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Highlights
Interleukin (IL)-6 can prevent or promote
cancer development, depending on the
context.

IL-6 is released from skeletal muscles
during exercise.

IL-6 is also secreted by leukocytes and
stromal cells at sites of inflammation
and in the tumour microenvironment.

Muscle-derived IL-6 enhances insulin
sensitivity in glycogen-storing tissues,
stimulates the appearance of anti-
Interleukin (IL)-6 elicits both anticancer and procancer effects depending on the
context, which we have termed the ‘exercise IL-6 enigma’. IL-6 is released from
skeletal muscles during exercise to regulate short-term energy availability.
Exercise-induced IL-6 provokes biological effects that may protect against
cancer by improving insulin sensitivity, stimulating the production of anti-
inflammatory cytokines, mobilising immune cells, and reducing DNA damage in
early malignant cells. By contrast, IL-6 continuously produced by leukocytes in
inflammatory sites drives tumorigenesis by promoting chronic inflammation
and activating tumour-promoting signalling pathways. How can a molecule
have such opposing effects on cancer? Here, we review the roles of IL-6 in
chronic inflammation, tumorigenesis, and exercise-associated cancer preven-
tion and define the factors that underpin the exercise IL-6 enigma.
inflammatory cytokines in the blood,
mobilises cytotoxic immune cells, and
reduces DNA damage in cancer
cells. These biological effects may help
protect against cancer formation and
progression.

By contrast, sustained IL-6 signalling at
sites of inflammation and in the tumour
microenvironment promotes chronic
low-grade inflammation and activates
tumour-promoting signalling pathways.
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Paradoxical role of IL-6 in cancer
Participating in 150–300min per week of structured physical activity (i.e., exercise) reduces the risk
of at least seven types of cancer: breast, colon, endometrial, kidney, and liver cancer, myeloma,
and non-Hodgkin’s lymphoma [1]. The size of the relative risk reduction ranges from 10% to
27%, depending on the cancer site [1]. Exercise is associated with lower recurrence rates and im-
proved survival in people diagnosed with colon, breast, and prostate cancers [2].

A breakthrough in the field will be to identify the exercise-induced bioactive material that underlies
the association between exercise and cancer risk and survival. A notable candidate is the
cytokine IL-6 [3]. IL-6 is released from contracting skeletal muscle during exercise to regulate
short-term energy availability and is quickly eliminated from plasma upon exercise cessation [4].
Muscle-derived IL-6 enhances insulin sensitivity [5], stimulates the production of anti-
inflammatory cytokines [6], reduces proliferation and DNA damage in cancer cells [7], and
stimulates tumour infiltration of cytotoxic immune cells in mice [8]. Based on these findings, we
propose that IL-6 plays a key role in the multiple health benefits of exercise, including protection
against cancer.

A large body of evidence suggests that IL-6 promotes tumorigenesis [9] (see Glossary). IL-6 is
secreted by leukocytes and stromal cells for up to 15 h at local inflammatory sites [10] and
controls the switch from acute to chronic inflammation, which is linked to the development of
many cancers [11]. IL-6 produced in the tumour microenvironment (TME) activates tumour-
intrinsic signalling pathways and regulates the protumour behaviour of infiltrating stromal and
immune cells [12].

We have termed the opposing effects of IL-6 in cancer the ‘exercise IL-6 enigma’. Here, we re-
view the roles of IL-6 in chronic inflammation, tumorigenesis, and exercise-associated cancer
prevention. We then define the factors that can explain the exercise IL-6 enigma and explore
their mechanistic bases.
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IL-6 signalling
The IL-6 receptor complex consists of the IL-6 receptor α (IL-6Rα) and glycoprotein 130
(gp130). IL-6Rα exists in a transmembrane and soluble form. Classic signalling is initiated
when IL-6 binds to the membrane-bound form of IL-6Rα (mbIL-6Rα), forming a complex of IL-6
and mbIL-6Rα. This complex then binds to two molecules of gp130, which triggers gp130
dimerization and formation of a complex consisting of IL-6, mbIL-6Rα, and gp130. Classic signal-
ling occurs in cell types that express mbIL-6Rα, including skeletal muscle fibres, hepatocytes, and
neutrophils [13]. Many cancer cell lines and human tumours have mbIL-6Rα, although there is high
variability in mRNA expression within and between cancer sites (Figure 1) [14,15].

