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Summary

Obesity and components of the metabolic syndrome (MetS) are associated with dif-
ferences in brain structure and function and in general and food-related cognition in
adults. Here, we review evidence for similar phenomena in children and adolescents,
with a focus on the implications of extant research for possible underlying mecha-
nisms and potential interventions for obesity and MetS in youth. Current evidence is
limited by a relative reliance on small cross-sectional studies. However, we find that
youth with obesity and MetS or MetS components show differences in brain struc-
ture, including alterations in grey matter volume and cortical thickness across brain
regions subserving reward, cognitive control and other functions, as well as in white
matter integrity and volume. Children with obesity and MetS components also show
some evidence for hyperresponsivity of food reward regions and hyporesponsivity of
cognitive control circuits during food-related tasks, altered brain responses to food
tastes, and altered resting-state connectivity including between cognitive control and
reward processing networks. Potential mechanisms for these findings include neu-
roinflammation, impaired vascular reactivity, and effects of diet and obesity on myeli-
nation and dopamine function. Future observational research using longitudinal
measures, improved sampling strategies and study designs, and rigorous statistical
methods, promises to further illuminate dynamic relationships and causal mecha-
nisms. Intervention studies targeted at modifiable biological and behavioural factors
associated with paediatric obesity and MetS can further inform mechanisms, as well

as test whether brain and behaviour can be altered for beneficial outcomes.
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1 | INTRODUCTION

Obesity, defined as having a BMI at the 95th percentile or greater for
age and sex based on population reference data, is present in 17% of
US children and adolescents, with prevalence increasing as children
age.! Obesity is associated with type 2 diabetes mellitus (T2DM) and
other comorbidities throughout the life course,? and central obesity is a
key component of the metabolic syndrome (MetS), a cluster of factors
including large waist circumference, hypertension, elevated triglycer-
ides, low high-density lipoprotein (HDL) cholesterol, and dysregulation
of glucose metabolism as indicated by impaired fasting glucose (IFG) or
marked insulin resistance (IR).> Growing evidence suggests that obe-
sity, T2DM and IR in adulthood are associated with impairments in cog-
nition and differences in measures assessing cognition in relation to
food.*"® However, although a substantial body of work suggests that
paediatric obesity (i.e., obesity in children or adolescents ages 2-
20 years) is also associated with differences in general cognitive

72 1012 3nd obesity based on

function and food-related cognition,
body mass index (BMI) values in childhood is highly associated with
central obesity and other components of the metabolic syndrome,*®
fewer studies have examined the relationship of MetS and other MetS
components with general or food-related cognition in youth.

While the specific cutoffs used to define the components of MetS
are not yet widely agreed upon for paediatric populations, the compo-
nents of MetS in children and adolescents are the same as in adults*
(Table 1). Yates et al. previously reviewed research on the impact of MetS
on cognition and brain structure and function in children and adolescents,
and found that youth with components of MetS showed decreased cogni-
tive function in domains such as executive function, memory, and atten-

tion.r> They also described several studies showing that components of

TABLE 1
adolescents.

Components of Metabolic Syndrome in children and
Component Measure

Waist circumference, waist to
hip ratio

Abdominal obesity

Insulin resistance (IR) Homa-IR, fasting blood glucose

Systolic and/or diastolic blood
pressure

Hypertension

Elevated triglycerides Triglycerides level

Decreased high-density High-density lipoprotein level

lipoproteins (HDL)

Note: Listed are the components of metabolic syndrome and measures
commonly used to assess each component in paediatric samples. No
standard cut-offs for measures of each component are currently available
for children or adolescents.

MetS were associated with decreased grey matter volume (GMV) in the
hippocampus and frontal lobes'® and GMV reductions in the orbitofrontal
cortex (OFC).Y” Since 2012, more research has examined the impact of
MetS and its components on cognition and brain structure and function
in youth. The goal of the current narrative review was to summarize
recent research, as well as to outline potential future research directions
to further investigate causal relationships and biological mechanisms.

2 | LITERATURE SEARCH AND SELECTION
We selected extant literature on the impact of paediatric obesity and
other components of MetS on (1) cognition (general cognition, food-
related cognition), (2) brain structure (grey matter volume, cortical thick-
ness, white matter integrity), and brain function (neural responses to food
stimuli, resting state functional connectivity). Since the extant literature
on effects of paediatric obesity on general and food-related cognition is
substantial, we draw on review papers and meta-analyses to briefly sum-
marize this literature. Studies comparing cognitive outcomes in children
with diagnosed T2DM with healthy controls were recently reviewed
elsewhere (see Reference 18), and are also excluded from detailed dis-
cussion here. Consistent with our mechanistic focus, research examining
the effect of paediatric obesity and T2DM on brain structure and func-
tion is included in the discussion, along with a small number of studies
relating specific components of MetS to brain outcomes.

PubMed searches using keywords including: a) adolescent, child,
b) MetS, obesity, insulin resistance, hypertension, abdominal obesity,
c) cognition, executive function, reinforcing value food, food delay dis-
counting, food attention, food inhibitory control and d) Magnetic Res-
onance Imaging (MRI), Diffusion Tensor Imaging (DTI), functional MRI
(fMRI), were conducted. Articles reporting the impact of obesity,
MetS, and MetS components on neurocognitive outcomes in other-
wise healthy children or adolescents ages 2-20 years were included
for consideration as outlined above. Titles and abstracts were then
screened to ensure eligibility. Emphasis was placed on papers pub-
lished in 2012 or later. We excluded papers addressing other physical

and mental health conditions (e.g., Prader-Willi syndrome).

3 | GENERAL AND FOOD-RELATED
COGNITION DIFFERENCES IN PAEDIATRIC
OBESITY AND METS

3.1 | General cognition

Paediatric obesity has been associated with small to moderate nega-

tive effects on functioning across multiple cognitive domains including
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Pediatric Obesity
|

Insulin Resistance
Abnormal glucose control
Impaired vascular function

Inflammation

!
/ Metabolic Syndrome \

Cognitive Function
| Executive function, cognitive
flexibility/attention, memory
| Food-related inhibitory control
1 Food responsiveness/
attentional bias

Brain Function/Structure
1 Reward circuit response to food cues
| Cognitive control circuit response to food cues
| Reward circuit response to food taste
| Regional gray matter volume and cortical thickness
| Regional white matter integrity and volume

FIGURE 1 Schematic showing relationships of paediatric obesity
and metabolic syndrome with cognitive function and brain structure
and function. Grey font/lines represent potential mechanisms.
Relationships depicted are not universal but have been reported
across multiple studies.

attention, switching, inhibition, interference, working memory, reward,
and delay of gratification, as described in a recent meta-analysis
including 70 studies.” However, fewer studies have examined the
effects of MetS or specific MetS components.

