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A B S T R A C T

Background: This Obesity Medicine Association (OMA) Clinical Practice Statement (CPS) is intended to provide
clinicians an overview of type 2 diabetes mellitus (T2DM), an obesity-related cardiometabolic risk factor.
Methods: The scientific support for this CPS is based upon published citations and clinical perspectives of OMA
authors.
Results: Topics include T2DM and obesity as cardiometabolic risk factors, definitions of obesity and adiposopathy,
and mechanisms for how obesity causes insulin resistance and beta cell dysfunction. Adipose tissue is an active
immune and endocrine organ, whose adiposopathic obesity-mediated dysfunction contributes to metabolic ab-
normalities often encountered in clinical practice, including hyperglycemia (e.g., pre-diabetes mellitus and
T2DM). The determination as to whether adiposopathy ultimately leads to clinical metabolic disease depends on
crosstalk interactions and biometabolic responses of non-adipose tissue organs such as liver, muscle, pancreas,
kidney, and brain.
Conclusions: This review is intended to assist clinicians in the care of patients with the disease of obesity and
T2DM. This CPS provides a simplified overview of how obesity may cause insulin resistance, pre-diabetes, and
T2DM. It also provides an algorithmic approach towards treatment of a patient with obesity and T2DM, with
“treat obesity first” as a priority. Finally, treatment of obesity and T2DM might best focus upon therapies that not
only improve the weight of patients, but also improve the health outcomes of patients (e.g., cardiovascular disease
and cancer).
1. Introduction

Beginning in 2013, the Obesity Medicine Association (OMA) created
and maintained an online Adult “Obesity Algorithm” (i.e., educational
slides and eBook) that underwent yearly updates by OMA authors and
was reviewed and approved annually by the OMA Board of Trustees [1].
This was followed by a similar Pediatric “Obesity Algorithm” with up-
dates that occurred approximately every two years by OMA authors. The
current OMA CPS regarding obesity and type 2 diabetes mellitus (T2DM)
extensively expanded upon an initial draft derived from the 2021 OMA
Adult Obesity Algorithm and is one of a series of OMA CPSs designed to
assist clinicians in the care of their patients with the disease of obesity.

Fundamental to the understanding of obesity as a disease [2,3] is
recognizing adipose tissue as more than an energy storage organ.
Regarding energy storage, starvation of lean individuals may lead to
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death after about 60 days and a 35% weight loss. A patient with extreme
obesity may survive prolonged fasting for as much as over one-year
consuming acaloric fluids, vitamins and minerals, with a reduction in
60% body weight [4]. However, adipocytes and adipose tissue have vital
functions well beyond energy storage alone. Disruption of healthy adi-
pose tissue function leads to adverse health consequences such as hy-
perglycemia [5–9]. Positive caloric balance can lead to adipocyte
hypertrophy, adipose tissue accumulation, and adipose tissue dysfunc-
tion (i.e., adiposopathy) – especially in the presence of limitations in
unfettered adipocyte proliferation and differentiation of peripheral sub-
cutanous adipose tissue. The adverse health consequences of adipose
tissue immunopathies, endocrinopathies, and lipotoxicity contribute to
the most common metabolic abnormalities encountered in clinical
practice [2].

Among the adiposopathic consequences of obesity [2] are elevated
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Table 1
Ten takeaway messages regarding obesity and elevated blood glucose. [30]
The adiposopathic consequences of obesity may promote hyperglycemia and the
development of type 2 diabetes mellitus (T2DM). Higher doses of among the
more effective anti-diabetes medications are undergoing cardiovascular disease
(CVD) outcomes trials to determine potential CVD outcomes benefits when
specifically used to treat obesity (i.e., highly effective anti-obesity medications
[31]).

1. The disease of obesity may have adiposopathic consequences that promote
hyperglycemia [e.g., prediabetes and type 2 diabetes mellitus (T2DM)] [10].

2. T2DM is a major risk factor for cardiovascular disease (CVD) [12,13].
3. CVD (and cancer) are the most common causes of morbidity and mortality

among patients with obesity and T2DM [11–14].
4. Patients with obesity and T2DM should optimally undergo global CVD risk

reduction (e.g., healthful nutrition and physical activity, weight reduction,
smoking cessation, as well as optimal control of blood glucose, blood pressure,
and blood lipids).

5. Among patients with T2DM, administration of glucagon-like peptide-1 receptor
agonists (GLP-1 RA), and/or sodium glucose transporter 2 (SGLT2) inhibitors
may variably reduce body weight and reduce the risk for CVD events;
administration of sulfonylureas and many insulins may increase body weight
and may increase the risk for CVD events [16–19].

6. Some GLP-1 RA are indicated to treat T2DM and reduce major adverse
cardiovascular events (MACE) in patients with T2DM and established CVD
(liraglutide, semaglutide, and dulaglutide). Tirzepatide is a glucose-dependent
insulinotropic polypeptide (GIP) receptor agonist and GLP-RA approved as an
anti-diabetes medication [20]. Ongoing cardiovascular outcome studies are
evaluating oral semaglutide in patients with T2DM (SOUL), semaglutide 2.4 mg
SQ per week in patients with overweight or obesity (SELECT) [21], tirzepatide
in patients with T2DM (SURPASS-CVOT), and tirzepatide in patients with
obesity (SURMOUNT-MMO) [20].

7. GLP-1 RA generally reduce body weight and improve other CVD risk factors
[15,16] via mechanisms both dependent and independent of weight reduction
[22], and represent a foundational mechanism integral to existing anti-obesity
and anti-diabetes medications, as well as anti-obesity medications in
development [20].

8. In patients with T2DM, several SGLT2 inhibitors are indicated as anti-diabetes
agents that may reduce major adverse CVD events, reduce heart failure, reduce
cardiovascular death, reduce heart failure hospitalization, reduce renal disease
progression, and in some cases, reduce overall mortality [23,24]; SGLT2
inhibitors may also modestly reduce body weight and blood pressure [16,25,
26].

9. Metformin may modestly reduce body weight in patients with diabetes mellitus
[27], and may [28] or may not [29] decrease CVD among patients with
diabetes mellitus [16].

10. Several anti-diabetes medications are indicated to reduce CVD events. Some
agents at higher doses that are specifically used as anti-obesitymedications do not
(yet) have CVD outcome data to support improved CVD risk reduction [16,20].

Fig. 1. How does obesity (adiposopathy) contribute to type 2 diabetes
mellitus? In addition to biomechanical abnormalities leading to “fat mass dis-
ease” [2] obesity may cause adiposopathy, or “sick fat disease [34].” Adipose
tissue immunopathies, endocrinopathies, and increased circulating free fatty
acids may lead to insulin resistance and beta cell dysfunction [5–8,32,33]. The
degree by which the adiposopathic consequences of obesity promotes hyper-
glycemia depends on the crosstalk, interactions, and biometabolic responses of
other body organs such as liver, muscle, pancreas, kidney and brain.
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blood glucose, that clinically manifest as prediabetes and T2DM [10].
T2DM is a major risk factor for cardiovascular disease (CVD); CVD (and
cancer) are the most common cause of morbidity and mortality among
patients with obesity and T2DM [11–14]. Among patients with T2DM
[90% with overweight/pre-obesity or obesity (https://www.cdc.gov/
diabetes/data/statistics-report/risks-complications.html)], some anti-
diabetes medications may reduce blood glucose, produce clinically
meaningful body weight reduction, and reduce the risk of CVD [15,16].
Table 1 identifies ten takeaway messages regarding obesity and
elevated blood glucose.

2. Overview of pathophysiology

According to the Obesity Medicine Association:

“Obesity is defined as a chronic, progressive, relapsing, and treatable
multi-factorial, neurobehavioral disease, wherein an increase in body
fat promotes adipose tissue dysfunction and abnormal fat mass
physical forces, resulting in adverse metabolic, biomechanical, and
psychosocial health consequences” [2].

Regarding adipose tissue dysfunction, adiposopathy can be defined
as:
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“Adiposopathy is defined as pathogenic adipose tissue anatomic/
functional derangements, promoted by positive caloric balance in
genetically and environmentally susceptible individuals, that result in
adverse endocrine and immune responses that directly and/or indi-
rectly contribute to metabolic diseases (e.g., T2DM, hypertension,
dyslipidemia, cardiovascular disease, and cancer)” [2].

Adiposopathy, also called “sick fat disease,” can lead to immuno-
pathies, endocrinopathies, and increased circulating free fatty acids,
which in turn, may lead to insulin resistance and beta cell dysfunction
[5–8,32,33]. A critical question for any clinician who manages patients
with obesity and T2DM is: “How does obesity cause diabetes?” Figs. 1–3
provide an overview of how the adiposopathic consequences of obesity
contributes to insulin resistance, pre-diabetes, and T2DM.

2.1. Definitions

2.1.1. Adipokines
Adipokines (i.e., adipocytokines) are cytokines produced by adipose

tissue (i.e., secreted by adipocytes and adipose tissue stromal macro-
phages) involved in signaling relevant to energy balance, metabolic
processes, and inflammation. Analogous to hepatokines from liver,
myokines from muscle, and osteokines from bone, adipose tissue pro-
duces adipokines, such as leptin, adiponectin, tumor necrosis factor,
visfatin, resistin, aprosin, and omentin, which affect glucose metabolism
(See Figs. 2 and 3).

2.1.2. Adiponectin (previously “adipose most abundant gene transcript-1”
or apM-1)

Adiponectin is the most abundant peptide primarily secreted by ad-
ipocytes. Adiponectin is anti-inflammatory. Among adiponectin's func-
tions include improved insulin sensitivity, increased fatty acid oxidation,
decreased fatty acid synthesis, decreased hepatic and muscle fat, reduced
hepatic glucose production (i.e., decreased gluconeogenesis), increased
muscle glucose uptake, and preservation of pancreatic β cell function
(e.g., antiapoptotic properties), all leading to reduced development of
diabetes mellitus and/or improved glucose levels. Low adiponectin
concentrations are associated with diabetes, central obesity, insulin
resistance and metabolic syndrome [57] (See Fig. 3).

