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Shilu Luo1,2, Chenrui Li1,2, Hao Zhao1,2, Yachun Han1,2,
Wei Chen1,2, Li Li1,2, Li Xiao1,2 and Lin Sun1,2*

1Department of Nephrology, The Second Xiangya Hospital of Central South University,
Changsha, China, 2Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha,
Hunan, China
Metabolic syndrome is a complex metabolic disorder, its main clinical

manifestations are obesity, hyperglycemia, hypertension and hyperlipidemia.

Although metabolic syndrome has been the focus of research in recent

decades, it has been proposed that the occurrence and development of

metabolic syndrome is related to pathophysiological processes such as insulin

resistance, adipose tissue dysfunction and chronic inflammation, but there is still

a lack of favorable clinical prevention and treatment measures for metabolic

syndrome. Multiple studies have shown that myostatin (MSTN), a member of the

TGF-b family, is involved in the development and development of obesity,

hyperlipidemia, diabetes, and hypertension (clinical manifestations of

metabolic syndrome), and thus may be a potential therapeutic target for

metabolic syndrome. In this review, we describe the transcriptional regulation

and receptor binding pathway of MSTN, then introduce the role of MSTN in

regulating mitochondrial function and autophagy, review the research progress

of MSTN in metabolic syndrome. Finally summarize some MSTN inhibitors under

clinical trial and proposed the use of MSTN inhibitor as a potential target for the

treatment of metabolic syndrome.
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1 Brief review of MSTN

Myostatin (MSTN), a member of TGF-b family, also known as growth differentiation

factor 8 (GDF8), is a potent inhibitor of skeletal muscle development (1–3). It was first

identified by McPherron et al. in 1997 and it was found MSTN is exclusively expressed in

the myotome compartment of developing somites in the early stages of embryogenesis (4).

Targeting mutant MSTN resulted in large and extensive increases in skeletal muscle mass
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in mice, with the muscle mass of mutant animals being 2-3 times

heavier than that of wild-type animals (4). This suggests that MSTN

is a negative regulator of skeletal muscle growth.

Early studies suggested that it is mainly expressed in skeletal

muscle. However, with the deepening of research on it, it is also

expressed in tissues other than skeletal muscle, such as adipose

tissue (5), kidney (6) and heart (7). Before being secreted, its

precursor is synthesized, which consists of an N-terminal signal

sequence, an N-prodomain region, and a biologically active C-

terminal domain (8, 9). The precursor needs to be cleaved twice to

generate active MSTN. The first is the removal of a 24-amino acid

signal peptide by Furin family enzymes (10), and the second is the

cleavage by bone morphogenetic protein 1 (BMP-1)/Tolloid matrix

metalloproteinases to generate mature myostatin dimers (11). This

allows the active myostatin ligand to dissociate from the inhibitory

N-terminal propeptide domain, allowing interaction with the

receptor (12, 13).

MSTN is mostly present in the circulation as a bound inactive

form (14, 15). Two activin type II receptors, ActRIIA and ActRIIB,

are receptors that mediate the physiological effects of MSTN. The

binding of MSTN to ActRIIA and ActRIIB requires the involvement

of activin-like kinase (ALK) 4/5, which subsequently leads to the

phosphorylation of the downstream Smad2/3 complex, which in

turn recruits Smad4 (16, 17). Meanwhile, phosphorylated Smad2/3

also inhibited AKT activation and promoted the dephosphorylated

of FOXO (18). The Smad complex and dephosphorylated FOXO

can enter the nucleus and act as transcription factors to regulate the

expression of MuRF1 and Atrogin1 muscle atrophy-related

proteins. MuRF1 and Atrogin1 could promote ubiquitination of

muscle proteins, thereby accelerating their degradation through the

proteasome pathway and ultimately inhibiting muscle growth

(Figure 1) (19, 20).
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In addition to the classical Smad signaling pathway, MSTN has

also been reported to regulate cell growth by activating the c-Jun N-

terminal kinase (JNK) signaling pathway. When ActRIIB was

knocked out, MSTN-mediated JNK activation was significantly

reduced and further intervention with JNK specific inhibitor

SP600125 notably inhibited the MSTN-induced p21 up-regulation

and differentiation marker gene expression down-regulation (21).