IL-6 elicits biological effects on cell types that do not express mbIL-6Rα by binding to the soluble
form of IL-6Rα (sIL-6Rα) in extracellular fluids, such as in blood plasma [16]. The IL-6/sIL-6Rα
complex binds to gp130 on the plasmamembrane of target cells, promoting gp130 dimerization.
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Figure 1. Interleukin-6 receptor
(IL6R) expression in cancer cell
lines and human tumours. Relative
IL-6R mRNA expression data for
(A) ~800 cancer cell lines across 14
cancer types retrieved from the Cancer
Cell Line Encyclopedia (CCLE) [14] and
(B) ~7000 human cancer samples
across 14 cancer types retrieved from
The Cancer Genome Atlas (TCGA) via
cBioPortal [15].
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Glossary
Acute phase proteins: blood proteins
produced by the liver in response to
inflammation or infection, helping to
stimulate the immune system and aid
tissue repair. Examples of key acute
phase proteins include C-reactive
protein, serum amyloid A protein, and
fibrinogen.
ADAM17: an enzyme involved in the
shedding of membrane-bound proteins
from cell surfaces, such as the IL-6
receptor, releasing their extracellular
domains into the surrounding
environment.
Adhesion molecules: cell surface
proteins that mediate the interaction
between cells, or between cells and the
extracellular matrix. Adhesion molecules
play a major role in the recruitment of
neutrophils to the site of inflammation.
An example of an adhesion molecule is
the intercellular adhesion molecule 1
(ICAM-1).
Chemokines: small signalling proteins
secreted by cells that control the
movement of white blood cells to
specific sites in the body, such as to
sites of inflammation.
Classic signalling: mode of IL-6
signalling initiated when IL-6 binds to the
membrane-bound IL-6 receptor on the
surface of a cell.
Dedifferentiation: process by which
specialised cells lose their specific
characteristics and return to a less
specialised state, often occurring during
tissue repair and regeneration.
Dimerization: process of two
molecules joining together to form a two-
part complex (called a dimer). This often
triggers downstream signal
transduction.
Epithelial–mesenchymal transition
(EMT): process in which epithelial cells
lose their characteristic properties and
acquire mesenchymal-like
characteristics, leading to increased cell
mobility and invasive capabilities, often
associated with tissue development and
cancer metastasis.
Extracellular vesicles (EVs): lipid-
bound particles secreted by cells into the
extracellular space. EVs carry a cargo of
various molecules (e.g., proteins, lipids,
and nucleic acids) and play a crucial role
in cell-to-cell communication, allowing
cells to exchange information and
molecules with neighbouring or distant
cells.
Glycoprotein 130 (gp130): cell surface
receptor used by several cytokines to
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This form of IL-6 signalling – known as trans-signalling – enables IL-6 signalling in diverse cell
types because gp130 is expressed on the surface of most cells.

Two more IL-6 signalling modes have recently been identified: trans-presentation and joint
reconstituted signalling. In trans-presentation, IL-6 binds to mbIL-6Rα on a transmitting cell
membrane and the IL-6/mbIL-6Rα complex is presented to a receiving cell expressing gp130,
triggering gp130 dimerization and downstream signalling in the receiving cell [17]. In joint
reconstituted signalling, mbIL-6Rα on extracellular vesicles (EVs) are transported and fused
with cells that lack mbIL-6Rα, enabling delayed classic signalling on cells that otherwise would
only respond to trans-signalling or trans-presentation [18].

All IL-6 signalling modes activate the JAK/STAT3 signalling pathway. Formation of the entire
IL-6 receptor complex (IL-6/IL-6Rα/gp130) activates JAK and subsequently induces the phos-
phorylation of tyrosine residues within the cytoplasmic part of gp130. These phosphorylated ty-
rosine residues recruit a variety of molecules with Src homology domain 2 (SH2 domain)
including STAT3, which is phosphorylated, dimerized, and consequently translocates to the nu-
cleus to activate target genes including c-myc, bcl2, cyclin D1, and MCP-1 [19]. gp130 phos-
phorylation also serves as a recruitment site for SH2-containing protein tyrosine phosphatase
(SHP)-2, which promotes activation of PI3K/Akt and MAPK/ERK signalling [20].

IL-6, inflammation, and cancer
IL-6 in acute inflammation
Acute inflammation is a normal biological response to tissue damage and acts to restore tissue
homeostasis. IL-6 is produced by macrophages, fibroblasts, and endothelial cells at sites of in-
flammation and controls the extent of tissue inflammatory responses. IL-6 induces the hepatic
synthesis of acute phase proteins and stimulates the recruitment of neutrophils and lympho-
cytes to the inflammatory site by activating endothelial and smooth muscle cells to express
adhesion molecules and release chemokines IL-8 and monocyte chemoattractant protein
(MCP)-1 (also known as CCL2) [21,22]. Neutrophils and some lymphocyte subsets express
mbIL-6Rα and thus are responsive to IL-6 classic signalling. The mbIL-6Rα can also be shed
from neutrophil and lymphocyte membranes as a soluble form [23,24].

IL-6 in chronic inflammation
IL-6 trans-signalling in stromal cells induces a transition from neutrophilic recruitment in the early
stages of acute inflammation to a more sustained monocyte influx by regulating a shift in chemo-
kine production. The activation of neutrophils by IL-8 and other chemokines triggers mbIL-6Rα
shedding [25]. The sIL-6Rα combines with IL-6 to enable binding to gp130 on the endothelial
cell membrane, increasing IL-6 and MCP-1 secretion but not IL-8, which favours monocyte
recruitment [26]. Monocytes differentiate into macrophages at the site of inflammation, which se-
crete proinflammatory cytokines [e.g., IL-1β, tumour necrosis factor (TNF)-α, and IL-1]. Addition-
ally, although the phagocytosis of apoptotic neutrophils by macrophages is important for the
resolution of inflammation, this process increases MCP-1 and inhibits IL-8 production by macro-
phages [27,28], further favouring monocyte recruitment.