2.1.3. C-Jun NH(2)-terminal kinase (JNK) pathway
Mitochondrial dysfunction (e.g., via adiposopathic tumor necrosis
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Fig. 2. Insulin and insulin receptor functions. Diminished insulin activity can be due to an absolute or relative decrease in circulating insulin and/or impaired
insulin signaling via reduced number of insulin receptors and/or impaired post-receptor insulin signaling [22,28]. Normoglycemia can be maintained in the early
stages of insulin resistance by increased basal insulin (i.e., hyperinsulinemia), as often occurs in patients with obesity. However, over time, insulin secretion may no
longer be sufficient to overcome insulin resistance, resulting in hyperglycemia. Obesity and the hyperglycemia of type 2 diabetes mellitus (T2DM) may result in a
relative decrease in pancreatic insulin secretion, potentially due to elevations in leptin levels [35] as well as due to apoptosis with decreased pancreatic beta cell mass
[4] as the result of: (a) beta cell exhaustion/overload [36], (b) glucolipotoxicity [4,37], (c) increase in pro-inflammatory factors, and (d) decrease in anti-inflammatory
factors (e.g., adiponectin) [38]. Insulin is a peptide hormone released by pancreatic beta cells in response to a rise in blood glucose (e.g., postprandial response to
carbohydrate ingestion). Fructose, some amino acids and fatty acids can also augment insulin release [39]. Insulin binds to the extracellular alpha subunit portion of
the transmembrane insulin cellular receptor of body tissues (e.g., liver, muscle, fat, brain). This activates a phosphorylation cascade involving transmembrane insulin
receptor beta subunits that process tyrosine kinase activity, auto-phosphorylating insulin receptor tyrosines, and promoting the phosphorylation and activation of
cytoplasmic insulin receptor substrate (IRS). Activated IRS stimulates intracellular mitogen-activated protein (MAP) kinase, which in turn, promotes cell growth (e.g.,
proliferation and differentiation of tissues such as skeletal muscle cells [40] and fat cells [41]). While insulin mainly functions as a physiologic mitogenic facilitator,
hyperinsulinemia may predispose to unregulated mitogenesis and cancer [42–44] Insulin-mediated phosphorylation of IRS also facilitates the phosphoinositide 3-ki-
nase (PI3K)/AKT pathway (i.e., AKT is also known as protein kinase B) which is responsible for most of insulin's metabolic effects – such as the transport of glucose
vesicle transporters (GLUT 4) to outer cellular membranes resulting in glucose uptake from the circulation into body tissues – thus lowering blood glucose.
Insulin-dependent GLUT 4 is found in skeletal muscle and adipose tissue; insulin-independent GLUT 2 is found in liver. Increased PI3K/AKT signaling also promotes (a)
increase in endothelial nitric oxide synthase (eNOS) that facilitates increased nitric oxide production, increased vasodilation, and increased adipose tissue perfusion
allowing for enhanced glucose and free fatty acids uptake in adipocytes for storage, (b) synthesis of glycogen, lipids, and proteins and (c) cell growth (i.e., proliferation
& differentiation). Dysregulation of the PI3K-AKT pathway for cell proliferation/differentiation is the most common activated pathway in human cancer [44,45].
Among patients with obesity and T2DM, in addition to reduced number of insulin receptors potentially as the result of impaired insulin receptor delivery to the cell
surface due to endoplasmic reticulum stress, severe insulin resistance is mainly described as a post insulin receptor signaling defect, via disruption of the IR/IRS
cascade. Specifically, obesity may result in adiposopathic increases in inflammatory factors (e.g., cytokines such as tumor necrosis factor and interleukins) and free
fatty acids that may impair PI3K/AKT signaling, potentially contributing to post-receptor insulin resistance, prediabetes, and/or T2DM [46].
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factor and “toxic” intracellular fatty acids) increases intraorganelle stress,
increases reactive oxygen species, and increases intracellular JNK, which
promotes serine phosphorylation of the insulin receptor substrate (IRS).
Serine phosphorylation of IRS impairs tyrosine kinase phosphorylation of
IRS and diminishes insulin signaling via the phosphoinositide 3-kinase
/protein kinase B (PI3K/AKT) pathway, leading to post-receptor insulin
resistance (See Fig. 2).

2.1.4. Cytokines
Cytokines are small proteins made by immune cells (e.g., T helper

cells and macrophages) and other tissues (e.g., adipocytes) that facilitate
cell signaling relevant to cell/tissue growth, migration, differentiation,
and inflammation. General examples of body cytokines include tumor
necrosis factor (i.e., regulates cellular immune and metabolic response),
3

chemokines (i.e., chemoattractants that direct cell migration, adhesion,
and activation), interferons (i.e., antiviral proteins), interleukins (i.e.,
regulate pro- and anti-inflammatory responses), growth factors (i.e.,
promote cell division and differentiation), and colony stimulating factors
(i.e., bind to hemopoietic stem cells and direct intracellular signaling
pathways leading to cellular proliferation and differentiation into a
specific kind of blood cell) (See Figs. 2 and 3).

2.1.5. Extracellular vesicles (e.g., exosomes, microvesicles, and apoptotic
bodies)

Small adipocyte membrane vesicular structures are sometimes
released that serve as mediators for long-distance cell-to-cell communi-
cations. Release of extracellular vesicles may occur during adipocyte
senescence (e.g., aging of adipocytes), or as a consequence of



(caption on next page)
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Fig. 3. Mechanisms how adiposopathic processes lead to insulin resistance. If obesity-mediated adipocyte hypertrophy and adipose tissue accumulation out-
grows vascular supply, then the insufficient delivery of oxygen may contribute to adipocyte and adipose tissue hypoxia and increased adipocyte death. Adipocyte and
adipose tissue hypoxia may adversely affect multiple metabolic processes regarding angiogenesis, adipocyte proliferation, adipocyte differentiation, reactive oxygen
species generation, inflammation, and fibrosis. Beyond adipocyte and adipose tissue hypoxia, excessive intracellular lipids in the form of fatty acids may lead to
ceramide (i.e., a unit of sphingolipids) and diacylglycerol (DAG) formation in adipocytes, where similar to adverse effect of increased fatty acid influx and ceramide
and DAG accumulation in liver and muscle, may cause lipotoxicity leading to adipocyte dysfunction [47], such as: (a) inhibiting AKT Protein Kinase B and thus
decreasing glucose uptake via GLUT 4, (b) inhibiting hormone sensitive lipase and thus decreasing adrenergic-mediated lipolysis, and (c) impairing mitochondrial
function [47], all contributing to insulin resistance. Mechanotransduction occurs when cells sense, integrate, and respond to mechanical stimuli via biologic signaling
and adaptations. During healthful expansion, adipose tissue responds by adapting to its microenvironment (e.g., formation, dissolution, and reformation of extra-
cellular matrix) via continuous remodeling to maintain its structural and functional integrity. During positive caloric balance, especially if proliferation is impaired,
adipose tissue expansion is often accompanied by hypertrophy of existing adipocytes. Adipocyte hypertrophy, immune cells infiltration, fibrosis and changes in
vascular architecture may generate mechanical stress on adipose cells, alter healthful adaptive mechanotransduction, and disrupt healthful adipose cell expansion
physiology. Maladaptive mechanotransduction may promote obesity-associated dysfunction in adipose tissue (i.e., adiposopathy) [48]. Overall, contributors to
mitochondrial dysfunction include adipocyte and adipose tissue hypoxia, lipotoxicity [47,49], maladaptive mechanotransduction, hyperglycemia [50], and high fat
dietary intake [51]. Adipocyte mitochondrial dysfunction is a potential primary cause of adipose tissue inflammation [52]. Among the adverse consequences of
adiposopathic mitochondrial (and endoplasmic reticulum) dysfunction is the generation of reactive oxygen species (ROS). ROS are unstable molecules containing
oxygen that easily react with other cellular molecules, contributing to deoxynucleic acid damage, cancer, fibrosis, and aging [44]. Other contributors to increased ROS
production are hyperglycemia [53] and adiposopathic increases in cytokines such as tumor necrosis factor. Increased tumor necrosis factor-mediated mitochondrial
ROS production may facilitate JNK activation, increase serine phosphorylation of insulin receptor substrate-1 (IRS-1), decrease insulin-stimulated tyrosine phos-
phorylation of IRS-1, and thus contribute to obesity-mediated insulin resistance [54,55]. In summary, adipocyte hypertrophy leading to initial adipocyte dysfunction
results in local proinflammatory effects that, in turn, further worsen adipocyte function, resulting in worsening adiposopathy and adipocyte insulin resistance. Sys-
temically, adiposopathic proinflammatory factors, pathogenic hormones, and free fatty acids may be released into the circulation either directly from adipose tissue, or
via adipocyte extracellular vesicles (e.g., bioactive molecules such as lipids, proteins, and nucleic acids that are packaged and transferred from adipocytes to other
body tissues via exosomes, microvesicles, and apoptotic bodies formed as the result of adipocyte necroptosis or pyroptosis). The increase in pro-inflammatory factors
(e.g., tumor necrosis factor and interleukins 1 beta and 6) [56] and decrease secretion of anti-inflammatory factors (e.g., adiponectin) [57] may promote insulin
resistance (i.e., reduced cellular surface insulin receptors and post-insulin receptor defects) in susceptible non-adipose tissue peripheral organs, such as skeletal muscle
and liver, contributing to “inflexibility” in managing, responding or adapting to changes in metabolic substrates.
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programmed cell death such as: (a) apoptosis (i.e., programmed cell
death without inflammatory response), (b) necroptosis (i.e., programmed
cell death with inflammatory response), and (c) pyroptosis (i.e., cell
death due to inflammation). Once released, these extracellular vesicles
can transfer various bioactive molecules (e.g., lipids and proteins), such
as encapsulated cytokines and genetic information (e.g., micro ribonu-
cleic and deoxyribonucleic acids) from their parental cells (i.e., adipo-
cytes) to distant target cells [29]. In patients with obesity,
adipocyte-derived exosomes promote pro-inflammatory polarization of
M1 and M2 macrophages and may also affect non-adipose tissue organs
(e.g., muscle and liver) [30] (See Fig. 3).

2.1.6. Free fatty acids
Biologically relevant lipids include triglycerides (e.g., saturated,

monounsaturated, and polyunsaturated), phospholipids (e.g., glycer-
ophospholipids and sphingolipids), and sterols (e.g., cholesterol in ani-
mals and phytosterols in plants). Triglycerides are fat esters with three
individual fatty acids attached to each of the 3 carbons of one molecule of
glycerol. Free fatty acids are formed when triglycerides, such as those
stored in adipocytes, undergo lipolysis (i.e., triacylglycerol hydrolysis),
with the release of “free” fatty acids into the circulation that are subse-
quently bound to albumin. While adipocyte uptake of free fatty acids can
occur directly from the circulation [58], adipocyte uptake of fatty acids
for triglyceride formation and storage is mostly described via interactions
with circulatory triglyceride rich lipoproteins (e.g., chylomicrons from
the intestine and very low density lipoproteins from the liver). After
meals, while in the nutrient absorptive state, insulin secreted by the
pancreas: (a) increases lipoprotein lipase activity which promotes lipol-
ysis of very low-density lipoproteins and chylomicrons and promotes free
fatty acid uptake by adipocytes [59], and (b) increases diacylglycerol
acyltransferase activity, which catalyzes fatty acid esterification to
glycerol (forming triacylglycerol or triglycerides), which is derived from
insulin-mediated glucose uptake [60]. The post-meal, insulin mediated
increased uptake of fatty acids, coupled with insulin's antilipolytic effects
(e.g., decreased adipocyte hormone sensitive lipase activity) accounts for
decreased fatty acid blood levels after meals (compared to increased free
fatty acids in the postabsorptive state), which is an effect that may be
blunted in patients with insulin resistance and type 2 diabetes mellitus
and inadequate suppression of post-meal free fatty acid levels [61].
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In the postabsorptive fasting state (during times of lower insulin
levels), cortisol, catecholamines, and growth hormone promote adipose
tissue lipolysis by stimulating adipose triglyceride lipase and hormone
sensitive lipase activity [59], and thus increasing circulatory free fatty
acid levels. Lipotoxicity occurs when chronically elevated circulating
fatty acids accumulate in non-adipose tissues (e.g., liver and muscle), and
adversely affect body tissue function (See Fig. 3). Regarding origin of
intra-organ lipids, in patients with obesity and nonalcoholic fatty liver
disease, at least one study suggests that the origin of hepatic triglycerides
were approximately 60% from circulating non-esterified free fatty acids,
25% from de novo lipogenesis, and 15% from the diet [62]. The clinical
relevance is that obesity-mediated fatty liver is an important cause of
insulin resistance, with most patients with obesity having nonalcoholic
fatty liver disease (50–90%) [63]and the prevalence of non-alcoholic
fatty liver disease among patients with type 2 diabetes mellitus being
approximately 60% [64]. Conversely, the prevalence of obesity in pa-
tients with nonalcoholic fatty liver disease is about 50% [65,66] and the
prevalence of diabetes mellitus among those with nonalcoholic fatty liver
disease and nonalcoholic steatohepatitis being approximately 22 and
44% respectively [67]. Thus, the majority of patients with obesity and
diabetes have fatty liver, while 50% or less of patients with fatty liver
have obesity or diabetes mellitus – owing to the many different cause of
fatty liver [65]. In short, free fatty acids delivered to the liver can be
stored as non-toxic esterified triglycerides, broken down via betaox-
idation to produce energy, packaged in very low density lipoproteins and
released into the circulation, or accumulate to form toxic ceramides and
diacylglycerols.