In addition, MSTN has also been reported to be involved in the

regulation of cell growth possibly through extracellular signal-

regulated kinase (ERKs), p38 mitogen-activated protein kinases

and Wnt signaling pathway (22–24).
2 The regulation of MSTN expression

Many proteins/compounds are involved in the regulation of

MSTN expression. IGF-1 is a growth factor that plays a crucial role

in regulating cell proliferation and it has also been reported to be

involved in the process of transcriptional regulation of MSTN. Yang

et al. have shown that IGF-1 intervention could upregulate

myostatin expression through the phosphatidylinositol 3-kinase

pathway (25). Further research showed that IGF-1 could activate

the Ca2+-dependent nuclear factor of activated T cells (NFAT)

transcription factor to bind to the MSTN promoter through the

phospholipase C gamma (PLCg)/inositol 1,4,5-triphosphate (IP3)

signaling pathways, thereby regulating the transcription of

MSTN (26).

In addition, a CCAAT box and a C/EBP-binding element (CBE)

in the MSTN promoter are the two potential C/EBP-binding

sequences (27). When treated with glucocorticoids, the activity of

C/EBP-d promoter was notably up-regulated after 1 hour of

dexamethasone treatment, while the activity MSTN promoter was
FIGURE 1

The signaling pathway of MSTN. The binding of MSTN to ActRIIA and ActRIIB requires the involvement of activin-like kinase (ALK) 4/5, which
subsequently leads to the phosphorylation of the downstream Smad2/3 complex, which in turn recruits Smad4. Meanwhile, phosphorylated Smad2/
3 also inhibited AKT activation and promoted the dephosphorylated of FOXO. The Smad complex and dephosphorylated FOXO can enter the
nucleus and act as transcription factors to regulate the expression of MuRF1 and Atrogin1 muscle atrophy-related proteins.
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not significantly increased until 24 hours or more of intervention

(27). Furthermore, by cotransfection with the C/EBP-d expression

vector, the myostatin promoter-reporter construct showed a

significant increase in activity. Mutation of the CCAAT box in

the MSTN promoter partially blocked the MSTN promoter activity,

whereas mutation of the CBE completely abrogated glucocorticoid

regulation of the MSTN promoter activity (27). Moreover, FOXO1

has also been reported to be a transcription factor of MSTN, and

FOXO1 could increase myostatin mRNA levels and up-regulate

myostatin promoter activity, and the mutations in the binding site

to FOXO1 in the MSTN promoter significantly reduced the activity

of the MSTN promoter (28). Moreover, The NF-kB p65 subunit can

also bind to the myostatin promoter to stimulate MSTN gene

transcription (29). In order to realize MSTN as a target for

disease treatment, its specific agonists or inhibitors need to be

identified, which will be described in detail in the following part.
3 MSTN in regulating cell metabolism

3.1 Mitochondria

Mitochondria are energy factories in cells, synthesizing large

amounts of ATP to provide energy for the body’s activities (30–32).

In the case of metabolic disorder, the morphology, number and

function of mitochondria in tissues will change. On the one hand,

damaged and abnormal mitochondria can be cleared through a

process known as mitophagy, and when damaged mitochondria

exceed their own clearance, mitochondrial contents are released

into the cell, leading to oxidative stress, inflammation and apoptosis

(33–35). Therefore, maintaining the stability of mitochondrial

function is an important way to prevent disease progression.

Interestingly, studies have also reported that MSTN is closely

related to mitochondrial function.

Ploquin et al. have demonstrated that whenMSTN was knocked

out in mice, the respiratory coupling of mitochondria was reduced

in intermyofibrillar, and basal oxygen consumption was

significantly increased, lipid peroxidation levels were significantly

reduced and the antioxidant glutathione system was notably

upregulated (36). Moreover, when mice lack MSTN, the rate of

ATP production from oxidative phosphorylation (OXPHOS) is

inhibited in skeletal muscle, and the activity of respiratory chain

complex is also decreased (37). The molecular mechanism may be

that Smad2/3 is insufficiently bound to the promoter region of Idh2

and Idh3a (key rate-limiting enzymes associated with the TCA

cycle), thus affecting OXPHOS of the cell (37). Similar result was

also observed that MSTN knockout may inhibit mitochondrial

function by inhibiting AMPK/SIRT1/PGC1a signaling

pathway (38).

