expected to serve as promising pharmacologi-

cal target for that purpose. Indeed, TZDs such as

rosiglitazone or pioglitazone, which have been

approved as drugs for the treatment of diabetes as

insulin sensitizers, induce browning of human adipo-

cytes with significant efficacy (Figs 2 and 4). Yet, this

effect has not been reported in patients using TZDs

for the treatment of diabetes. The clinical development

of the dual PPARa/c agonist tesaglitazar, which pro-

motes browning of WAT in mice in vivo with superior

efficacy than rosiglitazone [54], was stopped due to

safety concerns. It is not known whether some of the

beneficial effects of tesaglitazar on glucose and lipid

metabolism in humans are mediated at least in part

via WAT browning.

In recent years, efforts have been made to identify

and develop approved substances or novel molecules

as pharmaceutical effectors of human adipocyte

browning. For instance, a screen of molecules identi-

fied Janus kinase inhibitors as novel browning agents

in stem cell-derived human adipocytes [210]. As an

alternative to classical agonism, post-translational

modifications may be targeted by novel drugs acting

through PPARc. Phosphorylation of PPARc at serine

273, mediated by cyclin-dependent kinase 5 and extra-

cellular signal-regulated kinase, is increased in obesity

and insulin-resistant states resulting in a dysregulation

of adipocyte gene expression [211,212]. A screen to

identify compounds inhibiting this phosphorylation

revealed Gleevec, a well-known anticancer drug, as

modulator of WAT browning in mice [213]. Roscov-

itine, an inhibitor of cyclin-dependent kinase 5, is also

able to mediate WAT browning in mice via the pre-

vention of PPARc phosphorylation at serine 273 [214].

It is currently unknown whether these compounds

induce WAT browning in human adipocytes. Interest-

ingly, short-term application of the phosphodiesterase

inhibitor sildenafil, used for the treatment of pul-

monary arterial hypertension and erectile dysfunction,

initiates the formation of brite adipocytes in WAT of

overweight subjects, but this effect does not appear to

be mediated via a direct action on adipose tissue [215].

Based on the effect of cold exposure to both

increase browning of WAT and activate BAT, it is

likely that at least some substances with the ability to

acutely activate BAT would also be suitable to recruit

further thermogenic capacity when applied chronically.

Mirabegron is (besides cold stimulation) probably the

most potent and advanced pharmaceutical activator of

human BAT identified to date. Chronic mirabegron

administration to humans can recruit thermogenic

capacity in BAT and modestly elevate protein expres-

sion of brown adipocyte markers in subcutaneous

WAT suggesting a browning potential [49,123].

Although mirabegron is an approved drug, it is cur-

rently not intended for the treatment of diabetes and

obesity. In fact, the high doses required to achieve a

significant increase in energy expenditure are also asso-

ciated with increased heart rate and blood pressure

[121,123,216,217]. Thus, mirabegron may be unsuitable

to treat obese and diabetic patients for which a nega-

tive impact on the cardiovascular system would not be

tolerated in this at-risk population. Still, antidiabetic

effects may be achieved at lower doses [195]. Future

studies will be required to explore the full potential of

this BAT activator to improve metabolism.

Concluding remarks

The differentiation of preadipocytes and the transdif-

ferentiation of mature adipocytes are complementary

mechanisms in the control of thermogenic capacity as

browning and whitening affect the quantity of white,

brite, and brown adipocytes in both WAT and BAT.

This transdifferentiation potential likely confers the

organism a greater flexibility to quickly adapt to nutri-

tional and environmental changes without inducing

major alterations in adipocyte turnover and cell num-

ber. Pro-adipogenic, sedentary lifestyle habits cause

brown and brite adipocytes to exist quiescently and

become camouflaged as white fat cells. The develop-

ment of drugs triggering their reconversion holds pro-

mise for the treatment of obesity-associated metabolic

diseases maybe more so than obesity itself. Future

investigations will certainly help to further explore this

potential.
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