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Postbiotics, which are bioactive substances derived from the metabolic 
processes of beneficial microbes, have received considerable attention in 
the field of microbiome science in recent years, presenting a promising path 
for exploration and innovation. This comprehensive analysis looks into the 
multidimensional terrain of postbiotic production, including an extensive 
examination of diverse postbiotic classes, revealing their sophisticated 
mechanisms of action and highlighting future applications that might 
significantly affect human health. The authors thoroughly investigate the various 
mechanisms that support postbiotic production, ranging from conventional 
fermentation procedures to cutting-edge enzyme conversion and synthetic 
biology approaches. The review, as an acknowledgment of the field’s developing 
nature, not only highlights current achievements but also navigates through 
the problems inherent in postbiotic production. In order to successfully include 
postbiotics in therapeutic interventions and the production of functional food 
ingredients, emphasis is given to critical elements, including improving yields, 
bolstering stability, and assuring safety. The knowledge presented herein sheds 
light on the expanding field of postbiotics and their potential to revolutionize 
the development of novel therapeutics and functional food ingredients.
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1 Introduction

Recent years have seen a paradigm shift in how we perceive the intricate connection 
between the human body and the vast community of bacteria that resides within it 
(Dekaboruah et al., 2020). Particularly, the human gut has developed into an intricate 
ecosystem home to trillions of bacteria essential to preserving our health and well-being 
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(Kho and Lal, 2018). Exploring the therapeutic capabilities of these 
microorganisms has garnered significant attention due to the 
recognition of their ability to impact diverse physiological processes 
(Thursby and Juge, 2017). Traditionally, the primary emphasis has 
been placed on the direct application of live beneficial bacteria, 
commonly referred to as probiotics, to present health-promoting 
effects (Figure 1; Amara and Shibl, 2015; Kerry et al., 2018; Plaza-
Diaz et al., 2019; Zommiti et al., 2020). However, emerging evidence 
suggests that the beneficial effects attributed to probiotics may not 
solely arise from the presence of viable microbes themselves. Rather, 
it appears that a significant portion of their therapeutic impact can 
be  attributed to the metabolites they produce, referred to as 
postbiotics (Scott et  al., 2022). Postbiotics refer to bioactive 
compounds produced as a result of the fermentation process of 
probiotics or through the metabolic activity of beneficial 
microorganisms residing in the gastrointestinal tract (Patani et al., 
2023a). Organic acids, peptides, enzymes, and other metabolites 
with potential health advantages are examples of these molecules. In 
contrast to prebiotics and probiotics, postbiotics are characterized 
by their extended shelf life and enhanced stability due to the absence 
of living microorganisms. They have the potential to confer 
numerous advantages to the host, encompassing the regulation of 

the immune system, enhancement of gut barrier function, and 
promotion of overall gastrointestinal wellness (Sittipo et al., 2019). 
Postbiotics, predominantly derived from yeast and lactic acid 
bacteria, are primarily synthesized through fermentation processes 
(Wegh et al., 2019).

The concept of harnessing the power of postbiotic production 
represents a paradigm shift in microbial-based therapeutics. By 
redirecting attention from live microbes to the metabolites they produce, 
researchers can delve into a plethora of innovative health implications 
that transcend the constraints commonly associated with traditional 
probiotic approaches (Scott et  al., 2022). This exciting field holds 
tremendous promise for developing targeted interventions to combat 
various diseases and enhance human health (Vinderola et al., 2022a).

In this scholarly review article, our objective is to provide a 
comprehensive assessment of the present status of postbiotic 
production and its prospective implications for health-related 
applications. Additionally, the intricacies of postbiotic synthesis 
mechanisms, the various factors that influence their production, and 
a variety of health benefits associated with their administration were 
presented. Furthermore, the research topic also addressed the 
challenges and future directions in developing postbiotic-based 
therapies, including strategies for optimizing production, 

FIGURE 1

Health Benefits of Probiotics. The figure was produced with BioRender (www.biorender.com; accessed 30 July 2023).
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formulation, and delivery. Overall, this review paper seeks to shed 
light on the emerging field of postbiotic production and highlight its 
potential to revolutionize the way we  approach microbial-based 
therapeutics. By harnessing the power of microbial metabolites, there 
exists a promising opportunity to explore new avenues for improving 
human health, expanding our understanding of the intricate host–
microbe interactions, and ultimately paving the way for innovative 
and personalized approaches to disease prevention and treatment.

2 Classes of postbiotics

The several ways in which postbiotics contribute to an 
improvement in general health are highlighted by the various classes. 
The role of probiotics in beneficial postbiotic production is depicted 
in Figure 2.