Furthermore, MSTN may also regulate mitochondrial function

by affecting lipid metabolism. Compared with the control group, the

expression levels of lipid membrane transporters (CD36, FABP3,

FATP1, and FATP4) and proteins related to lipid oxidation

pathways were significantly decreased in the muscle of MSTN-

deficient mice. Further analysis of the composition differences of

phospholipids and fatty acids in mitochondrial membrane by
Frontiers in Endocrinology 03
chromatography showed that the ratio of mitochondrial

cardiolipin proportion of MSTN knockout mice was reduced

compared with other phospholipids (39). This suggests that

MSTN may affect mitochondrial function by regulating lipid

composition in mitochondrial membrane. Interestingly, the

abnormal cardiolipin content in muscle mitochondrial membrane

caused by MSTN deficiency can be corrected by endurance

training (40).
3.2 Autophagy

Autophagy is a process of maintaining cellular homeostasis

through lysosome degradation of cellular damage or excessive

organelles, proteins and other endogenous substances (41–43).

Abnormalities in autophagy are closely related to the occurrence

and development of a variety of metabolic diseases such as obesity,

diabetes and non-alcoholic fatty liver disease (NAFLD) (44–46).

Interestingly, MSTN has also been reported to be involved in the

regulation of autophagy homeostasis in cells. The decreased of basal

autophagy flux and ATP content were observed in muscle of MSTN

knockout mice (47), while the treatment of MSTN can increase the

expression of autophagy associated protein LC3II and

autophagosome formation in skeletal muscle (48) and the

increased autophagic flux induced by MSTN was blocked by

elevating levels of G protein-coupled receptor kinase 2 (GRK2)

(49). Furthermore, Anand et al. have shown that the mRNA

expressions of MSTN and BECN1 (autophagy associated

proteins) were increased in skeletal muscle of patients with

sarcopenia compared with controls (50). These results imply that

MSTN inhibits muscle hypertrophy by enhancing autophagy levels

in skeletal muscle cells. However, MSTN regulates autophagy

differently in cells with myocardial hypertrophy. There is an over-

activated autophagy level in myocardial cells during myocardial

hypertrophy, while in mice lacking MSTN, abdominal aortic

coarctation (AAC) was aggravated and accompanied by an

increase in angiotensin II-induced autophagy, which was reversed

in vivo and in vitro by MSTN treatment (51). Mechanically, MSTN-

mediated anti-autophagy mediated by inhibition of AMPK/mTOR

and activation of the PPARg/NF-kB signaling pathway (51). This

suggests that MSTN regulates autophagy in different tissues and

diseases in different ways. However, whether MSTN has an effect on

autophagy in tissues other than skeletal and cardiac muscles needs

to be observed in future studies.
4 MSTN and metabolic syndrome

4.1 MSTN in obesity and hyperlipemia

As a manifestation of metabolic disorder, obesity has been

shown to be associated with increased myostatin expression. The

mRNA levels of MSTN and its receptor ActRIIb were increased by

more than 50-to 100-fold in subcutaneous and visceral fat of ob/ob

mice (a mouse model of obesity) compared with wild-type mice

(52). Similarly, the concentrations of myostatin were increased in
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obese nondiabetic subjects compared with lean subjects and were

positively correlated with the insulin resistance index and negatively

correlated with the insulin sensitivity index (53). Moreover, high-fat

feeding could significantly increase the body weight and the

expression of MSTN in muscle of high-fat diet induced obesity

susceptible mice models, but the expression of MSTN in muscle of

high-fat diet induced obesity resistant mice does not change

significantly (54). These studies imply that MSTN may play a key

role in obesity, and subsequent studies have demonstrated that

altering MSTN expression can affect the development of obesity.

There were decreased muscle mass, decreased myocardial mass,

and increased epididymal fat mass were observed in MSTN

overexpressing mice (55). Similar result was also observed that

the depletion of MSTN could reduce the age-related adipose tissue

mass increase and partially reduce the obesity and diabetic

phenotypes in agouti lethal yellow (Ay) and obese (Lepob/ob)

mouse models of obesity and diabetes (56). In addition, Zhang

et al. also demonstrated that the absence of MSTN induces reduced

fat accumulation in mice fed a high-calorie diet (57).