Chronic inflammation and cancer
Chronic inflammation associated with sustained IL-6 signalling can promote the transformation of
normal cells into premalignant or malignant cells. Macrophages and neutrophils produce reactive
oxygen species (ROS) that induce DNA damage in normal tissues, increasing genetic instability
and the propensity of acquiring mutations in cancer-related genes. For instance, chronic expo-
sure to myeloid cell-derived ROS molecules leads to DNA damage and Tp53 mutations in
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trigger intracellular signalling. The
binding of the IL-6/IL-6 receptor
complex to gp130 forms a dimer and
triggers downstream JAK/STAT3
signalling.
High endothelial venules: specialised
blood vessels found in lymph nodes that
facilitate the entry of immune cells from
the blood to the lymphatic system.
JAK/STAT3 signalling pathway:
important intracellular signalling cascade
that is activated by various cytokines
(including IL-6) and induces the
transcription of target genes involved in
cell cycle progression, proliferation, and
survival.
Joint reconstituted signalling:
process by which the membrane-bound
IL-6 receptor on EVs is transported to,
and fused with, cells that lack the IL-6
receptor on their surface. This process
enables IL-6 classic signalling in cells
that would otherwise only respond to
trans-signalling or trans-presentation.
Myeloid-derived suppressor cells
(MDSCs): diverse group of immune
cells from themyeloid linage that are able
to suppress the activity of other immune
cells, particularly T cells and natural killer
cells. MDSC expand under pathological
conditions such as chronic inflammation
and cancer.
Senescence associated secretory
phenotype (SASP): phenotype of
senescent cells whereby those cells
secrete high levels of proinflammatory
cytokines and growth factors into their
surrounding environment, which can
reinforce the senescent state in
neighbouring cells and promote chronic
inflammation.
Src homology domain 2 (SH2
domain): region of a protein (called
protein domain) that binds to specific
phosphorylated tyrosine residues in
other proteins, facilitating intracellular
signalling. STAT3 contains the SH2
domain and it is essential for activating
the JAK/STAT3 signalling pathway.
Stromal cells: diverse group of
connective tissue cells of any organ,
providing structural support and
contributing to tissue organization,
immune responses, and tissue repair.
The most common type of stromal cells
are fibroblasts, found abundantly in the
connective tissues.
Trans-presentation: mode of IL-6
signalling in which IL-6 binds to the
membrane-bound IL-6 receptor on a
transmitting cell and subsequently
engages and binds with gp130 on a
neighbouring receiving cell.
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inflamed intestinal epithelial cells [29]. Inflammatory signalling can also stimulate dedifferentia-
tion of normal epithelial cells into tumour-initiating stem cells through a nuclear factor (NF)-
κB-dependent mechanism [30]. Moreover, prolonged IL-6 trans-signalling causes premature
cellular senescence in fibroblasts [31] and promotes senescence associated secretory
phenotype (SASP) signalling, which can drive epithelial plasticity and stemness [32], thus
supporting the dedifferentiation and self-renewal of epithelial tissue.

Following the transformation of cells, inflammation-associated IL-6 may support progression
into a fully developed tumour. IL-6 signalling in premalignant cells leads to the hyperactivation
of JAK/STAT3 signalling, resulting in the upregulation of target genes that stimulate cell survival
[33]. Persistent activation of STAT3 by IL-6 in tumour regulatory T cells helps transformed
epithelium evade CD8+ T cell cytotoxicity [34]. IL-6 released bymyeloid-derived suppressor
cells (MDSCs) prevents functional differentiation of tumour-specific CD4+ T cells into effector
T helper cells, leading to tumour progression in fibrosarcoma-bearing mice [35]. In slow
proliferating tissues, such as liver and skin cells, necrosis and apoptosis caused by inflamma-
tion leads to compensatory proliferation of neighbouring transformed cells and triggers
tumorigenesis [36].

IL-6 in the TME
The main sources of IL-6 in the TME are tumour cells, stromal cells and infiltrating immune cells,
including fibroblasts, MDSCs, tumour-associated macrophages (TAMs), and CD4+ T cells [12].
mbIL-6Rα is overexpressed in tumours compared to normal tissue [37–40] and cancer cells
can shed mbIL-6Rα from their cell surface, partly through the actions of ADAM17 [41], and
thus are responsive to both classic and trans IL-6 signalling. Chronic IL-6 signalling in the TME
promotes tumour progression by activating tumour-intrinsic signalling pathways and eliciting
protumour effects on infiltrating stromal cells. In contrast to chronic IL-6 signalling, acute activa-
tion of IL-6 in the TME may promote antitumour adaptive immunity by inducting the migration of
cytotoxic T cells to tumour-draining lymph nodes and tumour vasculature (Figure 2).

Protumour mechanisms of IL-6 in the TME
Activation of STAT3 by IL-6 trans-signalling regulates gene expression resulting in cell cycle pro-
gression, proliferation, and survival [42]. Persistent IL-6/STAT3 signalling inactivates p53 in
human multiple myeloma cells, in part by increasing the expression of DNA methyltransferase
(DNMT)-1 [43], allowing cells to bypass crucial cell cycle checkpoints. Acting through STAT3,
IL-6 upregulates vascular endothelial growth factor (VEGF) to promote angiogenesis in a range
of solid tumours and primes cancer cells for metastatic spread by upregulatingmatrix metallopro-
teinase (MMP)-2 [44,45]. IL-6/STAT3 signalling also promotes epithelial–mesenchymal tran-
sition (EMT) by decreasing the expression of EMT-associated marker e-cadherin and
increasing expression of vimentin [46]. IL-6 secreted by cancer-associated fibroblasts induces
cancer stem cell expansion in early colorectal tumours through HES1 activation [47]. IL-6/
STAT3 signalling promotes local immunosuppression via several mechanisms, including regula-
tory T cell and B cell expansion and recruiting immunosuppressive MDSC [48].