2.1.7. Hormone sensitive lipase (HSL)
Adipose triacylglycerol lipase (ATGL) and HSL account for over 95%

of lipolytic triglyceride hydrolase activity in white adipose tissue.
Lipolysis via HSL (located in adipocytes) is stimulated by catecholamines
and inhibited by insulin (See Fig. 3).

2.1.8. Insulin receptor (IR)
The insulin receptor is a transmembrane protein that binds to insulin

and insulin-like growth factors and facilitates cellular signaling largely
through tyrosine kinase activation. Insulin is an anabolic peptide hor-
mone secreted into the circulation by pancreatic beta cells. Insulin-like



Fig. 4. Illustrative adipose tissue functions potentially altered by obesity-mediated immunopathies. Adipose tissue is an active immune (and endocrine organ)
that regulates multiple body processes critical to body homeostasis and body health. Disruption of adipose immune functions (i.e., adiposopathy) contributes to
metabolic diseases and adverse cardiac and cancer outcomes. Many of the cytokines released with obesity may act locally. Systemic cytokine effects depend upon
individual responses of non-adipose tissue organs [4].
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growth factors (IGF) are secreted by tissues such as liver and pituitary.
IR's are found in virtually all body tissues, including adipocytes, liver
cells, muscle cells, pancreatic beta cells, kidney cells, and brain cells.
Upon extracellular insulin binding to the two IR alpha subunits, the two
IR transmembrane beta units auto-phosphorylate, and activate tyrosine
kinase, which recruits and phosphorylates intracellular insulin receptor
substrates (IRS) for transmission of intracellular metabolic signals (e.g.,
synthesis of glycogen, lipids, and proteins, promotion of cell prolifera-
tion/differentiation, and production of endothelial nitric oxide synthesis
with vasodilation).

In the muscle, heart, and adipose tissue, insulin-mediated signaling
from activated insulin receptors: (a) promotes intracellular recruitment
of insulin dependent glucose 4 transporters (GLUT-4) derived from
intracellular vesicles, (b) facilitates the translocation of intracellular
GLUT-4 transporters to the plasma membrane via targeted exocytosis, (c)
increases glucose cellular uptake, and (d) thus decreases circulating
glucose levels. Regarding adipose tissue, insulin increases glucose uptake
in adipocytes, with increased lipogenesis (i.e., cytoplasmic glycolysis
leading to acetyl-CoA formation with subsequent fatty acid and
6

triglyceride synthesis), decreased lipolysis (i.e., decreased adipocyte
hormone sensitive lipase activity with decreased triglyceride hydrolysis),
and increased fat mass. In muscle, insulin increases glucose uptake (i.e.,
skeletal muscle is the principal tissue responsible for insulin-stimulated
glucose disposal), increases glycogen synthesis, decreases glucose
release, and increases lipogenesis.

In the liver, pancreatic beta cells, kidney and brain, glucose transport
is not directly dependent on insulin. Instead, glucose transport in the
liver, pancreatic beta cells, and kidney occurs via insulin independent
GLUT2, while in the brain, glucose transport occurs via insulin inde-
pendent GLUT 1 & GLUT 3. However, insulin maintains its other func-
tions in these tissues by activation of insulin receptors, promoting
glycogen synthesis in the liver (as also occurs in muscle), and decreasing
gluconeogenesis in liver (i.e., little gluconeogenesis occurs in muscle and
brain). While muscle stores the greatest amount of body glycogen [68],
during basal conditions, it is the liver that is the main organ for glucose
regulation via endogenous glucose production by glycogenolysis and
gluconeogenesis [69]. About 80% of glucose production is derived from
gluconeogenesis and glycogenolysis by the liver, and about 20% is



Fig. 5. Obesity and the adiposopathic inflammatory cycle. Adipocyte hy-
pertrophy and adipose tissue accumulation may lead to relative or absolute
hypoxia, lipotoxicity, altered mechanotransduction, and intraorganellar
dysfunction prompting release of cytokines (e.g., tumor necrosis factor) and
chemokines [e.g., monocyte chemoattractant protein-1 (MCP-1)]. Adipocyte
secreted MCP-1 attracts monocytes to adipose tissue that differentiate into
macrophages. Adipose tissue macrophages produce additional MCP-1, that re-
cruits more inflammatory cells to adipose tissue. Adipose tissue macrophages
also produce proinflammatory cytokines such as tumor necrosis factor, that
among pathogenic effects, includes the promotion of MCP-1 production from
adipocytes, recruiting yet more immune cells to adipose tissue.
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derived from gluconeogenesis by the kidneys [4,70] In lean individuals,
both glycogenolysis and gluconeogenesis contribute equally to total
endogenous glucose production, with the contribution of gluconeogen-
esis being higher in individuals with obesity or type 2 diabetes [4]. Thus,
in patients with obesity and T2DM, fasting hyperglycemia is largely due
to an increase in hepatic gluconeogenesis. Conversely, in patients with
prediabetes and T2DM, postprandial hyperglycemia is due to decreased
glucose disposal in insulin resistant peripheral tissues (i.e., muscle) and
decreased suppression of gluconeogenesis after meal ingestion (i.e., liver)
[4,71]. Regarding the brain, insulin decreases hunger and plays a role in
development, neuroprotection, metabolism, and plasticity [72].

2.1.9. Insulin receptor substrates (IRS)
IRS are intracellular/cytoplasmic adapter proteins. Upon extracel-

lular binding of insulin to the insulin receptor, insulin receptors are
activated by phosphorylation, causing IRS to also undergo phosphory-
lation. IRS transmit signals via intracellular pathways applicable to
glucose uptake and cell growth [e.g., mitogen-activated protein (MAP)
kinase and enzymes related to the phosphoinositide–3 kinase (PI3K)
/AKT pathway]. Phosphorylation of the tyrosine residue of insulin re-
ceptor substrate (IRS) activates IRS and facilitates intracellular insulin
signaling. Phosphorylation of the serine residue of IRS impairs IRS ac-
tivity and diminishes intracellular insulin signaling. Factors that may
increase the serine phosphorylation of IRS (and thus contribute to post-
receptor insulin resistance) include activation of JNK by free fatty
acids, inflammation (i.e., tumor necrosis factor), and cellular stress (See
Figs. 2 and 3).

2.1.10. Insulin resistance
Beyond a decrease in the number of insulin receptors, diminished

insulin effect on body tissues in patients with obesity and T2DM is mostly
due to adiposopathic abnormalities in post-receptor insulin signaling, as
7

.

might occur via inflammation, lipotoxicity, and pathogenic effects of
alterations in mechanotransduction. Direct measures of insulin resistance
include insulin suppression test/insulin/glucose clamp techniques.
Euglycemic-hyperinsulinemic clamp studies support obesity as nega-
tively associated with rates of glucose uptake in skeletal muscle, adipose
tissue, and liver. The rates of glucose uptake in skeletal muscle and ad-
ipose tissue are strongly correlated, as is the rate of whole-body glucose
uptake [31]. Beyond definitive insulin clamp techniques, inferential,
indirect, and less precise measures of insulin resistance include fasting
glucose and hemoglobin A1c, as well as oral glucose tolerance testing,
fasting insulin levels, and homeostatic model assessment for insulin
resistance (HOMA-IR) or quantitative insulin-sensitivity check index
(QUICKI). HOMA-IR and QUICKI are calculations involving fasting
glucose and fasting insulin levels.

2.1.11. Interleukins
Interleukins (IL) are glycoprotein cytokines produced by leukocytes

for regulating immune responses that can be pro-inflammatory (e.g., IL 1)
or anti-inflammatory (e.g., IL 10). Interleukin 6 can be either pro-
inflammatory or anti-inflammatory (See Fig. 3).

2.1.12. Leptin
Leptin is a peptide hormone adipocytokine predominantly made by

adipocytes (and enterocytes) that regulates food intake, body mass, and
reproductive function and plays a role in fetal growth, proinflammatory
immune responses, angiogenesis, and lipolysis (See Fig. 2).

2.1.13. Lipotoxicity
Excessive intracellular lipid influx of circulating free fatty acids may

lead to ceramide (i.e., a unit of sphingolipids) and diacylglycerol for-
mation in body tissues such as adipocytes, muscle, and liver. Ceramides
are a heterogeneous group of bioactive membrane sphingolipids that
with obesity, depending on characteristic fatty acyl chain lengths and
subcellular distribution, may accumulate and cause cell-type-specific
lipotoxic reactions that disrupt metabolic homeostasis and lead to the
development of cardiometabolic diseases [32]. Beyond adipocyte and
adipose tissue hypoxia and maladaptive mechanotransduction, intra-
organelle (e.g., mitochondria) and cellular dysfunction may occur due to
the detrimental effect of intracellular lipids – termed “lipotoxicity” [33]
(See Fig. 3). During positive caloric balance, the adverse consequences of
adiposopathy include unhealthy adipose tissue expansion (e.g., relative
impairment of adipocyte proliferation, increased adipocyte hypertrophy,
and inflammation contributing to decreased insulin sensitivity [34]).
Both limitations in the ability of adipocytes to adequately store excess
energy in lipid droplets and onset of insulin resistance may result in
“energy overflow” in the form of increased circulating fatty acids. As with
adipocytes, increased free fatty acid influx to non-adipose body tissues
such as muscle and liver result in the increased storage of long-chain
non-esterified fatty acids and formation of “toxic” products such as
ceramides, diacylglycerols (DAGs), and saturated fatty acids, which can
induce chronic inflammation, mitochondrial dysfunction, and insulin
resistance [35]. In fact, rather than the amount of free fatty acids deliv-
ered to body tissues, it is the intracellular metabolism of fatty acids
specific to the individual, which may best correlate to the production of
toxic products (e.g., reactive oxygen species, diacylglycerol, and ceram-
ides) which result in adverse effects on biometabolic functions [30] (See
Fig. 3).

2.1.14. Mechanotransduction
Mechanotransduction occurs when cells sense physical stimuli, and

then respond with alterations/adaptations in biological outcomes, such
as (mal)adaptations in adipocyte or adipose tissue growth due to
adipocyte hypertrophy or increase in total fat mass. During positive
caloric balance, adipocyte hypertrophy, and adipose tissue expansion,
adipose tissue mechanosensing processes help guide structural remod-
eling, providing the scaffolding needed to support expanded adipocytes



Fig. 6. Illustrative adipose endocrine functions. Adipose tissue is an active endocrine (and immune) organ that regulates multiple body processes critical to body
homeostasis and health. Adipocytes have cellular receptors for traditional hormones, nuclear receptors for other hormones, receptors for cytokines or adipokines,
receptors for neuronal hormones, as well as receptors for adenosine, lipoproteins, neuropeptide Y1 and Y5, prostaglandins, vascular endothelial growth factor and
endocannabinoids. Dysfunction of adipose tissue (adiposopathy) may lead to adverse endocrinopathies and immunopathies leading to adverse clinical outcomes (e.g.,
diabetes mellitus, hypertension, dyslipidemia, alterations in reproductive hormones, cardiovascular disease, and cancer).
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and adipose tissue [4]. This results in mechano-regulation processes that
include the deposition, rearrangement, removal and reformation of
matrices to maintain overall form and function [36]. During positive
caloric balance, impaired adipogenesis [37] along with impaired adipose
tissue matrix adaptation may limit adipose tissue expandability (i.e.,
impairing adipose tissue energy storage and function), and thus
contributing to metabolic diseases such as T2DM [38] (See Fig. 3).