Mechanistically, loss of MSTN mediates fat accumulation

suppression through two independent mechanisms. On the one

hand, deficiency of MSTN upregulates enzymes involved in lipolysis

and mitochondrial fatty acid oxidation (e.g., CPT1a and CPT2),

thereby increasing fatty acid oxidation in peripheral tissues and

reducing lipid accumulation. On the other hand, its absence also

promoted the formation of brown fat in white adipose tissue in mice

(white adipose tissue is an energy storage organ, while brown fat is

rich in mitochondria and is involved in thermogenesis by

consuming fat) (Figure 2) (57). Furthermore, intervention with

the MSTN antagonist sActRIIB in wild-type HFD-fed mice

significantly reduced obesity in mice (57). Moreover, compared

with wild-type HFD-fed mice, HFD-fed male MSTN-deficient mice

had reduced plasma cholesterol and triglyceride levels and reduced

plasma TNF-a levels by approximately 40 percent, and reduced
Frontiers in Endocrinology 04
insulin resistance (58). These results suggest that anti-MSTN

therapy may be a potential target for delaying obesity and

hyperlipemia. However, there is still disagreement about the role

of MSTN in obesity. Zhu et al. have shown that the content of lipids

in 3T3-L1 preadipocytes treated with myostatin significantly

decreased compared with untreated cells (59). This difference may

be due to different cell lines’ different responses to MSTN. However,

in future studies, the molecular mechanism of MSTN in obesity

needs to be further revealed, which is conducive to the development

of anti-obesity drugs targeting MSTN.
4.2 MSTN in diabetes

The relationship between diabetes mellitus and MSTN has also

been partially revealed. The concentration of MSTN is closely

related to the occurrence and development of diabetes or insulin

resistance. Dial et al. shown that serum myostatin levels were

significantly higher in type 1 diabetes (T1D) patients than in the

control group and were higher in T1D women than in T1D men

(60). Similar results have been observed in type 2 diabetes (T2D)

that the mRNA levels of MSTN were higher in the muscles of

patients with T2D than in the control group and MSTNmRNA was

correlated with homeostasis model assessment of insulin resistance

(HOMA2-IR) and plasma IL-6 level (61). Similar results have been

observed that compared with the control group, mRNA expression

of MSTN was increased in muscle and subcutaneous adipose tissue

of diabetic rats, and mRNA expression of MSTN receptor (ActRIIB)

was increased in brown adipose tissue (62). Moreover, Hittel et al.

found a strong correlation between plasma MSTN levels and insulin

sensitivity, and that injection of myostatin induced insulin

resistance in mice (63).

Interestingly, inhibiting the level of MSTN could relieve insulin

resistance and diabetes. The elderly men with T2D had significantly
FIGURE 2

The role of MSTN in different tissues. IGF-1, FOXO1 and NF promote the expression and secretion of MSTN, and MSTN circulates to different tissues and
binds to ActRIIA/B receptors on the cell. In adipose tissue, MSTN inhibits fatty acid oxidation and brown adipose tissue formation, thereby promoting obesity
and hyperlipidemia. In the liver, MSTN inhibits hepatic glucose uptake and decreases insulin sensitivity, thereby increasing blood glucose levels and insulin
resistance. In muscle, MSTN accelerates muscle consumption and decreased exercise capacity, resulting in muscle atrophy.
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higher circulating MSTN concentration and lower muscle strength,

while RT training can significantly reduce circulating MSTN levels

and increase muscle strength (64). The increased MSTN expression

was detected in in skeletal muscle of type 2 diabetic KKAy mice or

palmitate treated C2C12 cells, while astragalus polysaccharide could

downregulated the expression of MSTN and improve insulin

sensitivity (65). By crossing lipodystrophy mice (A-ZIP/F1) with

mice expressing a dominant negative MSTN receptor (activin

receptor type IIB) in muscle, inhibition of MSTN action in A-

ZIP/F1 mice notably lower the levels of blood glucose, serum

insulin, triglyceride, and triglyceride synthesis rate, and enhanced

insulin sensitivity (66). Moreover, by crossing Akita diabetic mice

with myostatin knockout mice, the resulting diabetic myostatin

knockout mice had upregulated Glut1 and Glut4 proteins and

increased glucose uptake capacity, which in turn resulted in

significantly down-regulated resting blood glucose levels and

significantly reduced associated diabetes symptoms (67).