Antitumour mechanisms of IL-6 in the TME
There is some evidence that acute activation of IL-6 signalling promotes antitumour adaptive im-
munity by regulating T cell priming in lymphoid organs and stimulating lymphocyte trafficking [49].
IL-6 produced by dendritic cells in lymph nodes engenders the activation, expansion, and survival
of T cells during an immune response [50]. IL-6 is important for the differentiation of naïve CD4+ T
cells into Th17 cells and protects T cells from apoptosis [51]. IL-6 trans-signalling stimulates lym-
phocyte trafficking to tumour-draining lymph nodes by increasing intercellular adhesion molecule
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Trans-signalling: mode of IL-6
signalling initiated when IL-6 binds to the
soluble form of the IL-6 receptor in
extracellular fluids, such as in blood
plasma.
Tumorigenesis: formation of cancer,
whereby normal cells are transformed
into cancer cells.
Tumour microenvironment (TME):
complex environment around a tumour,
including the surrounding blood vessels,
immune cells, stromal cells, signalling
molecules and the extracellular matrix, all
of which interact with the tumour and
influence tumour growth and behaviour.
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(ICAM)-1 expression on high endothelial venules, which are the main entry site for naïve and
central memory T cells [52].

Despite that IL-6 trans-signalling is constitutively active in pancreatic and colonic tumour types
[52], vessels in these tumours typically express a low level of trafficking molecules (such as
ICAM-1) and do not support the extravasation of circulating effector and naïve CD8+ T cells
[52,53], suggesting that tumour endothelial cells are insensitive to chronic IL-6 activity. However,
acute activation of IL-6 trans-signalling in murine models of colon and pancreatic cancer stimu-
lates intratumoral CD8+ T cell infiltration by increasing tethering and rolling behaviour of CD8+ T
cells and upregulating ICAM-1 density in tumour vessels [52]. Recombinant IL-6 also increases
expression of ICAM-1 on intratumoral vessels in stage IV colorectal patient tumour explants, de-
spite the presence of IL-6 in tumour lesions [52]. When combined with adoptive transfer of effec-
tor CD8+ T cells, acute IL-6 stimulation enhances apoptosis of tumour cells and delayed tumour
growth [52].

Regular exercise reduces resting levels of intratumoral IL-6 in breast cancer-bearing mice, which
correlates to reduced tumour size [54]. An acute bout of exercise induces the release of IL-6 into
the systemic circulation [55], which may acutely activate IL-6 signalling in the TME because
TrendsTrends inin EndocrinologyEndocrinology & MetabolismMetabolism

Figure 2. Protumour and antitumour actions of IL-6 in the tumour microenvironment (TME). Persistent IL-6 signalling in the TME promotes all stages of
tumorigenesis by supporting cell survival, angiogenesis, EMT, and metastatic spread through activation of the JAK/STAT3 pathway and regulation of tumour-infiltrating
stromal and immune cells. Conversely, acute IL-6 signalling may promote antitumour adaptive immunity by regulating T cell priming in lymphoid organs and inducting
the migration of cytotoxic T cells to tumour-draining lymph nodes and tumour vessels. Abbreviations: bFGF, basic fibroblast growth factor; EMT, epithelial–
mesenchymal transition; HES1, transcription factor HES1; IL-6, interleukin-6; ICAM-1; intercellular adhesion molecule 1MMP-2, matrix metalloproteinase-2; VEGF,
vascular endothelial growth factor. Created with BioRender.com.
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plasma IL-6 is able to penetrate into the interstitial fluid bathing vascularised tumours [56]. Thus,
exercise may shift the balance of IL-6 signalling in the TME away from chronic activation
(protumour) and toward acute activation (antitumour).

Exercise, IL-6, and cancer protection
IL-6 response to acute exercise
IL-6 is released by skeletal muscle into the interstitium and systemic circulation during exercise
and acts in autocrine/paracrine and endocrine fashions to shunt energy towards the contracting
muscle [4]. Plasma IL-6 concentrations increase exponentially during a bout of exercise and
reach their peak at exercise cessation [57]. Exercise bouts performed for longer durations, at
higher intensities, and recruiting largemuscle groups, result in the greatest increases in circulating
IL-6 [55,58,59]. Muscle-derived IL-6 has a half-life of ~5min and is quickly eliminated from plasma
after exercise cessation due to increased hepatic clearance and cessation of skeletal muscle
secretion [60,61].

An acute bout of exercise upregulates mbIL-6RαmRNA in skeletal muscle and there is evidence
that myofibers do not shed mbIL-6Rα [62]. Plasma levels of soluble gp130 (sgp130) increase fol-
lowing acute exercise [63,64]. sgp130 forms a ternary complex with IL-6/sIL-6Rα in plasma to in-
hibit IL-6 trans-signalling [65]. Therefore, acute exercise may shift the IL-6 signalling axis away
from trans-signalling and towards classic signalling.

Exercise-induced IL-6 in cancer prevention
Cancer prevention efforts can broadly be split into primary prevention (i.e., reducing the risk of
developing cancer) and secondary or tertiary prevention (i.e., controlling the progression of
precancerous or cancerous lesions).

IL-6 in primary cancer prevention
Putative biological mechanisms linking exercise to the primary prevention of site-specific cancers
include improved insulin sensitivity, reduced bioavailability of exogenous sex hormones, and res-
olution of chronic low-grade inflammation [66]. Acute exercise has widespread effects on multiple
organ systems and results in the rise and fall of thousands of bioactive molecules [67]. Therefore,
many exercise-regulated biological processes are likely to impact on these pathways. As we de-
scribe below, there is good evidence that the biological actions of muscle-derived IL-6 directly or
indirectly affect these pathways, and thus may play an important role in the exercise-associated
prevention of cancer (Figure 3).