A summary of the results of extant studies investigating relation-
ships between MetS and general cognition in youth can be found in
Table 2, Section A and Figure 1. In two of the three studies examining
adolescents diagnosed with MetS, those with MetS demonstrated evi-
dence for lower cognitive flexibility (the ability to adapt behaviours in
response to changes in the environment), which is considered a
dimension of executive function.'®” One of these studies addition-
ally demonstrated poorer executive function scores based on several
sub-tests from a computerized neurocognitive battery and the other
decreased scores on arithmetic and spelling.1® A third study found no
association between MetS and indices of executive function, but
reported lower reading scores and poorer visual-spatial processing in
children with MetS.2° Notably effect sizes reported across these stud-
ies were small (Cohen's d = 0.15-0.21), with the exception of the
observed effect on arithmetic (d = 0.69).

Components of MetS have been similarly associated with cogni-
tive deficits (Table 2, Section B), including decreased inhibitory control
as measured via the Flanker task in children who demonstrated some
MetS components.?!?? Additionally, one study found that insulin
resistance was related to poorer Flanker task performance during
early childhood.?® However, another study of adolescents found no
evidence for an association between waist circumference and Flanker
performance.?? One further paediatric study reported hypertension to
be associated with lower attention, learning, and memory scores,>*
while others have reported no relationship between hypertension and
inhibitory control task performance.?%2°

Taken together these studies suggest that MetS and its compo-
nents are associated with impairments across a range of cognitive
domains, with the most evidence of negative effects for obesity and
insulin resistance. However, few studies have assessed other key
components of MetS (e.g., waist circumference, hypertension, HDL

cholesterol, triglycerides). Possible sources of inconsistencies among

TABLE 3 Common food-related cognition tasks and main
outcomes.

Task type Main outcomes

Work exerted to obtain a food reward before
switching to a less-demanding non-food
reward

Reinforcing value
of food

Selection of smaller food reward in the present
over a larger food reward in the future

Food-related delay
discounting

Attentional bias for  Attention paid to food stimuli over alternative
food stimuli

Food-related
inhibition

Ability to inhibit a food-related response

existing findings may be between-study differences in the cognitive
function domain assessed, developmental stage, disease duration, or

interactions between these factors.

3.2 | Food-related cognition
Several types of behavioural task are commonly used to examine
food-related cognitive processes?® (see Table 3).

In general, studies support that adolescents and children with
obesity show greater reinforcing value of food,'? greater discounting
of future food rewards,*? increased attentional biases toward food,*°
and decreased food-related inhibitory control,” all of which may con-
tribute to (or be impacted by) overeating, weight gain and develop-
ment of MetS.

To date, few studies have directly addressed relationships
between components of MetS and measures of food-related cogni-
tion in school-aged children (Table 2, Section B). Using a go/no go
task adapted to include food and non-food (toy) stimuli, Da Costa
et al?® found that higher fat mass, but not blood pressure or waist to
hip ratio, or BMI, was associated with lesser ability to inhibit a prepo-
tent response to food but not toy stimuli, supporting a direct relation-
ship between adiposity and food-specific alteration in inhibitory
control. Given the confines of extant research to effects of obesity
and whole body (vs. central) fat mass, more data are needed to under-
stand the impact of other components of MetS on food-related

cognition.

4 | STRUCTURAL AND FUNCTIONAL
BRAIN DIFFERENCES IN PAEDIATRIC
OBESITY AND METS

41 | Structural brain differences

411 | Grey matter differences

Grey matter is primarily composed of neuronal and non-neuronal cells

such as glial cells, while white matter is primarily composed of axons.
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FIGURE 2 Brain imaging methods commonly used to investigate
effects of paediatric obesity and metabolic syndrome. Grey matter
volume (GMV) and white matter volume (WMV) can be measured
using T1 weighted (T1W) structural MRI; white matter integrity can
be estimated by fractional anisotropy (FA) and mean diffusivity

(MD) derived from Diffusion Tensor Imaging (DTI); neural activation
to food cues and food tastes can be assessed using Blood Oxygen
Level Dependent (BOLD) responses assessed via functional MR
(fMRI); functional connectivity of brain regions can be assessed using
resting state fMRI.

GMV can be estimated using structural MRI (Figure 2),2” and esti-
mates can additionally be decomposed into measures of cortical sur-
face area (CSA) and cortical thickness (CT), which are phenotypically
and genetically distinct and may relate differentially to cognitive out-
comes, with GMV estimates being more closely related to CSA than
CT.?® GMV demonstrates a rapid increase in early life?? followed by
reductions in both GMV and CT from childhood to adulthood,*° a pat-
tern which is thought to partly reflect a process of initial neuronal pro-
liferation followed by synaptic pruning as development advances.
Against this background, global or regional decreases in GMV and CT
may also result from a range of pathological processes.>*

Table 4 summarizes studies reporting differences in grey matter
metrics in youth with obesity and MetS or its components and
Figure 3 illustrates key brain regions that have demonstrated such dif-
ferences. Several studies have reported regional reductions in grey
matter metrics. For example, two small studies found that children
with overweight/obesity (n = 15) showed lower GMV in the hippo-
campus relative to a healthy weight group (n =15 vs. n = 1832
n =12 vs. n = 10%%), while another found that children with obesity
(n = 12) versus healthy weight (n = 12) showed lower GMV in the
right middle temporal gyrus, left and right thalami, left superior parie-
tal gyrus, left pre/postcentral gyri, and left cerebellum.®* In our own
study of adolescents (n = 36), an obesity/overweight group versus a
healthy weight group with low familial risk for obesity based on cur-
rent maternal weight status showed lower GMV and lower CT in the
anterior cingulate cortex (ACC),%> while two larger studies of adoles-
cents respectively found that higher BMI z-score was associated with
lower GMV in frontal and limbic regions (n = 120%¢), and in the cau-
date, medial prefrontal cortex (PFC), ACC, frontal pole and uncus
(n = 137%"). Studies of much larger cohorts have similarly reported
reductions. For example the Generation R study found that children
with overweight and obesity (n=536) versus healthy weight
(h = 2355) had lower GMYV in the frontal lobe, and that a one stan-
dard deviation score (SDS) in fat mass percentage was associated with
significantly lower frontotemporal GMV.%8 Further, two large, cross-

sectional analyses of children from the ABCD study (n = 3190%%40)

showed that greater BMI was associated with lower CT in the pre-
frontal cortex, with one larger analysis (n = 11 875) further demon-
strating that BMI z-score showed a quadratic relationship with total
GMV and right hippocampus volume.*!