Similarly, the intervention of MSTN significantly reduced basal

and insulin-induced phosphorylation of IRS-1 tyrosine (Tyr495), as

well as PI3K expression and activation (68). In addition, MSTN also

inhibited AMPK activation and down-regulated Glut4 protein

expression, which impaired systemic glucose homeostasis (68).

Similar result was observed that myostatin significantly inhibits

insulin-stimulated glucose uptake and Akt phosphorylation in

hepatocytes (69). The changes of Mss51 were most pronounced

in the muscle transcription profiles of MSTN-knockout mice or

mice treated with a myostatin/activin inhibitor (ActRIIB-Fc).

Furthermore, compared with the control group, muscle fibers

isolated from Mss51 knockout mice showed a higher rate of

oxygen consumption, up-regulated expression of genes related to

oxidative phosphorylation and fatty acid b-oxidation in muscle, and

increased systemic glucose turnover and glycolysis rates, as well as

enhanced systemic insulin sensitivity (70). This suggests that the

antidiabetic effect of inhibition of MSTN may be achieved through

MSS51 and enhancing mitochondrial oxidation.

In addition to its direct relationship with diabetes, MSTN is also

involved in the occurrence and development of diabetes

complications. In diabetic muscle atrophy rats, MSTN expression

is increased in skeletal muscle and pulsed electromagnetic field

intervention can decrease MSTN expression and increase the cross-

sectional area of muscle fibers (71). Diabetic nephropathy is also a

common microvascular disease in diabetes. In the kidney, MSTN is

mainly expressed in the renal tubules and interstitium, and is

colocalized with CD45+. In diabetic nephropathy patients, the

expression level of MSTN in renal tubules is increased, and

MSTN induced the release of ROS and up-regulation of NADPH

oxidase in cells through the ERK pathway, thus aggravate the

progression of tubule cell fibrosis (72).
4.3 MSTN in hypertension

MSTN have also been reported to be involved in another

important clinical manifestation of metabolic syndrome:
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hypertension. Pucci et al. showed that individual with above-

median serum MSTN concentrations had higher brachial diastolic

blood pressure and higher carotid - femoral pulse velocity

compared to controls (73). Similarly, compared to non-

hypertensive healthy donors, the expression of MSTN was

notably increased in structural cardiomyopathy patients (74).

However, in the spontaneously hypertensive rat model, the

expression of myostatin protein decreased in chronically

hypertrophic myocardium and was significantly negatively

correlated with left ventricular diastolic diameter/body weight

ratio and left ventricular systolic diameter, but positively

correlated with partial shortening of the middle wall (75).

Although these parts reveal an association between MSTN and

hypertension, further mechanisms need to be uncovered. In

addition, whether the increase in MSTN levels in hypertensive

patients is a primary or secondary increase also needs to be

determined in the future.
4.4 MSTN-mediated tissue crosstalk
in diseases

The expression of MSTN is not limited to skeletal muscle, it is

also expressed in myocardium, adipose tissue, brain, kidney and

circulating white blood cells (4, 72). Although current studies on

MSTN focus on skeletal muscle, adipose tissere-derived MSTN is

also essential for maintaining homeostasis. Adipose tissue is not

only a storage of energy, but also secretes a series of proteins called

adipokines that regulate the function of distal organs through

endocrine processes (76). Recently, MSTN has also been

identified as an adipokine. Steculorum et al. have shown that

myostatin is secreted in brown adipose tissue and reduces local

insulin sensitivity in the form of autocrine (77). In addition, MSTN

also mediates the crosstalk between adipose tissue and muscle.

Kong et al. have showed that loss of the transcription factor IRF4 in

mouse brown adipose tissue (BATI4KO) reduced mitochondrial

function and athletic ability in muscle (5). Furthermore, RNA-seq

analysis showed upregulation of MSTN in adipose tissue of

BATI4KO mice compared with control mice, while reducing

circulating MSTN levels by neutralizing antibodies or soluble

receptors restored exercise ability in BATI4KO mice (5).