2.1.15. Metabolic inflexibility
Metabolic flexibility is the ability of the organ to respond or adapt to

changes in metabolic substrates, as routinely occurs during cycles of
eating and fasting. Just as adipokines affect metabolic flexibility in adi-
pocytes, myokines and hepatokines act on metabolism through paracrine
and endocrine signaling in the muscle and liver. An inability to
adequately metabolize the adiposopathic increased circulatory free fatty
acid influx may contribute to nonalcoholic fatty liver disease, resulting in
lipotoxicity, mitochondrial dysfunction, and cellular stress which leads to
liver inflammation, apoptosis and fibrogenesis. Similarly, adiposopathic-
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mediated systemic insulin resistance may cause skeletal muscle to be
“inflexible” in its metabolism of glucose, with accompanying mitochon-
drial dysfunction and decreased mitochondrial oxidation of free fatty
acid influx re-routing fatty acids towards ceramide synthesis in skeletal
muscle (as also occurs in the liver), further worsening insulin signaling
and contributing to worsening of insulin resistance and thus contributing
to obesity-mediated prediabetes or T2DM (See Fig. 3).

2.1.16. Mitogen-activated protein (MAP) kinase
Mitogens are proteins that promote mitosis (cell division). MAP ki-

nases are intracellular proteins that communicate receptor signals to the
cell nucleus to help regulate cell proliferation, differentiation, and
cellular death (See Fig. 2).

2.1.17. Phosphoinositide-3-kinase (PI3K) /AKT pathway
Phosphoinositide-3-kinase and AKT (protein kinase B) are intracel-

lular signal enzymes involved in glucose homeostasis and cell growth.
Postprandial increases in glucose levels (e.g., via intestinal absorption of



Fig. 7. Importance of non-adipose tissue in
obesity-related glucose dysregulation (and other
cardiometabolic diseases). The degree the immu-
nopathies and endocrinopathies of adiposopathy
result in adverse clinical consequences (e.g., abnor-
malities in glucose metabolism) largely depend on
crosstalk, interactions, and biometabolic responses
from non-adipose body tissues. Prediabetes and type 2
diabetes mellitus (T2DM) are mostly caused by multi-
organ insulin resistance in conjunction with a decline
in pancreatic beta cell insulin secretory function [4]
The degree that weight reduction improves body
organ function (e.g., adipose tissue, liver, muscle,
pancreas, kidney, brain) varies among different in-
dividuals and among different organs within the in-
dividual. For example, insulin sensitivity in the liver
(insulin-mediated suppression of glucose production)
and adipose tissue (insulin-mediated suppression of
lipolysis) may be maximally improved with 5%–8%
weight reduction, while greater amounts of weight
reduction may further improve skeletal muscle insulin
sensitivity [4].
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Fig. 8. Obesity, adiposopathy, energy overflow, and fat deposition within and around body organs. If during positive caloric balance, energy is stored in 
peripheral subcutaneous adipose tissue through unfettered adipocyte proliferation and differentiation, then while this may still result in biomechanical obesity 
complications described by “fat mass disease,” this may mitigate the adiposopathic “sick fat disease” immunopathies and endocrinopathies. However, if during 
positive caloric balance, either adipocyte proliferation or differentiation is impaired, then this may cause adipose tissue dysfunction (See Fig. 3) and limit energy 
storage in adipose tissue. This may result in immunopathies (See Fig. 4), endocrinopathies (See Fig. 6), and energy overflow with fat that may be deposited within and 
around body organs (i.e., fatty liver, fatty muscle, fatty heart), potentially resulting in “lipotoxicity” (See Fig. 3), depending on the susceptibility of the non-adipose 
tissue organ (See Fig. 7). The determination of energy (i.e., fat) storage distribution during positive caloric balance within the individual is dependent upon such 
factors as age [14], sex [14], race [14], genetics, medications (e.g., hormones, thiazolidinediones [98]), and concurrent illnesses (e.g., lipodystrophy). In general, 
among patients with overweight/pre-obesity and/or obesity undergoing weight reduction interventions, subcutaneous adipose tissue undergoes the greatest absolute 
amount of fat mass reduction through healthful nutrition, routine physical activity, anti-obesity medications, and bariatric surgery, largely because subcutaneous 
adipose tissue usually makes up most body fat (i.e., 90% or more). That said, the reduction of visceral adipose tissue correlates with reduction of subcutaneous adipose 
tissue, and the proportion of visceral fat reduction is often greater than subcutaneous fat reduction [99], with the degree of percent visceral fat reduction influenced by 
the same beforementioned factors that originally contributed to visceral fat accumulation.
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Fig. 9. Navigating potential adiposopathic health consequences of adipocyte hypertrophy and visceral adiposity. Obesity, adipocyte hypertrophy, and
accumulation of adipose tissue in the visceral and android regions often reflects pathogenic adipose tissue immune and endocrine responses, as well as increased
circulating free fatty acids, that may be lipotoxic to peripheral organs. The pathogenic potential of adipose tissue to cause clinical disease largely depends on crosstalk,
interactions, and responses of multiple body tissues. The liver, muscle, and other body organs among unique individuals may elicit unique responses to physiological/
pathophysiological interaction and crosstalk with their adipose tissue (e.g., the adiposopathic immune, endocrine, and fatty acid onslaught that often occurs with
obesity). Body organ metabolic flexibility is the ability of the organ to respond or adapt to changes in metabolic substrates. Adipokines influence metabolic flexibility
in adipocytes. Similarly, myokines and hepatokines act on metabolism in muscle and liver, respectively, through paracrine and endocrine signaling [100]. Thus, the
predisposition towards developing nonalcoholic fatty liver disease, for example, might best be explained by a “multiple hit” model. Beyond the immunopathies,
endocrinopathies, increased free fatty acids, and insulin resistance consequences of adiposopathy, contributors to nonalcoholic fatty liver disease also include
qualitative nutritional factors, physical inactivity, gut microbiota, concomitant medications, and especially genetic and epigenetic factors [65,101] An inability to
adequately metabolize adiposopathic free fatty acid overload (i.e., hepatic metabolic inflexibility) is key towards the development of nonalcoholic fatty liver disease,
with lipotoxicity, mitochondrial dysfunction and cellular stress leading to inflammation, apoptosis and fibrogenesis [102].Similarly, insulin sensitivity in skeletal
muscle differs, depending on genetic predisposition [103]. Skeletal muscle accounts for about 70% of insulin-mediate glucose disposal [104]. Potentially as the result
of adiposopathic insulin resistance, not only might skeletal muscle be “inflexible” in its metabolism of glucose (thus contributing to hyperglycemia), but mitochondrial
dysfunction and decreased mitochondrial oxidation of free fatty acid influx from adiposopathy may re-route fatty acids towards ceramide synthesis in skeletal muscle,
further worsening insulin signaling and contributing to worsening of insulin resistance [105] and thus contributing to obesity-mediated prediabetes or type 2 diabetes
mellitus (Figure copied with permission from Ref. [7]).
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ingested carbohydrates in food) leads to increased pancreatic insulin
secretion into the circulation that binds to body tissue insulin receptors
(IR). Activation of IR tyrosine kinases phosphorylates IRS, which facili-
tates the PI3K/AKT intracellular pathway. Among the effects of the PI3K/
AKT pathway include translocation of glucose transporters (GLUT4)
located in muscle and adipose tissue from intracellular storage to the cell
surface (i.e., plasma membrane), which then facilitates cellular glucose
uptake, and reduced circulating glucose blood levels (See Fig. 2).

2.1.18. Phosphorylation
Phosphorylation is the addition of a phosphoryl group to a molecule

that results in modulation of enzyme activity (activation or suppression)
(See Fig. 2).
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2.1.19. Tumor necrosis factor (TNF)
Tumor necrosis factor (TNF) was previously known as cachexin or

TNF alpha) and is a cytokine that may promote insulin resistance. While
adipocytes can produce TNF, the stromovascular fraction inflammatory
cells produce the majority of TNF (See Fig. 3).
2.2. Inflammation

Adipose tissue is a highly active endocrine and immune organ that
produces numerous factors influencing adipogenesis, fatty acid meta-
bolism (i.e., lipogenesis and lipolysis), extracellular matrix maintenance,
and angiogenesis (See Fig. 4).

Regarding endocrine function, adipocytes have cellular receptors for
traditional hormones, nuclear receptors for other hormones, receptors for



Table 2
Illustrative resources in Obesity Pillars applicable to diagnosis and treat-
ment of obesity. A comprehensive discussion of the global management of pa-
tients with overweight/pre-obesity and obesity, as well as prediabetes and type 2
diabetes mellitus is beyond the scope of this Clinical Practice Statement. The
Obesity Medicine Association (OMA) has published several guides towards
specific aspects of obesity management.

Category Title Reference

Diagnosis Obesity definition, diagnosis, bias, standard
operating procedures (SOPs), and telehealth: An
Obesity Medicine Association (OMA) Clinical
Practice Statement (CPS) 2022

[2]

Obesity history, physical exam, laboratory, body
composition, and energy expenditure: An
Obesity Medicine Association (OMA) Clinical
Practice Statement (CPS) 2022

[111]

Thirty Obesity Myths, Misunderstandings, and/
or Oversimplifications: An Obesity Medicine
Association (OMA) Clinical Practice Statement
(CPS) 2022

[3]

Obesity Pillars Roundtable: Body mass index and
body composition in Black and Female
individuals. Race-relevant or racist? Sex-relevant
or sexist?

[14]

Nutrition &
Physical Activity

Nutrition and physical activity: An Obesity
Medicine Association (OMA) Clinical Practice
Statement 2022

[112]

Obesity pillars roundtable: Obesity and
individuals from the Mediterranean region and
Middle East

[113]

Behavior
modification

Behavior, motivational interviewing, eating
disorders, and obesity management
technologies: An Obesity Medicine Association
(OMA) Clinical Practice Statement (CPS) 2022

[114]

Stress, psychiatric disease, and obesity: An
Obesity Medicine Association (OMA) Clinical
Practice Statement (CPS) 2022

[82]

Treatment Anti-Obesity Medications and Investigational
Agents: An Obesity Medicine Association (OMA)
Clinical Practice Statement (CPS) 2022

[20]

Obesity pillars roundtable: Phentermine – Past,
present, and future

[115]

Concomitant medications, functional foods, and
supplements: An Obesity Medicine Association
(OMA) Clinical Practice Statement (CPS) 2022

[116]

Weight-centric treatment of type 2 diabetes
mellitus

[117]

Bariatric surgery, gastrointestinal hormones, and
the microbiome: An Obesity Medicine
Association (OMA) Clinical Practice Statement
(CPS) 2022

[118]

Pediatrics Assessment, differential diagnosis, and initial
clinical evaluation of the pediatric patient with
obesity: An Obesity Medical Association (OMA)
Clinical Practice Statement 2022

[119]

Social consequences and genetics for the child
with overweight and obesity: An obesity
medicine association (OMA) clinical practice
statement 2022

[120]

Nutritional and activity recommendations for
the child with normal weight, overweight, and
obesity with consideration of food insecurity: An
Obesity Medical Association (OMA) Clinical
Practice Statement 2022

[121]

Metabolic, behavioral health, and disordered
eating comorbidities associated with obesity in
pediatric patients: An Obesity Medical
Association (OMA) Clinical Practice Statement
2022

[122]

Obesity Pillars roundtable: Metabolic and
bariatric surgery in children and adolescents

[123]
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cytokines or adipokines, receptors for neuronal hormones, as well as
receptors for adenosine, lipoproteins (high density lipoproteins, low
density lipoproteins, very low density lipoproteins), neuropeptide Y1 and
Y5, prostaglandins, vascular endothelial growth factor and endocanna-
binoids [73]. These adipose tissue endocrine receptors help to regulate
appetite and energy balance, adipogenesis, angiogenesis, vascular ho-
meostasis (i.e., endothelial function) energy storage, nutrient transport,
glucose homeostasis (i.e., insulin sensitivity), lipid metabolism, and
blood pressure (See Fig. 6).