Several studies have also examined structural brain metrics in
youth with T2DM. For example, one study of adolescents found that
a group with obesity and T2DM (n = 18) showed reduced GMV in the
hippocampus and prefrontal lobe relative to a group with obesity but
without T2DM (n = 18), and that lower prefrontal GMV was associ-
ated with greater HbA1C.*? A further study found that obesity with-
out T2DM (n = 21) and obesity with T2DM (h = 15) groups had
lower GMV in the caudate, putamen, hippocampus, amygdala and
thalamus, relative to a healthy weight group (n = 22).*% Similarly,
Rofey et al. reported that a group with obesity (n = 5) and T2DM
(n = 5) had lower caudate and thalamus GMV than a healthy weight
group (n = 5).** Further, Redel et al. showed that youth with obesity
and T2DM (n = 20) had lower global GMV than a healthy weight
group (n = 20), as well as reduced regional volumes in the temporal
and occipital lobes.*> Comparatively few studies have reported GMV
differences in relation to MetS and its components. Yau et al. found
that adolescents with MetS (n = 49) showed reduced hippocampal
GMV compared to adolescents without MetS (n = 62).2¢ Further, Yau
et al. found that adolescents with uncomplicated obesity (no insulin
resistance) (n = 30) versus healthy weight (n = 30) had lower CT of
the OFC and ACC, consistent with a potential dose effect of meta-
bolic dysregulation.*®

Notably, increases in the structural metrics of the brain have also
been reported in certain regions. For example, in one of our own stud-
ies we observed greater GMV in the precentral gyrus and frontal pole
in adolescents with overweight/obesity (n = 36) versus a healthy
weight group with low familial risk of obesity based on maternal
weight status (n = 22).3% Higher BMI was also associated with greater
GMV in the globus pallidus in a small study of 6-8 years old children
(n = 33),%2 while higher BMI z-score was associated with greater
GMV in the nucleus accumbens (NAcc) and amygdala in a study of
10-16.5 years old children (n = 51).*" In the large Generation R study,
10 years olds with overweight/obesity (n = 536) versus healthy
weight (n = 2355) had larger amygdala and hippocampal GMV, with a
one SDS increase in fat mass index being associated with greater
GMV in the thalamus, amygdala, hippocampus and putamen.®® A fur-
ther analysis using the same cohort (n = 3160) found that greater
BMI standard deviation score (SDS) was associated with greater CT in
superior parietal, superior temporal, inferior temporal, pericalcarine,
occipital, postcentral, lingual and superior parietal gyri.*® A small study
of youth with obesity and T2DM (n = 20) versus healthy controls
(n = 20) also reported higher GMV in the putamen, thalamus, inferior

temporal lobe and paracentral lobule,*

while another study found
that increased visceral fat (ratio of abdominal fat volume to overall
abdomen volume) as assessed by an MRI and hepatorenal gradient
measured with an ultrasound, but not BMI, was associated with
increased CT across multiple brain regions (n = 44).4°

Methodological variation between studies including developmen-

tal stage and also treatment of potential covariates such as total
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FIGURE 3 Brain regions implicated in food reward, cognitive control and homeostatic regulation demonstrating functional and structural
differences in paediatric obesity and metabolic syndrome. ACC, anterior cingulate cortex; Amyg, amygdala; dIPFC, dorsolateral prefrontal cortex;
FO, frontal operculum; Hipp, hippocampus; Hyp, hypothalamus; Ins, insula; IFG, inferior frontal gyrus; NAcc, nucleus accumbens; OFC,
orbitofrontal cortex; RO, rolandic operculum; vimmPFC, ventromedial prefrontal cortex. Regions showing functional as well as structural differences
are preferentially represented. [Correction added on 9 June 2023, after first online publication: Figure 3 has been corrected in this version.]

intracranial volume and socioeconomic status (relevant to all studies),
and of BMI or other measures of adiposity in studies of T2DM or
MetS and its components (see Table 4), precludes direct comparison
across studies. Variation in sociodemographic characteristics including
race could also contribute to differences in results®® - the majority of
studies have been of youth with white European ancestries, with only
a handful of

backgrounds,”’49

studies focusing on youth with minority
or including significant representation of minori-
ties.>%51 When considered together extant results support that paedi-
atric obesity and MetS are likely associated with alterations - most
often reductions - in grey matter metrics within areas implicated in a
wide range of functions including cognitive control, reward, emotion,
memory and sensory processing. However, further research is
required to establish robust phenomena and to identify the sources of

variability among findings.

41.2 | White matter differences

Structural MRI techniques can also be used to estimate white matter
volume (WMV), and white matter microstructure via Diffusion Tensor
Imaging (DTI). DTI assesses diffusion of water molecules in white mat-
ter tracts (Figure 2), and can be used to derive measures of fractional
anisotropy (FA), that is, the preference of water to diffuse in one
direction. Since diffusion along white matter tracts is anisotropic,
higher FA values reflect greater integrity and directionality of white
matter fibre tracts, assumed to support more efficient communication
between brain regions.>?