Moreover, overexpression of IRF4 in mouse brown adipose tissue

reduces circulating MSTN levels, thereby increasing muscle athletic

ability (5). This evidence reveals the role of MSTN as an adipokine

in maintaining muscle homeostasis. However, whether adipose

tissue-derived MSTN also affects the function of other organs

needs to be further investigated in the future.
5 The inhibitor of MSTN

In view of the importance of MSTN in regulating muscle

homeostasis, the inhibitors targeting the MSTN signaling pathway

have been developed for clinical use to improve patients with
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sarcopenia and muscular dystrophy. Currently, a variety of

compounds have been found to improve muscle function by

inhibiting MSTN. A variety of MSTN-neutralizing antibodies

have been used to inhibit MSTN, such as MYO-029 (78), SOD1

(79), AMG745 (80), Regn647 (81), GYM329 (82), which have been

observed to improve muscle homeostasis by inhibiting MSTN

levels. In addition, the development of drugs targeting the MSTN

receptor is also one of the ideas to block the MSTN signaling

pathway and several compounds are also being tested in animals or

in clinical trials. Dumonceaux et al. shown that there was increased

muscle mass in the mice once effectively down-regulated activin

receptor IIb mRNA by intramuscular injection of adeno-associated

virus (AAV) encoding a specific shRNA (83). Moreover, ACE-031

is a soluble ActRIIB that binds to circulating MSTN to inhibit its
Frontiers in Endocrinology 06
action (84). It has been shown to increase muscle mass in the

interveners. Multiple studies have demonstrated that ACE-031

interventions increase muscle mass in subjects (85–87). In

addition, a variety of natural compounds were observed to inhibit

MSTN expression, including Epicatechin (88), Fructus Schisandrae

(89), Sulforaphane (90) and Fructus Schisandrae (91). Here we

summarize some inhibitors and part agonists of MSTN to use

MSTN as a therapeutic target for diseases (Table 1).
6 Conclusion and perspective

Although MSTN is well known for its role as a key protein that

regulates muscle homeostasis and prevents excessive muscle
TABLE 1 The inhibitors or agonists of MSTN.

Category Compounds Effects on MSTN References

MSTN neutralizing antibodies

MYO-029 Inhibition (78)

SOD1 Inhibition (79)

AMG-745 Inhibition (80)

Regn647 Inhibition (81)

GYM-329 Inhibition (82)

Domagrozumab Inhibition (92)

ATA-842 Inhibition (93)

SRK-015 Inhibition (94)

Target ActRIIB

ACE-031 Inhibition (84)

ACE-2494 Inhibition (95)

ActRIIB-mFc Inhibition (96)

RAP-031 Inhibition (97)

RAP-435 Inhibition (97)

Natural compounds

Epicatechin Inhibition (88)

Fructus Schisandrae Inhibition (89)

Sulforaphane Inhibition (90)

Fructus Schisandrae Inhibition (90)

Others

GASP-1 Inhibition (98)

MOTS-c Inhibition (99)

Fenofibrate Inhibition (100)

Dexamethasone Upregulation (101)

Metformin Upregulation (102)

Alcohol Upregulation (103)

Cigarette smoke extract Upregulation (104)

Angiotensin II Upregulation (105)

AICAR Upregulation (106)
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growth, its role in regulating metabolic processes, especially in

metabolic syndrome, is also attracting increasing attention. It is

involved in the development of obesity, diabetes, lipid disorders and

hypertension, while gene knockout or drug inhibition of MSTN can

effectively reduce the symptoms of metabolic syndrome. However,

the benefits of MSTN therapy in metabolic syndrome still need to be

validated in clinical patients. What needs to be determined is

whether the circulating MSTN mainly comes from muscle,

adipose tissue or other tissues. In addition, the baseline level of

MSTN in the cycle at rest needs to be determined. Furthermore, the

molecular mechanism of MSTN therapy against metabolic

syndrome also needs to be further explored in the future.

Although there are still many questions to be addressed, anti-

MSTN therapy could be a potential target for metabolic syndrome.
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