Evidence from in vitro, murine, and human studies suggests that IL-6 improves insulin resis-
tance in glycogen-storing tissues. IL-6 infusion increases basal and insulin-stimulated glucose
clearance in humans [5,68,69]. IL-6-deficient mice develop glucose intolerance, insulin resis-
tance, and obesity [70–73], and the exercise-dependent increase in insulin sensitivity and
GLUT4 expression is abolished by IL-6 knockout or IL-6 neutralizing antibodies [74,75]. IL-6
is required to elicit the exercise-dependent decrease in liver ectopic fat and browning of
white adipose tissue in vivo [76,77]; both of which are characteristics of an insulin sensitive phe-
notype. Underlying these effects may be the IL-6-dependent upregulation of lipolytic and
insulin-sensitizing genes, including peroxisome proliferator-activated receptor (PPAR)-γ and
PPAR-γ coactivator (PGC)-1α [76]. IL-6 increases insulin-stimulated glucose in skeletal muscle
cells and adipocytes through AMPK activation [78,79], and improves glucose-stimulated insu-
lin secretion in pancreatic beta cells [80]; likely by triggering GLP-1 secretion from intestinal L
cells and pancreatic alpha cells, or enhancing insulin-degrading enzyme expression in skeletal
muscle [72,81].
6 Trends in Endocrinology & Metabolism, Month 2023, Vol. xx, No. xx
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Figure 3. Hypothesized biological mechanisms underlying the role of exercise-induced IL-6 in primary and secondary cancer prevention. Metabolic
effects. IL-6 promotes GLUT4 translocation and glucose uptake in skeletal muscle, reduces visceral fat mass, increases lipolysis and glucose uptake in adipocytes,
and stimulates GLP-1 secretion from intestinal L cells. Anti-inflammatory effects. IL-6 stimulates release of IL-10 and IL-1RA from macrophages and cortisol from
adrenal glands, inhibits TNFα release from monocytes, reduces macrophage infiltration in adipose tissue, and promotes polarization of macrophages towards the anti-
inflammatory M2 phenotype. Immunoregulatory effects. IL-6 contributes to the mobilisation of cytotoxic NK cells in humans and stimulates tumour infiltration of NK
cells in mice, although exercise effects on NK cell tumour infiltration in humans is unclear. Direct effects. IL-6 directly inhibits cell proliferation and reduces DNA damage
in early-stage colon cancer cells. Abbreviations: GLP-1, glucagon-like peptide 1; IGF, insulin-like growth factor 1; IGFBP-3, insulin-like growth factor binding protein 3;
IL, interleukin; IL-1RA, IL-1 receptor antagonist; NK cell, natural killer cell; ROS, reactive oxygen species; SHBG, sex hormone binding globulin; TNFα, tumour necrosis
factor α. Created with BioRender.com.
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However, some studies in vitro [82,83] and in mice [84,85] suggest that IL-6 causes insulin resis-
tance, mainly in the liver. These opposing effects may depend on the duration of IL-6 exposure
[86]. Chronic exposure to IL-6 for >24 h causes insulin resistance in adipose and hepatic tissue
[87,88], whereas acute administration of IL-6 for ≤60 min improves insulin sensitivity
[78,89–91]. Time-course studies show that chronic (2–24 h) but not acute (30–60 min) exposure
to IL-6 induces insulin resistance in adipocytes and hepatocytes [82,88].

Enhanced insulin sensitivity induced by IL-6 may lower cancer risk by increasing production of
insulin-like growth factor binding protein (IGFBP)-3 and consequently reducing IGF-1 bioavailabil-
ity [92]. Overstimulation of IGF-1 signalling is associated with an increased risk of several cancers,
particularly breast, prostate, and colorectal cancers [93]. Improved insulin sensitivity also reduces
the bioavailability of sex steroid hormones because insulin inhibits hepatic secretion of sex
Trends in Endocrinology & Metabolism, Month 2023, Vol. xx, No. xx 7
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hormone binding globulin (SHBG) and stimulates aromatase activity [94]. Exercise-induced re-
ductions in the bioavailability of oestrogen and androgens protect against some hormone sensi-
tive cancers, such as postmenopausal breast cancer [95].

In addition to improving insulin sensitivity, regular exercise may reduce cancer risk by resolving
chronic low-grade inflammation. Each bout of exercise stimulates the induction of anti-
inflammatory cytokines [96], and regular exercise leads to a reduction in visceral fat [97]; there is ev-
idence that muscle-derived IL-6 mediates both of these mechanisms. IL-6 is required to elicit the
exercise-dependent decrease in visceral fat in humans and mice [76,98]. Infusing physiological con-
centrations of IL-6 in humans mimics the anti-inflammatory effects of an exercise bout by inducing
the appearance of anti-inflammatory cytokines IL-10 and IL-1 receptor antagonist (IL-1RA) into
the circulation and suppressing production of the proinflammatory cytokine TNF-α [6,99]. IL-6
infusion also stimulates cortisol release into the circulation – a potent anti-inflammatory hormone –

by acting directly on the adrenal medulla [100] and triggering release of adrenocorticotropic hormone
from the pituitary gland [101], replicating the impact of exercise on the hypothalamic–pituitary–
adrenal axis. IL-6 promotes the polarization of macrophages towards the M2 (anti-inflammatory)
phenotype rather than the M1 (proinflammatory) phenotype [102].