Table 4 includes summaries of studies reporting WMV and WM
integrity differences in youth with obesity and MetS or its compo-
nents. Several studies have demonstrated reductions in both metrics
among youth with higher body weight. For example, we ourselves
found that a group of adolescents with overweight/obesity showed

lower WMV compared with healthy weight adolescents with both

low and high familial obesity risk in the middle temporal gyrus
(n = 36).%° BMI percentile additionally showed a negative correlation
with WMV in the anterior limb of the internal capsule, extending to
the middle frontal subgyral WM in a larger study of adolescents
(n = 137).%” Other studies using DTI methods have found that adoles-
cents with overweight/obesity (n =40) versus healthy weight
(n = 47) demonstrated lower WM integrity in the superior frontal cor-
pus callosum, uncinate fasciculi, inferior fronto-occipital fasciculus and

corticospinal tract,”®

and that higher BMI was associated with
decreased FA in WM fibres connecting the left superior longitudinal
fasciculus and left inferior longitudinal fasciculus regions that support
working memory (n = 52°4).

Other studies have demonstrated reductions in WMV and WM
integrity in youth with T2DM or with MetS or its components. One
study found that adolescents with T2DM (n = 15) showed reduced
FA within many key white matter tracts, including the corpus callo-
sum, fornix, inferior fronto-occipital fasciculus, uncinate, and internal
and external capsule, compared to adolescents with obesity (n = 21)

),4% with a further smaller

and adolescents with healthy-weight (n = 22
study finding that groups with obesity and T2DM (n = 5) and obesity
without T2DM (n = 5) versus healthy weight (n = 5) showed lower
WM integrity in thalamic pathways but only in analyses that did not
adjust for BML#** Yau et al. further found that adolescents with MetS
and obesity (n = 49) versus adolescents who were overweight with-
out MetS (n = 62), showed reduced FA in a number of major
fibre tracts (including corpus collosum, optic radiations, medial longi-
tudinal fasciculi), suggesting impaired interhemispheric and cortico-
subcortical communications.'® Complementarily, Yau et al. found that
adolescents with uncomplicated obesity (no insulin resistance)
(n = 30) versus healthy weight (n = 30) had reduced FA in major
white matter tracts (including temporal stem, optic radiations, internal
capsule, splenium, external capsule), potentially reflecting a dose
effect of metabolic dysregulation.*® Another study of Generation R

found that a one standard deviation score (SDS) increase in android
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fat mass percentage as assessed by Dual x-ray Absorpiometry
(DEXA)—a high-quality indicator of abdominal obesity—was associ-
ated with globally lower white matter diffusivity.3®

Reductions of WMV and WM integrity are not universally
observed. In one of our own studies, we found higher WMV in the
frontal pole and precentral gyrus among adolescents with over-
weight/obesity (n = 36) compared to a group of healthy weight ado-
lescents with low familial risk for obesity (n = 22).3° Higher WMV in
the cerebellum and mid-posterior corpus callosum has additionally
been reported in children with overweight and obesity versus healthy
weight.®2 One study using DTI further found that adolescents with
overweight/obesity (n = 40) versus healthy-weight (n = 47) demon-
strated increased WM integrity in the orbital and anterior frontal cor-
pus callosum, inferior fronto-occipital fasciculus, cingulum, and
corticospinal tract.>® However, a larger study (n = 120) of 6-18 years
old children found no relationship between BMI and FA.3¢

As for the GM findings described above, comparison across WM
results is challenging due to sample and method variance and a rela-
tively small number of studies assessing WM as opposed to GM met-
rics. Extant evidence supports further examination of potential

differences in WM in children according to body weight and MetS.

4.2 | Functional brain differences

A substantive body of literature has examined the association of obe-
sity in youth with brain activation in response to food stimuli and at
rest. Brain activation in response to acute administration of food cues
or food tastes is typically measured using functional Magnetic Reso-
nance Imaging (fMRI) methods which assess changes in the flow of
oxygenated blood (the Blood Oxygen Level Dependent (BOLD)
response) as a proxy for neural activity (see here for a critique®>). In
adults, obesity and MetS are associated with alterations in brain

response to food cues and taste stimuli®®>’

and resting state func-
tional connectivity®® that may perpetuate overeating. Here, we dis-
cuss evidence for functional brain differences in adolescents and

children with obesity and components of MetS.

421 | Brainresponse to food cues

Mounting evidence from a considerable number of small studies sug-
gests that children and adolescents with obesity show increased
response to food cues (e.g., food images, food commercials, food
brand logos, food words) in brain regions associated with motivation
and reward and decreased response in regions associated with cogni-
tive control®® (Table 5, Section A, Figure 3).

For example, adolescents with obesity (n = 25) showed increased
brain response to high calorie food images in striatal-limbic regions
(putamen/caudate, insula, amygdala) compared to adolescents with
healthy weight (n = 15).%° Similarly, in response to food commercials,
percent body fat in adolescents was correlated with increased

response in the insula and OFC as well as sensorimotor cortex

all &:
OBESITY

(n=37°Y). In a study testing responses to food images following
exposure to food commercials, children with overweight and obesity
showed increased response in the OFC as well as the fusiform gyrus
and supramarginal gyrus, to high-calorie food images as compared to
children with healthy weight.®2

Other studies have primarily found evidence of reduced activa-
tion in regions of the frontal cortex associated with obesity. In
response to food brand logos presented when fasted, children with
obesity (n = 10) showed reduced activation of bilateral middle and
inferior PFC, compared to children with healthy weight (n = 10).%% In
another child sample (n = 53), percent body fat was negatively associ-
ated with response in the medial PFC and lateral OFC to palatable
food images in a fasted state.®* A separate paediatric study found that
higher BMI was associated with lower dorsolateral PFC activation in
response to unhealthy versus healthy food images,®> while a different
study reported that children with obesity (n = 11) compared to chil-
dren with healthy weight (n = 11), showed a weaker response in the
dorsomedial PFC to high-calorie food images following a meal.®® In a
study of adolescents, we found that those with overweight and obe-
sity (n = 10) showed weaker responses in an attentional/regulatory
system including dorsolateral PFC and dorsal ACC as well as basal
ganglia nuclei, to high energy-density food words as compared with
healthy weight adolescents (n = 10).¢’

Few studies have examined associations between other compo-
nents of MetS and brain response to food cues. However, one small
study of Hispanic girls with overweight (n = 10) found that fasting
blood glucose was positively associated with responses in the insula
and caudate to high calorie food images in a fasted state,®® suggesting
that certain components of MetS may be associated with increased
food cue responsiveness in regions implicated in food motivation.