Regarding the immune system, depending on environment and
circumstance, adipose tissue may release pro-inflammatory factors with
cytokine activity, acute phase response proteins, proteins of the alter-
native complement system, chemotactic/chemoattractants for immune
cells, and eicosanoids/prostaglandins, as well as anti-inflammatory fac-
tors [73]. Increased proinflammatory responses coupled with decreased
anti-inflammatory responses from dysfunctional adipose tissue may
contribute to insulin resistance, substantially due to the susceptibility of
non-adipose tissues to the systemic effects of adiposopathy (i.e.,
increased circulatory immunopathies, endocrinopathies, and free fatty
acids) (See Figs. 4 and 5).

2.2.1. Adipose tissue macrophages (ATM)
Most of the mass of adipose tissue is composed of lipid-laden mature

adipocytes. Surrounding adipocytes in adipose tissue is the cellular sto-
mal vascular fraction (SVF), which is composed of collagen matrix, pre-
adipocytes, mesenchymal stem cells, fibroblasts, pericytes, endothelial
cells, smooth muscle cells, blood/lymph vessels, nerve cells, and in-
flammatory cells (e.g., macrophages and T-cells) [74]. Due to the pres-
ence of mesenchymal progenitor cells, the SVF is a source of stem cell
therapy, often harvested from adipose tissue via liposuction [75].

The adipocyte hypertrophy that often occurs with obesity may result
in absolute or relative adipocyte hypoxia, adipocyte cell death, adipocyte
cellular stress, fatty acid flux dysregulation, and release of adipocyto-
kines that attract (i.e., via chemokines) and activate pro-inflammatory
macrophages within the SVF [7,8,32,33,76,77]. Notable chemokines
produced by adipose tissue include monocyte chemoattractant protein-1
which recruits immune cells, such as monocytes originally produced by
the bone marrow, that differentiate locally in adipose tissue into mac-
rophages (See Fig. 5). Notable adipokines produced by adipose tissue
include tumor necrosis factor, leptin, adiponectin, and interleukin 6.

Relative to adipose tissue neutrophils, T and B lymphocytes, mast
cells, and eosinophils [78], the most common leukocytes in adipose tis-
sue stroma are macrophages, which are derived from the infiltration and
differentiation of monocytes [76]. SVF inflammatory cells have been
historically described as M1 vs M2 macrophages. According to this
model, M1 macrophages increase with obesity and disproportionately
secrete pro-inflammatory factors such as tumor necrosis factor (TNF),
interleukin-6 (IL-6), and monocyte chemoattractant protein–1 (MCP-1)
[76,77]. In contrast, M2 macrophages predominate in lean individuals
and disproportionately secrete anti-inflammatory factors such as
interleukin-10 (IL-10) and transforming growth factor beta 1 (TGF-beta)
[76,77]. With obesity, M1 macrophages increase, with the M1/M2 pro-
portion “polarized” to a pro-inflammatory profile [76]. An updated
model suggests that macrophage phenotypes represent a spectrum of
functional diversity, with varied pro-inflammatory and
anti-inflammatory effects upon T-cell activation, adipocyte progenitor
activation, fibrosis, extracellular matrix regulation, adipocyte insulin
sensitivity, and lipolysis regulation [79,80]. Irrespective of the model,
adiposopathic signaling with obesity may cause adipose tissue macro-
phages to secrete proinflammatory cytokines that promote insulin
resistance in adipose tissue, muscle, and liver (See Fig. 3).

2.2.2. Monocyte chemoattractant protein-1
Adipocyte hypertrophy associated with obesity can result in (relative)

hypoxia, lipotoxicity, maladaptive mechanotransduction, mitochon-
drial/endoplasmic reticulum stress, and oxidative stress [81,82]. (See
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Fig. 3) The body may respond to these cellular insults via pathways
mediated by JNK and adipokines [81], (See Fig. 5) both which promote



Fig. 10. Basic healthful nutrition principles [112,113]. Dietary principles that apply to patients with obesity without diabetes mellitus are similar to nutritional
recommendations for patients with obesity and type 2 diabetes mellitus (T2DM), as well as similar to nutritional interventions for patients with other potential
adiposopathic conditions such as high blood pressure, dyslipidemia, and/or cardiovascular disease and cancer. Prescriptive dietary recommendations should be
evidenced-based [3] and be healthful both qualitatively and quantitatively. Nutritional recommendation should be sufficiently patient-centered and culturally sen-
sitive as to facilitate patient agreement and adherence [113,124–126]. In general, patients should avoid ultra-processed, high energy-dense foods, limit sodium,
alcohol, and simple carbohydrates. Conversely, it is generally more healthful to prioritize whole foods that are high in fiber and micronutrients (e.g., whole fruits and
vegetables). Especially in patients with diabetes mellitus, complex carbohydrates are preferred over simple carbohydrates, which often have a higher glycemic
index/load.
* Many natural foods contain varying amounts of saturated, polyunsaturated, and monounsaturated fat. The data regarding the relationship of saturated fat-containing
dairy products and cardiovascular disease is inconsistent and may be related to the size of the component fatty acids (i.e., number of carbons). Dairy food intake is
often a component of “healthful” diets, such as the Mediterranean Diet. Additionally, most studies supporting saturated fats as unhealthful (e.g., especially regarding
increased cardiovascular disease risk) evaluated isocaloric substitution for other nutrients as opposed to health effects of different types of saturated fats during
clinically meaningful weight reduction. Weight reduction via carbohydrate restricted nutritional intervention in patients with pre-obesity or obesity, and pre-diabetes
or T2DM, may contribute to improvement or remission in diabetes mellitus, reduction in high blood pressure, and improvement in blood lipids such as triglycerides
and high-density lipoprotein cholesterol. That said, patients with genetic dyslipidemias, or patients with increased intestinal cholesterol absorption with weight
reduction, may experience moderate to marked increases in low-density lipoprotein cholesterol with carbohydrate restriction, which if excessive or uncontrolled, may
suggest the need to replace saturated fats with poly or monounsaturated fats and restrict dietary intake of dietary cholesterol, or perhaps consider medications such as
cholesterol absorption inhibitors (e.g., ezetimibe) or statins [112].
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insulin resistance and promote macrophage infiltration of adipose tissue.
Monocyte chemoattractant protein-1 (MCP-1) is a chemokine [76]
secreted by adipocytes in response to the increased adipocyte size and
12

.

cellular insults. Unlike some other adipose tissue-produced cytokines,
(e.g., TNF and IL-6), which mainly originate in adipose tissue macro-
phages, the initial basal release of MCP-1 is predominantly from



Fig. 11. Obesity Medicine Association (OMA)
physical activity [112] recommendations. The
OMA physical activity recommendations may differ
from other physical activity recommendations by
explicitly including daily steps as an acceptable goal
for dynamic/aerobic physical activity. Averaging
around 5000 steps per day may be a good starting
point for many patients with obesity who have limited
mobility, or who were previously physically inactive.
Evidence supports that 5000 steps or more per day
may reduce mortality compared to 2700 steps per day
[127]. Among those who engage in over 10,000 steps
per day, the risk of incident type 2 diabetes mellitus
(T2DM) is substantially reduced [128]. The health
benefits of increasing steps per day appear to be linear
up to 10,000 steps per day, with each 2000-step
increment above inactivity associated with 6% lower
risk of progression toward T2DM [129]. Similarly,
especially among those �60 years of age, the reduc-
tion in risk for cardiovascular disease events is
generally linear from minimal to 7000/10,000 steps
per day [130]. It is unclear that step intensity is
associated with mortality after adjusting for total steps
per day [131].
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adipocytes [83]. The increase in monocyte recruitment to adipose tissue
stroma and subsequent differentiation and polarization of monocytes to
proinflammatory macrophages (i.e., immune cells that release
pro-inflammatory cytokines) worsens insulin resistance [6,8,76]. A
pro-inflammatory pathogenic cycle is created when initial adipocyte
hypertrophy leads to hypoxia, lipotoxicity, alteredmechanotransduction,
cellular stress, inflammatory cytokine release (e.g., tumor necrosis fac-
tor), secretion of MCP-1, and recruitment of pro-inflammatory adipose
tissue macrophages (See Fig. 5). These pro-inflammatory adipose tissue
macrophages also secrete MCP-1, recruiting more proinflammatory
macrophages to adipose tissue that release even more disruptive cyto-
kines that are not only pathogenic, but may also stimulate adipocytes to
produce even more MCP-1 – all leading to increased inflammation, in-
sulin resistance, prediabetes, and possibly T2DM [81,83].

2.2.3. Tumor necrosis factor (TNF)
TNF is a pro-inflammatory cytokine primarily secreted by body

macrophages, including adipose tissue stromal immune cells. Some TNF
may be produced by adipocytes [76,84]. TNF secretion by adipocytes and
adipose tissue macrophages may increase with obesity [76,84,85]. The
physiologic effects of TNF include decreased peroxisome
proliferator-activated receptor (PPAR) gamma activity and decreased
adipose tissue functionality [via decreased (relative) adipocyte number
and decreased adipocyte differentiation and increased adipocyte
apoptosis]. TNF also decreases adipocyte lipid droplet-associated peril-
ipin (i.e., a protein that normally inhibits lipolysis); thus allowing for
hormone sensitive lipase to act on the lipid droplet for lipolysis, resulting
in increased adipocyte lipolysis with increased circulating free fatty acids
delivery to liver, muscle, and pancreas [76,84]. Along with glucolipo-
toxicity, inflammation such as via increased adiposopathic TNF, can
impair pancreatic beta cell function and promote beta cell apoptosis [86].
Most applicable to this discussion is that TNF may promote mitochon-
drial dysfunction (increasing reactive oxygen species), decrease tyrosine
kinase activation of IRS, increase inhibitory JNK-promoted serine phos-
phorylation of IRS, decrease insulin receptor activity, and decrease active
glucose transporters (GLUT) [8,76,84,84], all contributing to post-insulin
receptor resistance to insulin (See Figs. 2 and 3).

2.2.4. Interleukins
Obesity may increase interleukin-6 (IL-6), which can function as a pro-

inflammatory cytokine secreted by “sick” adipose tissue, mainly adipose
tissue stromal cells such as macrophages, but also adipocytes [5,6,76].
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About one third of circulating IL-6 originates from adipocytes [6]. IL-6
induces hepatic C-reactive protein (CRP) production, helping to account
for the increase in CRP found in patients with obesity and T2DM [87]. IL-6
may promote insulin resistance by impairing the tyrosine phosphorylation
of insulin receptor and insulin receptor substrate [88] (See Fig. 3).