IL-6 in secondary/tertiary cancer prevention
The biological mechanisms underlying the effects of exercise on secondary/tertiary cancer pre-
vention may occur through the same pathways as primary prevention, in addition to direct effects
on cancer cells and modulation of the TME [103].

Growing evidence suggests that bioactive molecules released into the systemic circulation during
exercise act directly on cancer cells to reduce proliferation [104]. Our meta-analysis showed that
exposing breast, prostate, colon, and lung cancer cell lines to serum obtained immediately after
an exercise bout reduces cell proliferation by ~9% compared to nonexercise serum [105]. Many
of the bioactive molecules regulated by acute exercise have capacity to impact biological pro-
cesses related to cell cycle progression and proliferation [106]. Given that the biological actions
of IL-6 contribute to the maintenance of tissue homeostasis [107], IL-6 is a notable candidate. In-
deed, our research and work by others show that directly stimulating cancer cells with IL-6 re-
duces cell growth or proliferation in colon, oestrogen-receptor-positive breast cancer, prostate,
and meningioma cell lines [7,108–110]. IL-6 reduces colon cancer cell proliferation in a
dose–response manner up to 10 pg/ml [7], which is the typical postexercise plasma concen-
tration found in human studies [55].

We have recently shown that exercise-induced IL-6 reduces colon cancer cell proliferation by reg-
ulating cellular DNA damage [7]. In line with findings from our meta-analysis [105], stimulating
colon cancer cells with post-exercise serum reduced cell proliferation by 6% compared to
nonexercise control serum [7]. This effect was accompanied by decreased expression of the
DNA double-strand breakmarker γ-H2AX. Acute exercise also increased serum IL-6, and expos-
ing colon cancer cells to recombinant IL-6 reduced cell proliferation and DNA damage in a dose-
dependent manner, mimicking the effect of exercise [7]. These observations are consistent with
evidence showing that IL-6 reduces DNA damage in cancer cells following exposure to DNA
damaging agents [111], and activates DNA repair enzymes and improves liver repair after partial
hepatectomy in vivo [112].

How might a reduction in DNA damage inhibit colon cancer cell proliferation? According to the
oncogene-induced DNA damage model for cancer development, DNA damage (specifically
DNA double-strand breaks) drives the early stages of carcinogenesis [113]. Aberrant cell
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proliferation prompted by activated oncogenes induces DNA double strand breaks, and the sus-
tained formation of DNA damage contributes to genomic instability, which is a hallmark of cancer
cells and increases the propensity of acquiring additional genetic mutations favouring cancer
progression [114]. Therefore, given that cancer cell lines are known to rapidly attain new genetic
variants in culture, which accelerate proliferation [115], the IL-6-dependent reduction in DNA
damage may inhibit cancer cell proliferation by shifting the cells towards a more genetically stable
phenotype, reducing the acquisition of further genetic mutations [3].

There is evidence that IL-6 partially controls the innate immune response to acute exercise, which
may inhibit cancer progression through the recognition and elimination of cancer cells [116]. A
single bout of exercise mobilises CD8+ cytotoxic T cells and natural killer (NK) cells into the circu-
lation in patients with prostate cancer and lymphoma [117,118]. Although β-adrenergic signalling
and vascular wall shear stress are key to NK cell mobilisation, blocking IL-6 signalling (using toci-
lizumab) attenuated the increase in circulating NK cells by 53% and dendritic cells by 66% during
an acute bout of exercise in humans [119]. Exercise selectively mobilises mbIL-6Rα-positive NK
cells in mice [8] and treatment of NK cells with IL-6 increases their surface expression of adhesion
molecules [120].

Voluntary wheel running in mice has been shown to increase the infiltration of cytotoxic NK cells in
tumours, resulting in a 60% reduction in tumour growth across five different tumour models [8].
IL-6-blocking antibodies decreased the number of NK cells in the tumour and blunted the
tumour-suppressive effect of wheel running, suggesting that exercise-induced IL-6 mediated
these anticancer effects [8]. However, human studies have shown little evidence of an effect of
exercise on NK tumour infiltration [121,122].

Factors that explain the exercise IL-6 enigma
As we have described, IL-6 acutely released from contracting skeletal muscle during exercise
elicits different biological effects to IL-6 released for sustained periods at inflammatory sites.
Below, we present five factors that can explain the exercise IL-6 enigma in cancer and draw on
evidence to explore their mechanistic bases.

Duration of IL-6 exposure
Muscle-derived IL-6 is quickly eliminated from plasma upon exercise cessation with a half-life of
~5 min [60], whereas the half-life of IL-6 produced during acute inflammation is ~15 h [10,123]
and plasma IL-6 is chronically elevated in people with cancer [124]. Acute IL-6 signalling induces
biological responses that intercept carcinogenesis, whereas persistent IL-6 signalling predis-
poses tissues to cancer development. For instance, acute IL-6 signalling during exercise inducts
an anti-inflammatory environment and enhances insulin sensitivity in glycogen-storing tissues,
whereas sustained IL-6 signalling promotes chronic inflammation and insulin resistance. Short-
term IL-6 administration improves liver regeneration and repair following partial hepatectomy,
but chronic exposure sensitizes the liver to injury and death [125]. Directly exposing prostate can-
cer cells to IL-6 inhibits cell growth in the short term (<28 passages), but increases growth in the
longer term (>42 passages) [109]. Further research is needed to understand themolecular mech-
anisms underlying the transition of IL-6 from an anticancer to procancer agent as the duration of
exposure increases.