Taken together, extant results on the whole support a model in
which paediatric obesity is associated with hyperactivation of regions
involved in food reward and with altered, usually weakened,
responses in circuits involved in cognitive control in response to visual
stimuli relating to food. However we note that differences in activa-
tion are also seen in regions implicated in emotion, memory and sen-
sory and motor processing when using whole brain analysis
approaches that test for differences across the brain rather than con-
fining testing to specified ROIs. This supports a distributed model of
appetitive processing and advocates for interpreting activation at a
circuit versus individual region level.?” We also note significant varia-
tion between studies in terms of study design (e.g., fasting status) and
task features (e.g., task stimuli and response requirement (passive
viewing, appetitive response made for each stimulus)), as well as in
statistical approach (see Table 5, Section A for details); these differ-

ences may contribute to between-study variability in results.
4.2.2 | Brain response to taste administration and
cues predicting delivery of taste

Delivery of taste stimuli in the scanner via a gustometer

(a mouthpiece designed to drop liquid on the participant's tongue
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during MRI scanning) enables assessment of regional brain
responses to small amounts (3-5 mL) of liquid (also referred to as
“tastes”) and cues predicting the delivery of those tastes (Table 5,
Section B, Figure 3). A large body of work has investigated brain
responses to tastes among healthy weight adolescent girls,”® but
only a few studies have examined effects of obesity in youth. In
adolescents (n = 33), girls with obesity (n=7) showed increased
activation of sensory processing regions including the insula and
rolandic operculum during anticipation of delivery of a high fat and
high sugar milkshake, but BMI was negatively associated with
response in the caudate, a region implicated in motivation, during
receipt of milkshake taste.”* In contrast, in young children with over-
weight (n = 8) versus healthy-weight (n = 10) there was no differ-
ence in response to cues predicting taste.”? In response to a high-
fat/high sugar taste, children with overweight showed a greater
response in regions involved in gustatory processing, including the
insula, precentral gyrus, precuneus, and posterior cingulate cortex.”?
Similarly, in a sample of slightly older children, those with obesity
(n = 10) versus healthy-weight (n = 13) showed greater response in
the insula and amygdala in response to taste administration (sucrose
or water) and greater responses to sucrose versus water relative to
the healthy-weight group in the paracingulate, medial frontal and
middle frontal gyri, and right amygdala following a standardized
meal.”® Further, taking a region of interest [ROI] analytic approach
(which examines signal within pre-defined, specified regions of the
brain) focused on the hippocampus, another study found that chil-
dren with obesity (n = 12) versus children with healthy-weight
(n=13) showed increased response in the hippocampus to a
sucrose solution.>® However, in a sample of 162 adolescents, no sig-
nificant relationship was found between neural response to taste
and BMI or body fat percentage while controlling for emotional eat-
ing.74 As far as we aware, no study to date has tested the effect of
other components of MetS on neural response to palatable tastes.
The samples used in the literature described above are small and
thus findings should be interpreted with caution.”> However, we note
that, if confirmed, the observed phenomenon of increased neural
responses to taste in heavier children, and increased neural responses
to cues signalling taste delivery in older youth would be consistent
with a dynamic vulnerability model similar to that seen in addiction”®
such that individuals at raised obesity risk initially demonstrate a
hyper-responsivity of the reward system to palatable foods which
decreases over time, while responsivity to cues signalling such foods
increases over time (see Reference 77 for a fuller discussion of the

dynamic vulnerability model of obesity).

423 | Resting state functional connectivity

Resting state functional connectivity assessed via fMRI (rsfMRI) is a
measure of the temporal correlations of spatially distinct brain
regions, and can be considered a proxy for functional organization
of brain networks, with increased resting state connectivity thought

to reflect increased functional communication between regions.”®

all &:
OBESITY

Although there are now several large studies in adults demonstrat-
ing altered resting state connectivity of the default mode network

79-81 studies of com-

and salience networks associated with obesity,
paring resting state functional connectivity in youth with obesity to
youth with healthy weight are less common (Table 3, Section C,
Figure 3).

In one study using a whole brain connectivity analysis that eval-
uated connectivity between every voxel (i.e., small volume element
in brain image on the order of 1-3 mm?®) (rather than examining
ROI-to-ROI connectivity or connectivity between a seed ROl and
every voxel in the brain), adolescents with obesity (n = 60) versus
healthy-weight (n = 55) showed reduced global connectivity of the
insula/operculum, middle temporal cortex, and dorsolateral PFC.52
Subsequent seed-based analyses revealed reduced connectivity of
the insula/operculum seed with the dorsal ACC and supplementary
motor area among adolescents with obesity, as well as increased
connectivity of the dorsolateral PFC seed with the primary visual
cortex.®? A separate study taking a seed-to-voxel approach (calcu-
lated as the connectivity of a ROI, or seed, to all other voxels in the
brain) found that adolescents with obesity (n = 60) versus healthy-
weight (n =55) demonstrated increased functional connectivity
between middle frontal gyrus and ventromedial PFC, and between
middle frontal gyrus and lateral OFC.2% A study using an ROI-to-ROI
approach found that adolescents with obesity (n = 36) versus
healthy-weight (n = 88) showed increased connectivity of ROls
within the salience network (e.g., between the medial orbitofrontal
cortex, olfactory tubercle, and pallidum) but lower connectivity of
salience network regions to regions in other networks, such as the
default mode network and executive function network.®* Another
study in children (n = 38), showed that higher BMIz was associated
with relatively greater connectivity between the NAcc and frontal
pole (interpreted as impulsivity-associated) and relatively lesser con-
nectivity between NAcc and inferior parietal lobule (interpreted as
reward-associated).8> Finally, a study in adolescents showed that
those with excess weight (n = 53) versus healthy weight (n = 51),
showed greater connectivity of the lateral hypothalamus (LH) with
OFC, ventral striatum and anterior insula, and of the medial hypo-
thalamus (MH) with the middle temporal cortex but lower connec-
tivity of the LH with the cerebellum, and of the MH with middle
prefrontal, pre-, and postcentral gyri.8

We are aware of only one study reporting an association between
an MetS component, insulin resistance (IR), with resting state func-
tional connectivity. This study of adolescents with overweight and
depression (n = 42) found that IR was associated with decreased rest-
ing state functional connectivity of the two seed regions, ACC and
hippocampus with fronto-limbic reward networks.8”