2.2.5. Leptin
Leptin is a hormone predominantly secreted by adipocytes, especially

when adipocytes undergo hypertrophy [5,6,89]. Leptin acts on the hy-
pothalamus to reduce appetite; however, its maximal effect appears to be
at the upper range of normal [89]. The effects of obesity-promoted
increased leptin levels are often insufficient to mitigate increased body
fat, potentially because individuals with overweight or obesity may be
susceptible to “leptin resistance” [89,90]. That said, it is more likely that
the failure of physiologic, counter-regulatory mechanisms to prevent
excessive body fat gain (e.g., release of leptin from hypertrophied adi-
pocytes) is because other physiologic and environmental promoters of
obesity overwhelm leptin's anti-obesity effects [82].

Increased leptin has a myriad of pathophysiologic effects regarding
the neuroendocrine system, angiogenesis, oxidative stress, inflammation,
fibrosis, platelet activation and aggregation, atherothrombosis, endo-
thelial dysfunction, as well as cardiac remodeling and contractile func-
tion [91]. Leptin may have mixed effects on glucose metabolism. Leptin
may decrease insulin secretion [5,6,89] and may contribute to insulin
resistance. For example, chronic leptin stimulation of the arcuate nucleus
of the hypothalamus may promote protein tyrosine phosphatase 1B
(PTP1B), which inhibits insulin activity [92]. Increased leptin and insulin
levels (along with postprandial effects) increase sympathetic nervous
system activity, potentially contributing to insulin resistance [5,6,89]
(See Fig. 3). Conversely, leptin may increase glucose tissue uptake by
muscle and brown adipose tissue, decrease glucagon secretion by the
pancreas, decrease corticosterone by the adrenal gland, decrease lipolysis
in white adipocytes, and decrease gluconeogenesis and glucose output by
the liver [5,6,89].

2.2.6. Adiponectin
While the data is not always consistent, the adiposopathic effects of

adipocyte hypertrophy may help account for reduced adiponectin levels
[93], with adiponectin being an anti-inflammatory adipocytokine pro-
duced by adipocytes that has insulin sensitizing effects [5,6,76]. Once
attached to its cellular receptor, adiponectin stimulates production of 5’
adenosine monophosphate-activated protein kinase (AMPK), which



Fig. 12. Summary of resistance training recommendations for patients with obesity [14,112]. The #1 priority in resistance training is primum non nocere (“first
do no harm”), which is best achieved by a pre-physical-exercise health assessment (e.g., cardiovascular, pulmonary, musculoskeletal, and neurologic body systems)
and patient education on safe resistance training techniques. Further, it is often advantageous to focus on the basic principles of this figure, with the use of an in-
dividual physical exercise prescription, rather than pursue a “quick fix” strategy via unproven and potentially interventions such as unsafe training practices and use of
unproven supplements. Resistance training progress may best include muscle tape measurements and body composition, as opposed to body weight or the amount of
weight lifted. Among the more efficient ways to increase total muscle mass is to train large muscle groups. Healthy posture, balance stabilization, back muscle strength,
and endurance might best be achieved with physical exercise directed at developing “core” muscles. In most cases, both low load training (i.e., lower weights per set
with more repetitions) and high load training (i.e., heavier weights with fewer repetitions) resistance will promote muscle fiber hypertrophy. In either case, muscle
hypertrophy mainly occurs with sufficient effort that results in muscle overload. That said, just as with dynamic/aerobic training, what may matter most is adhering to
a routine. For most individuals, adequate protein intake for muscle development can be achieved with healthful nutrition via natural food sources. Healthful sleep can
favorably affect multiple body processes [132], including the effectiveness of resistance training; resistance physical exercise may in turn, improve sleep quality.
Finally, resistance training should be considered as complementary to (and not a substitute for) dynamic/aerobic exercise training.
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mediates cellular energy homeostasis [76]. AMPK promotes fatty acid
oxidation, vasodilation, and cytoprotection [7,76]. Signals from the
activated adiponectin receptor also activate IRS, which helps facilitate
glucose uptake [5,6,76]. Decreases in anti-inflammatory cytokine pro-
duction may be the result of adiposopathic increase in pro-inflammatory
cytokine production (e.g., increased TNF downregulates adiponectin
expression) [5,6,76] (See Fig. 3).
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2.3. Endocrinopathies

Many adipokines have both inflammatory properties and endocrine
functions (See Figs. 4–6). Thus, the mechanisms by which adipokines
contribute to insulin resistance often reflects integrative inflammatory
and endocrine pathogenic effects. Specifically, once bound to their target
receptors, adipokines may act as classic hormones affecting the meta-
bolism of tissues and organs [94].



Fig. 13. Optimal anti-obesity medications. Several factors determine the choice of optimal anti-obesity medications, which is best determined by developing an
individualized plan based upon the patient's specific needs. While weight reduction as little as 5% among patients with obesity may improve metabolic parameters,
clinical outcome benefits are best achieved by 15% weight reduction or more, which can be achieved by highly effective anti-obesity medications (heAOM) [31].
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Beyond adipokines, an illustrative example of another endocrinop-
athy that may represent a model for how adiposopathic endocrinopathies
contribute to insulin resistance involves the relationship of obesity to 11
beta-hydroxysteroid dehydrogenase type 1 (11β-HSD1). 11β-HSD1is an
enzyme produced in adipose tissue (and liver) that converts inactive
cortisone to active cortisol and is increased with obesity (“local Cushing's
syndrome”) [95]. Increased 11β-HSD1 activity may amplify local
glucocorticoid effects, even as circulating glucocorticoid levels are not
elevated [96]. Adiposopathic increases in local tissue cortisol activity via
increased 11β-HSD1 may increase lipolysis, increase lipotoxic release of
free fatty acids, increase gluconeogenesis in the liver, and decrease
glucose uptake in muscle [95].

Adipocyte hypertrophy is associated with increased expression levels
of 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1). In addition to
adiposopathic increase in pro-inflammatory cytokine production,
increased 11β-HSD1 expression is another potential mechanism under-
lying reduced adiponectin synthesis in hypertrophic adipocytes [97].
Given that excessive glucocorticoid activity can contribute to metabolic
diseases such as T2DM, hypertension, and cardiovascular diseases,
11β-HSD1 inhibition may be a target for pharmacotherapy of multiple
obesity-related metabolic diseases [67].

2.4. Lipotoxicity, obesity, adiposopathy, insulin resistance, prediabetes,
and type 2 diabetes mellitus

The metabolic disease complications of obesity are mostly the net
result of how body organs respond to adiposopathic immunopathies and
endocrinopathies [4] (Fig. 7). An often cited example is that during
positive caloric balance and obesity, impaired uptake of energy in “sick”
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adipose tissue leads to increased circulating free fatty acids, and “ectopic”
and pathogenic deposition of fatty acids and fats in various body loca-
tions and organs (See Fig. 8) [5–8,32,33,106]. Examples of adiposopathic
ectopic fat deposition incudes visceral, pericardial, and perivascular ad-
ipose tissue, as well as fat deposition within and/or around liver, muscle,
heart, pancreas, and kidney. In liver and muscle, increased circulating
free fatty acids (FFA) lead to an increase in intracellular binding of free
fatty acids to sphingolipids forming “toxic” ceramides and its metabolites
[106,107] resulting in:

� Mitochondrial dysfunction
� Endoplasmic reticulum “stress”
� Impaired insulin receptor function
� Impaired glucose transporter expression (GLUT2 for liver, GLUT4 for
muscle and adipose tissue)

In liver, intrahepatic triglycerides are inert and do not appear to
directly impair insulin action. However, the intrahepatic influx of free
fatty acids from circulation and the metabolic processes leading to tri-
glyceride formation is often accompanied by the formation of metabol-
ically bioactive lipids, namely ceramides and diacylglycerols that can
cause insulin resistance by inhibiting insulin signaling by impairing
tyrosine phosphorylation of insulin receptor substrate, phosphoinositide-
3-kinase, protein kinase C-theta, and protein kinase B (also known as
AKT) [4] (See Figs. 2 and 3).

In skeletal muscle, and during basal conditions, free fatty acids serve
as the primarily fuel. After glucose or mixed-meal ingestion, increased
pancreatic insulin into the circulation suppresses the lipolysis of adipose
tissue triglycerides, decreases circulating free fatty acid levels, and
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Fig. 14. Treatment of patients with obesity and type 2 diabetes mellitus (T2DM). Determining optimal therapy begins with diagnosing and treating the causes of 
the diseases of obesity and T2DM. Healthful nutrition, routine physical activity, and behavioral therapy are recommended to achieve and maintain �5% weight 
reduction for most patients with T2DM and pre-obesity/overweight or obesity. Additional weight reduction often results in further improvements in glycemic control 
and reducing cardiovascular disease (CVD) risk factors, and potentially a reduction in CVD event risk [15,133–135]. Factors that determine the optimal choice of 
anti-obesity/anti-diabetes medications in patients with pre-obesity/overweight or obesity include safety, efficacy, effects on body weight, effect on blood glucose, 
effect on potential diabetes remission, improvement in cardiovascular disease (CVD) risk factors, and evidence of reduced CVD outcomes [133].
* Most participants in the cardiovascular outcomes trials of anti-diabetes medications proven to reduce CVD risk included patients treated with baseline metformin. 
However, organizations such as the American Diabetes Association (ADA), have recommended metformin as an optional concurrent treatment to reduce CVD risk 
[136]. Metformin has limited data supporting beneficial CVD outcomes [137], and the glucose lowering effects of metformin may wane over time, with among the 
greatest predictors of metformin failure being higher levels of baseline hemoglobin A1c [138]. Among patients at CVD risk, the ADA gives preference to anti-diabetes 
therapies with proven CVD benefits, such as glucagon like peptide – 1 receptor agonist (GLP-1 RA) and sodium glucose transporter 2 inhibitors (SGLT2i) [136]. GLP- 1 
RA – based anti-diabetes therapies with cardiovascular outcomes trials supporting reduction in major adverse cardiovascular events (MACE) include liraglutide, 
semaglutide, dulaglutide, and efpeglenatide. Tirzepatide is a GLP-1 RA and glucose-dependent insulinotropic polypeptide that improves multiple CVD risk factors and 
that is currently undergoing CVD outcomes trials [139,140]. SGLT2i with proven CV benefits are also recommended; however, SGLT2i promote only mild weight 
reduction and no SGLT2i is indicated to treat obesity [15,134,135]. Data are lacking regarding long-term, prospective, randomized, clinical efficacy and safety of 
phentermine monotherapy for glycemic control and CVD risk. Many patients with obesity are at high risk for CVD. T2DM is a major cardiovascular disease risk factor. 
Phentermine is contraindicated in patients with CVD [115].
** Metabolic/bariatric surgery [118] can improve glucose control in patients with T2DM and obesity, and may also promote remission of T2DM [133,141].
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Fig. 15a and b: Paradigm perspectives regarding the primary cause of
common obesity-related metabolic diseases such as type 2 diabetes mel-
litus (T2DM), hypertension, and dyslipidemia
Major risk factors for T2DM include increased body fat, age �45, physical
inactivity, and genetics (family history and race). Not all cases of common
metabolic diseases are attributable to increased body fat [3]. For example, some
cases of T2DM can be caused by rare conditions such as hemochromatosis,
hypercortisolism, excessive growth hormone, pancreatic insufficiency, side ef-
fects of concomitant therapies, genetic syndromes of insulin resistance, and
genetic syndromes of limited pancreatic insulin secretion [3]. No matter the
paradigm, T2DM is most often due to discordant multiorgan interactions (See
Fig. 15b), and not just an increase in body fat. In fact, T2DM can sometimes be
due to reduced body fat (not increased body fat), as occurs with lipodystrophy
[156]. This line of thinking may potentially lead to the dubious conclusion that
caloric intake, adipocyte hypertrophy, adipose tissue accumulation, and adipose
tissue dysfunction (e.g., endocrinopathies or immunopathies) are irrelevant to
the pathogenesis of most cases of cardiometabolic diseases such as T2DM [3].
However, the clinical data supports that obesity and adiposopathy are the most
common modifiable factors when assessing the cause and treatment of meta-
bolic diseases such as T2DM. Because even when remission of T2DM is corre-
lated with a reduction in excess fat from the liver and pancreas [157], this is
usually within the context of substantial weight reduction [158]. Furthermore,
among those with obesity, the origin of free fatty acids delivered to the liver in
the postabsorptive state is usually about 20% from lipolysis from visceral fat
(although as high as 50% in some individuals), and 80% from lipolysis of sub-
cutaneous adipose tissue [4]. The origin of most systemic free fatty acids
delivered to muscle is from subcutaneous adipose tissue, and not visceral adi-
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stimulates muscle glucose uptake via insulin-stimulated GLUT 4 – thus
switching the predominant muscle fuel from fatty acids to glucose [4]
(See Fig. 2). After entering the myocyte, glucose is phosphorylated and
oxidized for fuel via glycolysis or stored as non-oxidative glycogen. In-
dividuals with obesity and/or type 2 diabetes often have a “lipotoxic”
impairment of the insulin receptor (See Figs. 2 and 3) [4].