In the TME, continuous IL-6 production is needed to support tumorigenesis in several tumour
models. IL-6 facilitates epigenetic gene silencing of p53 in the IL-6-dependent myeloma cell
line KAS 6/1 by increasing the activity of DNMT-1, but IL-6 only begins to inhibit p53 expression
after 4 days of exposure [43]. Additionally, depriving KAS 6/1 cells of IL-6 results in continued p53
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expression and cell death [43], suggesting that persistent IL-6 signalling is required to maintain
enhanced expression of DNMT-1 and epigenetic gene silencing of p53. Despite chronically ele-
vated IL-6 signalling in pancreatic and colonic TMEs [52], the tumour vessels express a low ex-
pression of adhesion molecules and CD8+ T cells are poorly represented, yet acute activation
of IL-6 trans-signalling increases ICAM-1 density in tumour vessels and intratumoral infiltration
of CD8+ T cells [52].

IL-6 signalling mode
IL-6 classic signalling is generally considered anti-inflammatory and IL-6 trans-signalling is con-
sidered proinflammatory, although the underlying mechanisms have remained elusive. IL-6
trans-signalling induces a stronger phosphorylation of STAT3 than classic signalling in endothelial
cells and cancer cells [41,126]. When human vascular endothelial cells are exposed to IL-6
and sIL-6Rα together, low concentrations of IL-6 are required to evoke STAT3 phosphorylation
(1 ng/ml), whereas higher concentrations of IL-6 (50 ng/ml) are needed to induce a similar degree
of STAT3 phosphorylation when sIL-6Rα is not present [126]. Moreover, trans-signalling, but not
classic signalling, leads to activation of the PI3K/Akt andMAPK/ERK signalling pathways in endo-
thelial cells [126]. Simultaneous activation of the JAK/STAT3 and PI3K/Akt pathways is required
to induce an IL-6-mediated proinflammatory response, characterised by the expression and re-
lease of MCP-1 [126]. Thus, concurrent JAK/STAT3, PI3K/Akt, and MAPK/ERK pathway activa-
tion, MCP-1 induction, and stronger STAT3 signalling seems to explain why trans-signalling is
proinflammatory and classic signalling is anti-inflammatory. These differences may also explain
why IL-6 exposure increases proliferation in oestrogen-receptor-negative breast cancer cells
that do not express mbIL-6Rα (i.e., acting via trans-signalling), but has growth-inhibitory effects
on oestrogen-receptor-positive breast cancer cells that have mbIL-6Rα (acting via classic signal-
ling) [127].

IL-6 trans-signalling dominates in the TME; cancer cells shed mbIL-6Rα from their cell sur-
face and thus, in some cases, respond to trans but not classic IL-6 signalling [41]. T cells
lose mbIL-6Rα expression in inflamed microenvironments [128] and TAMs shed mbIL-6Rα
in the presence of ADAM17, which drives tumorigenesis [129,130]. IL-6 trans-signalling,
but not classic signalling, decreases expression of tumour suppression gene maspin in pros-
tate cancer cells [131].

It is not known whether exercise impacts the balance of trans- to classic signalling in the TME by,
for example, increasing the ratio of mbIL-6Rα to gp130 on the tumourmembrane. The recent dis-
covery of joint reconstituted signalling – involving mbIL-6Rα on EVs fusing with cells that lack
mbIL-6Rα – opens up the possibility that cells could respond to IL-6 classic signalling without ac-
tually expressing the surface receptor [18]. This is especially important in the context of exercise
given that EVs are liberated during acute exercise and carry protein cargo to distant organs [132].

Upstream regulation of IL-6
Signals of energetic stress during strenuous exercise, such as accumulation of Ca2+, lactate, and
ROS, and activation of AMPK and p38 MAPK [133–136], stimulate the secretion of IL-6 from
skeletal muscle, which occurs in the absence of NF-κB signalling and TNF-α/IL-1β secretion
[137,138], and in the presence of anti-inflammatory cytokines IL-10 and IL-1RA [6]. By contrast,
IL-6 released from inflammatory cells such as macrophages, stromal cells, and cancer cells
largely depends on upstream NF-κB signalling and occurs concurrently with TNF-α production
[139]. Thus, when IL-6 release is triggered by upstream inflammatory signalling, IL-6 signalling oc-
curs in microenvironments rich in DNA-damaging agents, genetic instability, growth factors, and
activated stroma. IL-6/STAT3 signalling alone does not cause cancer, but persistent activation of
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STAT3 in a milieu of inflammation and DNA damage can promote malignant transformation and
progression [140].