The methodological and analytic variation among existing rsfMRI
studies of obesity in youth prevents generalization of findings but
together these results suggest that excess weight may be associated
with altered patterns of functional connectivity,®? with some results
consistent with a pattern of reduced connectivity of brain regions
executing cognitive control with regions implicated in food reward in

82,84,85

youth with obesity or insulin resistance.®”
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5 | MECHANISMS UNDERLYING
COGNITION AND BRAIN DIFFERENCES IN
PAEDIATRIC OBESITY AND METS

5.1 | Causal and temporal relationships

Most research into alterations in cognition, brain structure, and func-
tion in youth with obesity and MetS is cross-sectional, thus leaving
unanswered whether cognitive and brain differences play a causal role
in influencing weight trajectories or vice versa. The strongest evi-
dence for causal mechanisms comes from animal model studies. For
example, rodents fed a diet composed of high-fat and high-sugar
ultra-processed foods (a.k.a. ‘cafeteria’ or ‘Western’ diet) to induce
obesity and MetS show an elevated neuroinflammatory response in

the hippocampus®-8?

and cognitive impairments in learning and mem-
ory?° relative to lean animals fed a control diet. Evidence further sug-
gests that exposure to a high-fat/high-sugar diet during early
development can cause long-term behavioural impairments across
multiple cognitive domains in animal models.”! However, switching
rodents initially fed a high-fat/high-sugar diet to a control diet results
in significant weight loss and amelioration of cognitive deficits.”>?3
The effects of high-fat diet are often confounded with those of diet-
induced obesity in these studies, although other research in rodents
has observed effects on the brain of high fat diet prior to weight
gain.”* Translation of findings in rodents to humans is not straightfor-
ward and results should not be over-interpreted.”> However, these
findings provide some support for a causal impact of diet-induced
obesity on cognition and brain structure.

Other evidence comes from human studies showing that weight
loss resulting from bariatric surgery is accompanied not only by
improvements in metabolic function, but also by neurocognitive
changes. Studies of adolescents undergoing bariatric surgery have
reported improvements in executive function and changes in reward-
related decision-making 3-4 months following surgery as compared
with wait-listed controls,’® and reduced striatal responses to mone-
tary reward, suggesting weight loss may recalibrate brain mechanisms
underlying general reward processing.”® These findings are consistent
with the larger body of research in adults which has demonstrated
post-surgical improvements in general cognition,”” reduced responses
to food cues in reward processing regions,”® 1% decreased responses

101,102

in prefrontal areas implicated in executive function, increases in

1037105 3nd associations

GMV within frontotemporal brain regions,
between weight loss from Roux-en-Y Gastric Bypass with increases in
post-surgical ventral tegmental area (VTA) responses to taste stim-
uli.®® Collectively, these results suggest that effects of obesity on
brain function and function may be partly reversible with weight loss.
However, engagement of cognitive control circuitry during food tasks
may decrease, rather than increase, perhaps due to a lesser need for
conscious self-regulation of the drive to eat.

Longitudinal observational studies also support a model in which
general and food-related cognition and food-associated brain function
may predict weight change. For example, childhood intelligence has

demonstrated associations with adult BMI (for review see'®”)

although studies showing this association often do not adjust for BMI
at the time of the baseline 1Q assessment, so effects could also be
driven by an effect of excess BMI on intelligence,'®” and failure to
delay gratification at preschool age has been associated with a greater
likelihood of being overweight at 11 years old (n = 805).1°% Further,
prospective data have demonstrated that heightened reinforcing
value of food was associated with BMI increases in children after
1years (n = 316),*°? while elevated brain response during taste antic-
ipation in regions involved in reward processing was associated with
future body fat gain (n = 153).11°

Consistent with these findings, children and adolescents who
show certain patterns of food-related cognition may respond differ-
ently to weight loss interventions, supporting an influence of food-
related cognition on weight. For example, heightened attentional food
bias as assessed by a visual probe task was associated with reduced

weight loss in children with obesity,***

and school-aged children with
greater food-related delay discounting and higher reinforcing value of
food showed less success in a 16-week behavioural obesity treatment
relative to school-aged children.!*2 Conversely, interventions that tar-
get food-related cognition in children and adolescents show potential
impact on eating behaviours and downstream weight gain prevention
or weight loss outcomes. For example, a one-session training program
designed to train attention away from food cues in children with over-
weight/obesity prevented increases in attentional bias and eating in
the absence of hunger,'*® while a study in children with obesity found
that episodic future thinking both improved performance on a delay
discounting task and lowered subsequent ad lib intake of sweet,
energy-dense foods (~1300 kcal).'** These interventions provide
early evidence that food-related cognition can be targeted to improve
eating behaviour in youth.

To summarize, available data do not conclusively support
one causal direction over another. Notably, the fact that obesity-
associated brain alterations are reversed with weight loss
interventions may not negate the primacy of brain alterations. Such
alterations, coupled with an obesogenic environment, can lead to
weight gain and additional brain alterations, creating a positive feed-
back cycle. A bidirectional causal relationship is more plausible than a
unidirectional one.

5.2 | Biological mechanisms

The biological mechanisms underlying the neural and behavioural cor-
relates of obesity and MetS are not fully understood, but cellular and
cerebrovascular mechanisms have been proposed.’>*%¢ |ow grade
systemic inflammation contributing to IR is hypothesized to
mediate the association of obesity and MetS with neurocognitive
deficits.}*”~11? Obesity is associated with increased visceral adipose
tissue, which is generally associated with chronic low grade systemic
inflammation.!2>12! |nflammation has also been associated with IR
and compromised endothelial function in animal models.'?? While the
mechanisms are not clear, it is possible that the inflammatory state

leads to the disruption of the tight junctions between endothelial
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123 which may result in infiltration of immune cells into the brain

cells,
and increased production of local inflammatory cytokines.??* Several
groups have reported an association between low grade systemic
inflammation and structural brain abnormalities in the hypothalamus
in obesity'?®> and MetS'?¢ in adults. This effect is also observed in
paediatric samples and shows an interaction with sex such that ado-
lescent girls with obesity who have significant insulin resistance have
smaller hypothalamic volumes than adolescent boys with obesity.??”
Further, evidence in adults suggests that weight loss following bariat-
ric surgery may reverse hypothalamic inflammation and lower sys-
temic inflammation.’?® However, other research in adolescents has
demonstrated that low-grade systemic inflammation is not consis-

tently associated with IR,*??

suggesting that in youth, the relationship
between adiposity, inflammation, and IR may not be as clear as in
adults. Further research in children is needed to elucidate the relation-
ship between obesity, insulin resistance and inflammation.