Regarding pancreatic beta cells, over exposure to glucose due to hy-
perglycemia [108] and exposure to certain lipids derived from increased
circulating free fatty acids may reduce insulin secretion due to gluco-li-
potoxicity [107,109]. Increased sphingolipid (e.g., ceramide) formation
promotes pancreatic beta cell apoptosis [107,109]. Control of glucose
levels and a reduction in liver and pancreas fat content with weight loss
in patients with overweight/obesity may allow recovery of beta cell
function, especially among patients with shorter duration of T2DM
[110].

In short, the degree that obesity-mediated immune, endocrine, free
fatty acid, and other signaling adversely affects metabolic health depends
on how multiple body organs navigate these adiposopathic offensives,
via crosstalk and interactions, as well as biologic reactions and responses
that may be unique to the individual (See Fig. 9).

3. Etiology, diagnosis, and treatment

A comprehensive discussion of the diagnosis and treatment of obesity
is beyond the scope of this review focused on pre-obesity/obesity and
Fig. 15a. Adipocentric paradigm.

Fig. 15b. Discordant multiorgan interaction paradigm.

pose tissue (which is drained into the liver via the portal circulation) [159].
Thus, both subcutaneous and visceral adipose tissue play a role in fatty liver,
fatty muscle, and thus play a central role in insulin resistance and T2DM. Weight
reduction via hypocaloric diets result in reduction in subcutaneous adipose
tissue, visceral adipose tissue, pancreatic fat, and liver fat, with the reduction of
liver lipid content being the strongest predictor of insulin resistance improve-
ment after weight reduction [160], likely because a reduction in intraorgan fat
(i.e., hepatic fat) and reduction in ectopic fat (i.e., visceral fat) are both markers
for improved adipose tissue function. In summary, increased body fat is the most
consistent potentially modifiable risk factor leading to pre-diabetes/T2DM and
many other metabolic diseases (e.g., high blood pressure and adiposopathic
dyslipidemia) [9]. Risk factors such as age, race, genetic sex, other genetic in-
heritance, and concurrent illnesses (e.g., some neurological, metabolic, and
body organ disorders) are not modifiable [3]. Conversely, body fat is often
modifiable. Utilizing the principles of Ockham's razor (i.e., parsimony, economy,
or succinctness in problem-solving) with the patient-centered provision that
reversibility is preferred over irreversibility when assigning causation, then a
logical conclusion might be: “When multiple abnormalities promote an adverse
health outcome, it is the defect most directly, simply, and reversibly associated
with promoting a disease, and the defect most beneficial when corrected, which
is best labeled the ‘primary cause’” [9] The adipocentric paradigm and philo-
sophical perspective regarding causality of common cardiometabolic diseases
and cancer helps explain why body fat gain is often accompanied by onset of
cardiometabolic disease (i.e., development of adiposopathic “sick fat”) [2]. The
adipocentric paradigm helps explain why healthful nutrition, routine physical
activity, behavior modification, anti-obesity medication and bariatric proced-
ures may not only reduce body weight, may not only improve metabolic diseases
and cardiometabolic risk factors, but also improve cardiometabolic disease and
in some cases improve cancer outcomes [2,20,44,112,114,118]. The adipocen-
tric paradigm is a model that best supports the implementation of the four pillars
of obesity management (e.g., nutrition, physical activity, behavior modification,
and anti-obesity medications), as well as helps support the rationale for bariatric
procedures in patients with overweight or obesity. A central focus on managing
body fat in the treatment of obesity and its complications is supported by the
potential remission of metabolic diseases (See Fig. 16) and provides rationale
why pre-obesity/obesity may often be considered the most clinically relevant
treatment target and priority for patients without adverse acute complications
(See Fig. 17) (see Fig. 18).
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pre-diabetes/T2DM (see Fig. 8). Many of the principles in the diagnosis
and treatment of patients with obesity and diabetes similarly apply to
patients with obesity alone. Table 2 provides some Obesity Pillars pub-
lications relevant resources to the diagnosis, management, and treatment



Fig. 16. Intervention principles regarding remission of type 2 diabetes mellitus (T2DM) [161]. Strong and consistent evidence supports obesity management as
delaying the progression from prediabetes to type 2 diabetes, improving glycemia in patients with T2DM, reducing the need for glucose-lowering medications, and
promoting sustained diabetes remission through at least 2 years [133]. Modest weight reduction (i.e., 3–7% of baseline weight) improves glycemia and other in-
termediate cardiovascular risk factors while larger sustained weight losses (i.e., >10%) often results in disease-modifying effects such as possible remission of type 2
diabetes (and weight reduction �15% might best reduce cardiovascular disease outcomes and mortality) [133]. If intermittent fasting results in weight reduction, then
this may also enhance remission of T2DM [162] Predictors of remission of T2DM include shorter duration of T2DM (<2 years duration), fewer number of anti-diabetes
medications required to achieve euglycemia, and clinically meaningful weight reduction [161,163]. Among those with obesity, the most effective approach to prevent
the progression of prediabetes to diabetes mellitus is clinically meaningful weight reduction [164]. The main dietary contributor to diabetes remission is weight
reduction (regardless of macronutrients) [133]. While very low energy diets and formula meal replacement appear the most effective approaches, low carbohydrate
diets and their affiliated weight reduction may be more effective in T2DM remission at 6 months, compared to low fat diets [165]. In an open-label, cluster-randomized
controlled trial conducted at primary care practices, the main contributor to sustained T2DM remission in a structured weight management program was sustained
weight reduction [166], with remission correlated with the amount of weight reduction (i.e., up to 86% remission among participants who lost 15 kg or more) [4]. In a
national health record review in England, greater T2DM remission rates were consistently associated with weight loss and degree of weight loss [167]. A meta-analysis
supports that patients with extensive weight loss were more likely to achieve T2DM remission after bariatric surgery [168], with the caveat that diabetes remission
with bariatric surgery may be achieved via mechanisms beyond weight reduction alone [118,169]. Also, consistent with principle that the health benefits of body fat
weight reduction depends on promoting favorable health effects upon adipose tissue function, the simple surgical removal of functional body fat may not result in
metabolic health benefits (e.g., liposuction of subcutaneous abdominal adipose tissue or removal of intra-abdominal adipose tissue by omentectomy) [4]. Similarly, no
approved or investigational medication exclusively developed to reduce hepatic fat in patients with nonalcoholic fatty liver disease (NAFLD) is approved to treat
T2DM, much less promote T2DM remission (i.e., independent of weight reduction) [170]. Conversely, anti-obesity medications (e.g., glucagon-like peptide receptor
agonists) may have beneficial effects on hepatic steatosis and inflammation in patients with NAFLD [171]. Overall: (a) body fat reduction must be induced by negative
energy balance to achieve metabolic benefits [4], (b) clinically meaningful weight reduction and improvement in adipose tissue function can be achieved with
reduced-caloric intake regardless of macronutrients [172], (c) the number of meals per day correlates better with weight change than timing of meals [173], (d)
time-restrictive eating with caloric restriction produces no more weight reduction, body fat reduction, or improvement in metabolic risk factors than caloric re-
strictions alone [174], (e) with the possible exception of protein intake, evidence of relative differences between carbohydrates and fats in appetite regulation is either
lacking or inconsistent [175,176], (f) isocaloric very low carbohydrate/high fat diets do not differ from high carbohydrate/low fat diets with regard to weight
reduction (although low carbohydrate diets may reduce fasting and post prandial glucose and insulin concentrations) [177], and (g) weight reduction is the most
consistent parameter in achieving remission of T2DM. These principles highlight the health importance of weight reduction among patients with obesity and T2DM.
They help refute the myth that obesity (and its complications) are unrelated to the energy density and caloric intake of food [3]. Regarding macronutrients: “There
may be health reasons to emphasize one macronutrient over another in a diet, but from the perspective of energy balance, total energy intake, rather than its source, is
the critical factor to address [175].”
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of obesity. Figs. 10–12 provide general principles regarding healthful
nutrition and physical activity in treating obesity, with or without dia-
betes mellitus.
3.1. Anti-obesity medications and type 2 diabetes medications

Fig. 13 describes factors to consider when choosing the optimal anti-
obesity medication. Fig. 14 describes anti-obesity therapies for treatment
of patients with obesity and T2DM. Factors to consider in choosing
optimal anti-obesity and anti-diabetes medications in patients with
obesity and T2DM includes safety, efficacy, effects on body weight, ef-
fects on metabolic parameters and health outcomes (i.e., cardiovascular
effects). Some anti-diabetes medications may increase body weight (e.g.,
sulfonylureas, meglitinides, many insulins, and PPAR gamma agonists)
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[116,117]. Other anti-diabetes medications are weight neutral (e.g.,
DPP-IV inhibitors). Some anti-diabetes medications may produce mild
weight loss (e.g., metformin, alpha glucosidase inhibitors, SGLT2 in-
hibitors, and amylin mimetics) [116,117]. Finally, some anti-diabetes
medications can produce clinically meaningful weight loss (such as
GLP-1 – based therapies) [116,117], with some anti-diabetes agents
approved as anti-obesity medications at doses higher than when used to
treat T2DM. Table 3 shows cardiovascular outcome trial results of
anti-diabetes medications [20]. Tirzepatide is a dual glucagon-like pep-
tide-1 (GLP-1) and glucose-dependent insulinotropic peptide (GIP) re-
ceptor agonist evaluated in a series of clinical trials for treatment of type
diabetes mellitus (SURPASS studies) and for treatment of obesity (SUR-
MOUNT studies) [20]. Semaglutide is evaluated in a series of clinical
trials for treatment of T2DM (PIONEER studies) and for treatment of



Fig. 17. “Treat obesity first” prioritization for patients with obesity and type 2 diabetes mellitus (T2DM) without acute disease. Treatment of obesity is the
priority for most patients without acute illness, especially if the therapies chosen for treatment of the obesity are also expected to improve the complications of obesity.
Conversely, patients with marked increases in glucose and/or blood pressure, severe dyslipidemia (e.g., severe hypertriglyceridemia), acute thrombosis, cardiovascular
disease (CVD), or cancer should have these acute metabolic abnormalities urgently assessed, managed, and treated – preferably with concomitant interventions that
may also improve obesity. For example, while glucagon-like peptide-1 receptor agonist based therapies may reduce body weight and improve glycemic control in
patients with overweight/obesity [20], if the patient with obesity and T2DM has heart failure, then beyond their indicated use as anti-diabetes medications, some
sodium glucose transporter 2 inhibitors (SGLT1i) have clinical outcome data to support improvement in both CVD and heart failure [178], and may also facilitate mild
weight reduction [179,180].