Cell source of IL-6
The source of IL-6 influences its biological actions. Adipocyte-derived IL-6 promotes macro-
phage infiltration inmouse adipose tissue, but IL-6 released from skeletal muscles during exercise
suppresses adipose tissue macrophage infiltration [141]. Others have shown that adipocyte-
derived IL-6 decreases hepatic expression of the adapter protein IRS1 [142], while IL-6 derived
from Kupffer cells (liver resident macrophages) increases the expression of the adapter protein
IRS2 [143]. The underlying mechanisms are unresolved, but may be related to a switch between
IL-6 classic- and trans-signalling due to differences in the expression of ADAM10/17 that
Key figure

The exercise IL-6 enigma in cancer

TrendsTrends inin EndocrinologyEndocrinology & MetabolismMetabolism

Figure 4. Signals of energetic stress during strenuous exercise induce the acute release of IL-6 from skeletal muscle to regulate energy availability. Acting via IL-6 classic-
signalling, muscle-derived IL-6 may elicit antitumour effects by stimulating lipolysis in adipose tissue, increasing insulin sensitivity in glycogen storing tissues such as skeletal
muscle, triggering the release of anti-inflammatory cytokines from monocytes and macrophages, mobilising cytotoxic immune cells, regulating DNA damage in malignant
cells, and reducing cancer cell proliferation. By contrast, inflammatory signalling induces the prolonged release of IL-6 frommacrophages, fibroblasts, and endothelial cells.
IL-6 continuously secreted by inflammatory cells activates the trans-signalling pathway to elicit protumour effects by promoting insulin resistance in hepatocytes, inducing
sustained monocyte recruitment to local inflammatory sites to control the switch from acute to chronic inflammation, provoking senescence and a senescence-associated
secretory phenotype in stromal cells, stimulating proliferation, p53 inactivation, and metastatic potential in malignant cells, and supporting an immunosuppressive TME.
Abbreviations: IL-6, interleukin-6; NF-κB, nuclear factor κB; ROS, reactive oxygen species; TME- tumour microenvironment; TNF-α, tumour necrosis factor-α. Created
with BioRender.com.
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Outstanding questions
Several factors can explain the context-
dependent effects of IL-6 in cancer, in-
cluding the duration of IL-6 exposure,
signalling mode, upstream regulation,
cell source, and cell target. What are
the precise mechanisms of action un-
derlying these factors?Can the underly-
ing pathways be precisely targeted
through behavioural, pharmacological,
or immunological approaches to im-
prove cancer control outcomes?

Exercise-induced IL-6 reduces DNA
damage and proliferation in cancer
cell lines and stimulates the tumour in-
filtration of cytotoxic immune cells in
mice. Can these findings be replicated
in humans and, if so, do they translate
into improved patient outcomes?

Does maximising the amount of IL-6
released during acute exercise through
manipulation of exercise characteris-
tics (type, duration, and intensity) opti-
mise the protective effect of exercise
on cancer? If so, is this a casual effect
or does the amount of IL-6 released
during exercise simply reflect the over-
all exercise dose?

What effect does exercise have on IL-6
signalling in the tumour microenviron-
ment? For example, does exercise
modify mbIL-6Rα or SOCS3 expres-
sion in tumours?

Do tumour subtypes respond differently
to exercise-induced IL-6 signalling?
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promotes mbIL-6Rα shedding [141]. Unlike leukocytes and cancer cells, there is evidence that
skeletal muscle cells do not shed mbIL-6Rα [62]. It is hence biologically plausible that muscle-
derived IL-6 acts partially through IL-6 classic signalling to elicit anticancer effects in tissues
(e.g., increased insulin resistance, reduced chronic inflammation), while IL-6 released from tu-
mour cells, fibroblasts, and TAMs in the TME acts through IL-6 trans-signalling to promote tumor-
igenesis.

Cell targeted by IL-6
Cells respond differently to IL-6; this is partly determined by the ratio of mbIL-6Rα to gp130 on the
cell surface and thus the balance of classic versus trans-signalling [144]. However, other cell-intrinsic
factors are likely to be relevant, such as the expression of suppressor of cytokine signalling (SOCS)3,
the primary negative regulator of IL-6 signalling. IL-6 inhibits the growth of M1 leukaemia cells, which
completely lack expression of SOCS3 [145]. In addition, IL-6 induces an anti-inflammatory response
in macrophages lacking the SOCS3 gene [146]. Site-specific cancer cells also respond differently to
autocrine IL-6 stimulation; IL-6 is an autocrine growth stimulator in prostate cancer cells [109,147],
whereas autocrine production of IL-6 inhibits proliferation in oestrogen-receptor-negative breast
cancer cells [148].

Concluding remarks
Exercise scientists typically see IL-6 as a cytokine that prevents disease, whereas cancer re-
searchers generally consider IL-6 to drive tumorigenesis. The evidence suggests both disciplines
are correct because the biological effects of IL-6 are context dependent. IL-6 acutely released
from skeletal muscle during exercise coordinates short-term energy allocation via IL-6 class-
signalling and elicits biological effects that may contribute to cancer prevention, including increas-
ing insulin sensitivity, inducing an anti-inflammatory environment, and reducing DNA damage. By
contrast, chronically elevated IL-6 trans-signalling due to continuous release of IL-6 by stromal cells
and macrophages promotes chronic inflammation and cancer formation (Figure 4, Key figure). The
context-specific effects of IL-6 may explain why Phase 1/2 trials have reported limited clinical effi-
cacy for the anti-IL-6 antibody siltuximab in patients with advanced solid tumours [149]. Factors
that explain the paradoxical effects of IL-6 in cancer include the duration of IL-6 exposure, signalling
mode, upstream regulation, cell source, and target cell. Future work should aim to better under-
stand the mechanistic basis for these moderating factors. Doing so will help define the role of IL-
6 in cancer and ultimately guide the development of more precise IL-6 therapies, through behav-
ioural and pharmacological approaches, targeted to moderators and their underlying mechanistic
pathways (see Outstanding questions).
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