Another potential mechanism for MetS and obesity-related differ-
ences in cognition and brain structure and function is alterations to
vascular reactivity. Vascular reactivity is key to energy-dependent
processes, such as providing increased perfusion to activated brain
regions and clearing the metabolic “waste” produced by neuronal
activity.*®® We have proposed a conceptual model suggesting that
individuals with IR and/or MetS may be unable to maintain proper
vascular reactivity and effectively clear metabolites from the neuronal
environment, especially during periods of high functional demand
(e.g., during a cognitive task).12> This may be a function of IR, as adults
with obesity and IR show greater decreases in cerebrovascular reac-
tivity compared to adults with obesity alone.'®! Decreased vascular
reactivity may be important to the brain deficits present in IR, T2DM,
and MetS. Weight loss and improvements in insulin function have
been associated with improved cerebral perfusion, supporting a
potential causal link.*3%133 Important to note, though, is that the latter
studies were conducted in adults so their relevance to children and
adolescents is unclear. An important related point is that vascular
reactivity differences could affect the BOLD signal,>® which has impli-
cations for interpretation of fMRI measures of resting state activation
and task-related activation. The practice of analysing fMRI data using
within subject contrasts (e.g., high calorie food response vs. low calo-
rie food response) rather than absolute values may somewhat allevi-
ate the impact of vascular reactivity differences between subjects in
cross-sectional designs. However, it does not rule out the possibility
that individual differences in global or regional neurovascular coupling
resulting from obesity and MetS could contribute to observed differ-
ences in brain function.

A further mechanism of high potential relevance during develop-
ment is effects of high fat diets and obesity on myelination. Myelin-
specific MRI techniques (e.g., mcDESPOT**#) may offer the potential
to expand on knowledge obtained using FA measurements by provid-
ing unique information about brain structure characteristics critical for
the rapid synchronization of information transfer that underlies coor-
dinated movement and cognitive and behavioural processes. In chil-
dren and adults, myelination is negatively associated with obesity.!®®
Research with animal models suggests obesity may cause disruptions
in essential fatty acid production such as hyperinsulinemia or other

all &:
OBESITY

endocrine factors affecting early myelination,*® and high fat diets
may impair oligodendrocytes, which are imperative to myelin expres-
sion.®” Further, insulin has been reported to promote myelin-
producing oligodendrocytes during development.'*® Hence, it has
been speculated that higher insulin concentration due to insulin resis-
tance may alter cholesterol metabolism as demonstrated in rodent
models.*3?

Another mechanism may be responsible for relationships of body
weight and indicators of MetS with food-related (vs. general) cogni-
tion: changes to the striatal dopamine (DA) system. In a classic study
using [*C] raclopride Positron Emission Tomography (PET) imaging, in
which the radioactive tracer [11C] raclopride is injected and competes
with endogenous DA at DA receptors thereby giving an indication of
DA receptor availability, obesity in adults was associated with evi-
dence for downregulation in striatal DA D2 receptors,**° a finding
which has been replicated in some studies but not others.*** Obesity
and insulin resistance have also been associated with decreased DA

release in the NAcc in response to calories in adults,**?

suggesting
abnormal reward response to caloric intake. Due to the need to limit
radiation exposure in children it is not clear whether these phenom-
ena generalize to youth. Studies in rodents subsequently showed that
prolonged exposure to a high-fat, high-sugar diet increased compul-
sive food-seeking behaviour and downregulates DA D2 receptors.*®
These results suggest that associations between obesity and food-
related cognition could be partly explained by dysregulated function-
ing of striatal DA D2 receptors. More recent work in rodents has sup-
ported independent effects of diet on dopamine circuits, finding that
high-fat (vs. low-fat) feeding decreased striatal DA release following
lipid infusion in the absence of an effect on weight.'** Further, other
studies have shown that heightened responses to food cues precede
overeating and weight gain in animals who later develop diet-induced
obesity and are accompanied by differences in NAcc function#?; this
suggests that relationships between diet/adiposity and DA dysfunc-
tion are likely bidirectional.

Important for this review, new evidence additionally suggests that
associations between adiposity and brain reward responses to food
cues may be explained by learning effects resulting from impacts of
diet on glucose metabolism. For example, one imaging study in adults
found that when participants consumed a noncaloric, flavoured bever-
age that had previously been paired with calories, NAcc response was
correlated with the change in plasma glucose levels following initial
consumption of the caloric version.'*® The effect was independent of
explicit ‘liking’ ratings for the beverage, suggesting an implicit effect of
glucose dynamics on brain response. This finding raises the possibility
that heightened glucose responses could drive reward circuit responses

to food stimuli in individuals with impaired insulin sensitivity.

6 | FUTURE DIRECTIONS

Many questions remain regarding relationships of paediatric obesity,
MetS, and components of MetS with measures of cognition, brain
function, and brain structure, many of which can be addressed by
advancing the quality of existing studies.
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Firstly, we note several opportunities to improve sampling
methods, with ensuing benefits in terms of statistical power and gen-
eralizability. Small sample sizes are particularly ubiquitous in many of
the extant human neuroimaging studies, increasing the likelihood that
results are driven by sampling variation, decreasing replicability and
compromising generalizability. Small samples are a problem for neuro-
imaging studies due to the multiple testing problem engendered by
investigating thousands of voxels across the brain. This issue can be
addressed to some degree by ROI approaches that confine the num-
ber of voxels examined; however, these approaches can present the
opposite problem of Type Il error due to failure to examine brain
regions that play an important role in the phenomenon under study.
Multi-site designs are increasingly being used to generate large paedi-
atric imaging datasets containing structural MR, resting state MRI and
general cognitive task data.**”'148 Similar approaches may be neces-
sary to establish generalizable findings on brain responses to food
cues and food tastes. In addition, to promote the applicability of imag-
ing findings and allow the identification of robust predictors of indi-
vidual variation in responses, these studies must take care to include
minority populations with disproportionately high obesity rates, which
are often under-represented in imaging studies. The comorbidity of