Table 3
Illustrative cardiovascular disease outcomes studies in patients with diabetes mellitus since the 2008 FDA guidance. Shown are studies on CVD outcomes in
patients with diabetes mellitus. Most study participants had preobesity/overweight or obesity [12,13,15,142–153]. CVD:cardiovascular disease; DPP-IV:dipeptidyl
peptidase 4; MACE:major adverse cardiac events; PPAR:peroxisome proliferator activated receptor; SGLT-2:sodium-glucose cotransporter-2.

Drug Class Trial Drug Primary
Endpoint

N (Median Duration) CVD outcomes

DPP-4 Inhibitors SAVOR-TIMI 53 Saxagliptin MACE 16,492 (2.1 years) ↔ (2013)
EXAMINE Alogliptin MACE 5380 (1.5 years) ↔ (2013)
TECOS Sitagliptin MACE 14,671 (3.0 years) ↔ (2015)
CAROLINA Linagliptin MACE þ UA 6000 (7.6 years) Non-inferior to glimepiride (2019)
CARMELINA Linagliptin MACE 6991 (2.2 years) ↔ (2018)

GLP-1 Receptor
Agonists

ELIXA Lixisenatide MACE 6068 (2.1 years) ↔ (2015)
LEADER Liraglutide MACE 9340 (3.8 years) ↓ (2016)
SUSTAIN 6 Semaglutide

(subcutaneous. Injection)
MACE 3297 (2.1 years) ↓ (2016)

FREEDOM-CVO Exenatide cont. release MACE >4000 (< 3 years) ↔ (2016)
EXSCEL Exenatide extended-release

(QW)
MACE 14,752 (3.2 years) ↔ (2017)

HARMONY Albiglutide MACE 9463 (1.6 years) ↓ (2018)
PIONEER - 6 Semaglutide (oral) MACE 3183 (1.3 years) ↔ (2019)
REWIND Dulaglutide MACE 9622 (6.5 years) ↓ (2019)
AMPLITUDE-O Efpeglenatide MACE 4076 (1.81 years) ↓ (2021)

SGLT2 Inhibitors EMPA-REG OUTCOME Empagliflozin MACE 7020 (3.1 years) ↓ (2015)
CANVAS Canagliflozin MACE 10,142 (2.4 years) ↓ (2017)
DECLARE-TIMI-58 Dapagliflozin MACE 17,160 (4.2 years) ↓ CV deaths/CHF hospitalization

(2018)
VERTIS - CV Ertugliflozin MACE 8246 ↔ (2020; did reduce CHF)

Insulin DEVOTE Degludec MACE 6509 (~2 years) Non inferior to glargine (2017)
PPAR Gamma
Agonists

IRIS Pioglitazone p stroke/TIA MACE 3895 (4.8 years) ↓ (2016)

Alpha Glucosidase
Inhibitor

ACE trial (Chinese population in patients
with glucose intolerance)

Acarbose MACE 6522 (5.0) ↔ (2017)

Taiwan population Acarbose MACE 14,306 ↓ Compared to adding sulfonylurea to
metformin (2018)
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Fig. 18. “Best available dose” approach in choosing medications for patients with obesity and type 2 diabetes mellitus (T2DM). Some medications are
indicated to treat both obesity and T2DM, but at different doses for each disease. For example, semaglutide is a glucagon-like peptide-1 receptor agonist that at lower
injectable doses 0.25–2.0 mg per week is indicated to improve glycemic control in patients with T2DM while semaglutide at 2.4 mg subcutaneously per week is
approved for chronic weight management of patients with overweight with weight-related complications or obesity [20]. Challenges arise when higher medication
doses for obesity are not available, as may occur with supply limitations or prohibitive cost. In such cases, for patients with obesity and T2DM, if the medication has
proven benefits in reducing body weight, improving glycemic control, and reducing cardiovascular disease risk, then the optimal medication dose choice would be the
dose most available to the patient.
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obesity (STEP or Semaglutide Treatment Effects in People with Obesity)
[20] (See Table 4).

3.2. Priority of treatment – “Treat obesity first”

Fig. 15 describes the “treat obesity first” therapeutic paradigm
(https://www.consultant360.com/exclusives/new-guidelines-pharmacol
ogical-management-obesity). If patients with obesity and diabetes mellitus
have acute illnesses, such as marked hyperglycemia, uncontrolled high
blood pressure, severe hypertriglyceridemia, cardiovascular disease, or
cancer, then these acute medical disorders should be treated acutely.
Otherwise, comprehensive treatment of obesity is the priority for most pa-
tients with obesity and T2DM, with optimal therapies providing clinically
meaningful weight reduction and improvement in the complications of
obesity – including improvement in glucose control. Fig. 16 describes how
weight reduction is the most consistent factor that promotes remission of
T2DM, irrespective of dietary macronutrients, clinical approach, or type of
bariatric surgery. Finally, Fig. 18 provides an algorithmic, practical
approach to anti-obesity and anti-diabetesmedication dose selection, based
upon the availability of medications that are approved as both anti-obesity
and anti-diabetes medications, but at different doses.

4. Conclusions

This Obesity Medicine Association (OMA) Clinical Practice Statement
(CPS) is intended to provide clinicians an overview of the obesity-related
cardiometabolic risk factor of diabetes mellitus. T2DM is a common
20
complication of obesity, which occurs as the result of adverse immuno-
logic, endocrinologic, and lipotoxic adipose tissue processes that
contribute to insulin resistance and beta cell dysfunction. The determi-
nation as to whether these adiposopathic consequences ultimately lead to
clinical metabolic disease substantially depends on the response of non-
adipose tissue organs such as liver, muscle, pancreas, kidney, and brain.
Many of the principles in the diagnosis and treatment of patients with
obesity and diabetes similarly apply to patients with obesity alone.
Preferred anti-obesity therapies for treatment of patients with obesity
and T2DM include those that reduce body weight, improve glycose levels
and other metabolic parameters, and improve health outcomes (i.e.,
cardiovascular disease). Several anti-diabetes mellitus medications have
clinical trial evidence to support clinically meaningful weight reduction
and improvement in cardiovascular disease outcomes. Ongoing clinical
trials are evaluating the potential cardiovascular disease benefits of tir-
zepatide and semaglutide in patients with obesity but without diabetes
mellitus. Given the numerous obesity “sick fat diseases” (i.e., adiposop-
athy) and “fat mass diseases,” and given that most of the patients in
T2DM cardiovascular outcomes trials had pre-obesity/obesity, then this
supports the “treat obesity first” therapeutic paradigm. Patients with or
without diabetes mellitus who have acute illnesses should have these
illnesses treated acutely (e.g., marked hyperglycemia, uncontrolled high
blood pressure, severe hypertriglyceridemia, cardiovascular disease, or
cancer). However, beyond that, treatment of obesity is the priority for
most patients with obesity and T2DM, with optimal therapies providing
clinically meaningful weight reduction, therapeutic benefits and/or po-
tential remission of the complications of obesity (i.e., T2DM), and

https://www.consultant360.com/exclusives/new-guidelines-pharmacological-management-obesity
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Table 4
Illustrative cardiovascular outcomes trials of therapeutic agents approved or
potentially to be approved for treatment of both obesity and type diabetes
mellitus.

Therapeutic
agent

Metabolic
parameter

Cardiovascular
outcomes trials

Reference link

Tirzepatide Obesity
(Injectable SQ)

A Study of Tirzepatide
(LY3298176) on the
Reduction on Morbidity
and Mortality in Adults
With Obesity
(SURMOUNT-MMO)

https://clinicaltr
ials.gov/ct2/sh
ow/NC
T05556512

Tirzepatide Type 2 Diabetes
Mellitus
(Injectable SQ)

A Study of Tirzepatide
(LY3298176) Compared
With Dulaglutide on
Major Cardiovascular
Events in Participants
With Type 2 Diabetes
(SURPASS-CVOT)

https://www.c
linicaltrials.
gov/ct
2/show/NC
T04255433

Semaglutide Obesity
(Injectable 2.4
mg SQ weekly)

Semaglutide Effects on
Heart Disease and Stroke
in Patients with
Overweight or Obesity
(SELECT)

[20]

Type 2 Diabetes
Mellitus
(Injectable 0.5 or
1.0 mg SQ
weekly)

Trial to Evaluate
Cardiovascular and
Other Long-term
Outcomes with
Semaglutide in Subjects
with Type 2 Diabetes
(SUSTAIN-6)

[154]

Type 2 Diabetes
Mellitus (Oral 3/
7/14 mg per day)

Semaglutide
Cardiovascular
Outcomes Trial in
Patients with Type 2
Diabetes (SOUL)

[20]

Liraglutide Type 2 Diabetes
Mellitus
(Injectable 1.8
mg SQ daily)

Liraglutide Effect and
Action in Diabetes:
Evaluation of
Cardiovascular Outcome
Results (LEADER)

[155]
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improved disease outcomes (e.g., cardiovascular disease or cancer).

Transparency [181]

This manuscript was derived and edited from the 2021 Obesity Med-
icine Association (OMA) Obesity Algorithm. Beginning in 2013, OMA
created and maintained an online Adult “Obesity Algorithm” (i.e., educa-
tional slides and eBook) that underwent yearly updates by OMA authors
and was reviewed and approved annually by the OMA Board of Trustees.
This was followed by a similar Pediatric “Obesity Algorithm,”with updates
approximately every two years by OMA authors. Authors of prior years’
version of the Obesity Algorithm are included in Supplement #1.

Group composition

Over the years, the authors of the OMA Obesity Algorithm have
represented a diverse range of clinicians, allied health professionals,
clinical researchers, and academicians. (Supplement #1) The authors
reflect a multidisciplinary and balanced group of experts in obesity sci-
ence, patient evaluation, and clinical treatment.

Author contributions

HEB and the medical writer (see below) crafted the first draft. SB and
TLC reviewed, edited, and approved the manuscript version before and
after peer review.
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Conclusions and recommendations

This Clinical Practice Statement is intended to be an educational tool
that incorporates the current medical science and the clinical experiences
of obesity specialists. The intent is to better facilitate and improve the
clinical care and management of patients with pre-obesity and obesity.
This Clinical Practice Statement should not be interpreted as “rules” and/
or directives regarding the medical care of an individual patient. The
decision regarding the optimal care of the patient with pre-obesity and
obesity is best reliant upon a patient-centered approach, managed by the
clinician tasked with directing an individual treatment plan that is in the
best interest of the individual patient.

Updating

It is anticipated that sections of this Clinical Practice Statement may
require future updates. The timing of such an update will depend on
decisions made by Obesity Pillars Editorial team, with input from the
OMA members and OMA Board of Trustees.

Disclaimer and limitations

Both the OMA Obesity Algorithms and this Clinical Practice State-
ment were developed to assist health care professionals in providing care
for patients with pre-obesity and obesity based upon the best available
evidence. In areas regarding inconclusive or insufficient scientific evi-
dence, the authors used their professional judgment. This Clinical Prac-
tice Statement is intended to represent the state of obesity medicine at
the time of publication. Thus, this Clinical Practice Statement is not a
substitute for maintaining awareness of emerging new science. Finally,
decisions by practitioners to apply the principles in this Clinical Practice
Statement are best made by considering local resources, individual pa-
tient circumstances, patient agreement, and knowledge of federal, state,
and local laws and guidance.
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