obesity and Met§*47:1%°

with psychiatric and neurodevelopmental dis-
orders*>*1°2 (e.g. depression, attention deficit hyperactivity disorder
ADHD)***15* also deserves further attention. For example, increasing
evidence suggests that ADHD and obesity share neural and genetic

underpinningst>>1°¢

and thus findings of studies that do not screen
out individuals with ADHD symptoms may be driven in part by a sub-
set of individuals with both obesity and ADHD symptomatology who
may not be wholly representative of the larger population.*>” Mea-
surement of eating-related phenotypes may also be important as this
could influence results.”* Complementarily, adoption across the field
of best methodological and analytical practices for food-related imag-
ing including adjustment for appropriate covariates (e.g., hunger state)
as well as appropriate statistical thresholding and adjustment for mul-
tiple comparisons would also help improve the quality of research and
promote robust findings. We refer the reader to”” for a fuller discus-
sion of statistical issues and recommended practices in food-related
neuroimaging and to?>® for more general discussion of recommenda-
tions for structural and resting state imaging analysis methods.
Mechanistic understanding could also be promoted by improving
or expanding collection of data on MetS components and potential
mediators of effects on neurocognitive outcomes. In particular we
note that researchers may be able to capitalize on already existing
brain MRI protocols by adding abdominal or full body MRI to obtain
high quality estimates of abdominal and/or visceral versus subcutane-
ous adiposity which could be leveraged for more nuanced investiga-
tion of relationships with brain and behaviour outcomes. Agreement
on the definition of metabolic syndrome in children, specifically on
cut-off values for blood pressure, triglycerides, and high-density lipo-
proteins relevant for different developmental stages, may also help to
stimulate research in this area. Studies combining structural brain
assessments with measures of cognition and behaviour will also be

essential to illuminate the mechanistic significance of observed brain

structural alterations. For instance, two analyses of the ABCD cohort
reported that CT reductions in frontal cortex mediated negative asso-
ciations between BMI and executive function in children.3?4° Another
study showed that FA mediated the relationship between BMI and
working memory accuracy.>* Such findings support that these struc-
tural alterations may contribute to the differences in cognitive out-
comes that accompany obesity and MetS. There is also some
evidence in adolescents that subtle white matter abnormalities may
be associated with microvascular abnormalities (retinal arteriolar
diameter).*¢ Since reduced integrity of white matter tracts could com-

promise cognitive processing,*>’

including food-related cognitive pro-
cesses associated with eating behaviour, relationships between white
matter integrity, cognition, food-related cognition and development
of MetS merit further exploration. Further research should also exam-
ine potential metabolic mediators of effects of MetS and its compo-
nents on structural and functional brain outcomes by including
measures of glucose, insulin, and other appetite-related hormones
including ghrelin, PYY and GLP-1.1° Metabolomics platforms measur-
ing products of human metabolism and broad hormone panels allow-
ing investigation of correlations between measures may be a
particularly promising approach.

Longitudinal and interventional research will also be essential to
advance our understanding. The cross-sectional nature of the major-
ity of extant reports limits the ability to draw directional conclusions
and is a particular problem for paediatric studies in which the brain is
still developing and one-off assessments could produce misleading
results due to individual variation in growth and potentially non-
linear patterns of development. Large longitudinal datasets with mul-
tiple repeated measures of obesity and metabolic markers, brain
function and structure, and cognitive outcomes beginning early in
childhood will be required in order to fully model inter-relationships
as they unfold over time, to provide insight into potential differences
in neural and behavioural processes by developmental stage, and to
more fully investigate dynamic vulnerability models of obesity.””
However, we note that longitudinal research will by itself be insuffi-
cient to illuminate mechanism. For example it is possible that brain
and cognition differences drive weight gain and development of
MetS, and that excess weight and Met S affect the brain and cogni-
tion, but also that another common underlying mechanism causes
each of these phenomena to unfold at different stages of develop-
ment. For example, there is evidence that shared genetic variation
underlies population variation in both BMI and in psychopathologies
with a neural basis such as ADHD.®* Changes over time in brain/
cognition and weight/MetS outcomes could therefore be jointly
driven by an underlying genetic mechanism. Studies using interven-
tional designs are therefore important to establish causal pathways.
Studies of weight loss interventions such as bariatric surgery, as well
as longitudinal studies of natural weight change, suggest that weight
loss and improvements to insulin sensitivity can result in significant
cognitive improvements, decreased activation of neural reward net-
works to food cues, and increased efficiency of food-related inhibi-
tory control. However more paediatric research is needed to

understand how interventions targeting MetS and obesity in children
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impact cognition and brain function and if impairments associated
with MetS and paediatric obesity are reversible. For example, if
changes in insulin sensitivity and vascular reactivity mediate effects
of MetS and its components on neurocognition then these mecha-
nisms could form targets for biological interventions like medications
to increase insulin sensitivity (e.g., metformin) or interventions

focused on modifiable targets such as diet.

7 | CONCLUSIONS

To conclude, a limited but growing body of research in adolescents
and children suggests that paediatric obesity, MetS, and MetS com-
ponents are associated with differences in general cognition
(e.g., poorer executive function and attention), food-related cogni-
tion (e.g., increased food motivation and attentional bias to food
cues and decreased food-related inhibitory control), brain structure
(alterations, frequently reductions, in GM volume, and alterations in
WM integrity and volume), brain function (e.g., hyperactivation of
food reward regions and hypoactivation of cognitive control net-
works in response to food stimuli) (Figure 1). However, available
data are not sufficient to draw conclusions about causal mecha-
nisms; most are instead consistent with bidirectional influences
between obesity/MetS and neurocognitive outcomes. Future obser-
vational studies using longitudinal designs beginning early in life and
including measures of potential mediators promise to further illumi-
nate causal mechanisms, while intervention studies could increase
mechanistic understanding as well as informing clinical practice by
testing whether interventions targeted at modifiable biological or
behavioural factors associated with paediatric obesity and MetS can
alter brain and behaviour in a beneficial manner. Together these
research approaches are likely to provide further clarity on causal
relationships, biological mechanisms, and biobehavioral interventions
that may help interrupt pathways between paediatric obesity and

metabolic risk, and cognitive and neural dysfunction.
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