2.1 Short-chain fatty acids

A vital class of metabolites gut bacteria make from the 
fermentation of plant polysaccharides is Short-chain fatty acids 
(SCFAs; Thorakkattu et al., 2022). Local concentrations can approach 
millimolar levels for these saturated aliphatic organic acids, which 
have a carbon backbone ranging from one to six. The gut microbiota 
produces SCFAs entirely from starch. Through intestinal microbial 
fermentation, which mostly takes place in the colon, dietary fiber, 

including non-digestible carbohydrates that evade absorption and 
digestion in the small intestine, is transformed into SCFAs. 
Additionally, SCFA can be produced from non-digested proteins or 
peptides as a substrate. The synthesis of lipids or glucose can also 
be  accomplished using SCFAs. Thus, SCFAs produced by gut 
microbes give host cells, like colonocytes, access to extra energy 
(Sittipo et al., 2019). Particularly, the fermentation of prebiotics such 
as fructooligosaccharides and inulin results in the development of 
the SCFA propionate, acetate, and butyrate. These are present in the 
colon and feces in approximately 60:20:20 molar ratio (Takagi et al., 
2016). Other microorganisms utilize acetate as a growth agent, and 
it also has a role in controlling cholesterol. The major energy sources 
for epithelial cells and colonocytes (Rowland et al., 2017), propionate 
and butyrate, play a role in gluconeogenesis and encourage the death 
of colon malignant cells by promoting apoptosis. Lacticaseibacillus 
paracasei ATCC 335, Limosilactobacillus fermentum, Lactobacillus 
acidophilus, and Levilactobacillus brevis produce SCFAs (Higashi 
et al., 2020). Studies of the relationships between postbiotics, hosts, 
and gut microbiota can benefit from using SCFAs in clinical trials as 
well as more comprehensive methodologies (Aggarwal et al., 2022). 
The metabolic pathways governing the use of SCFAs encompass a 
series of intricate enzymatic reactions. These processes are 
responsible for the degradation and subsequent utilization of SCFAs 
within the biological system for energy production or participate in 
the biosynthesis of essential biomolecules. The metabolic processes 
of SCFAs are of paramount importance in regulating energy 
homeostasis and preserving overall metabolic well-being (Figure 3).

FIGURE 2

Role of probiotics in beneficial postbiotic production. The figure was produced with BioRender (www.biorender.com; accessed 27 September 2023).
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2.2 Peptides and proteins

Bacteria play a pivotal role in the intricate process of synthesizing 
and generating a wide variety of peptides. Antimicrobial peptides 
employ pleiotropic mechanisms, such as inhibiting macromolecular 
synthesis and degrading microbial membranes, to effectively eliminate 
bacterial pathogens (Waghu and Idicula-Thomas, 2020). Ribosomal 
and non-ribosomal kinds of antimicrobial peptides are distinguished. 
By rupturing microbial membranes, ribosomal proteins produced by 
the bacteria exhibit potent antibacterial action in vitro (Makarova 
et al., 2019). In all bacteria, peptides are frequently found. The cell 
membrane is the primary target of some peptides, as was already 
established, whereas the cytoplasm and sensitive bacterial structures 
are the primary targets of other peptides. The peptides’ antimicrobial 
mechanisms include (a) bringing about the acidification of the 
bacterial membrane of cells, (b) producing physical holes that allow 
cells to leak out, (c) inducing processes that are fatal, such as the 
hydrolases, which have negative impacts on the cell wall, and (d) 
damaging the bacteria’ delicate internal components. Bacillus subtilis 
is one type of bacteria whose biological processes produce peptides 
(Rad et  al., 2021). Bacteriocins refer to antimicrobial peptides 
synthesized by ribosomes and possess either bactericidal or 
bacteriostatic properties, specifically targeting bacterial strains that are 
similar or closely related (Wegh et al., 2019). Understanding the active 
molecular mechanism of probiotics depends on the proteome of the 
bacterial cell surface. The bacterial surface proteins are divided into 
four categories: (a) hydrophobic trans-membrane domains that 
anchor the proteins to the cytoplasmic membrane, (b) lipoproteins 
that are covalently bound to the membrane lipids following the 
cleavage of signal peptide by signal peptidase II, (c) Sortases covalently 
bind to peptidoglycan to form proteins having a C-terminal 

LPXTG-like motif. There have been reports of surface proteins from 
probiotic bacteria showing anti-inflammatory and anti-adhesion 
properties, as well as biosorption of harmful heavy metals and 
strengthening the epithelial barrier (Nataraj et al., 2020). For example, 
the presence of both cells and extractable surface proteins (S-layer 
proteins) from Enterococcus faecium WEFA23 resulted in a significant 
reduction in the apoptosis of Caco-2 cells that was induced by Listeria 
monocytogenes and mediated by the activation of caspase-3 (He 
Y. et al., 2019; Nataraj et al., 2020).

2.3 Bacteriocins

Bacteriocins, which include the peptides or proteins having 
antimicrobial activity, are produced by a variety of bacteria, including 
Archaebacteria and Eubacteria. Humans have employed bacteriocins 
in fermented foods for thousands of years due to their potent 
antibacterial properties (O'Connor et al., 2020). Size, mode of action, 
and inhibitory spectrum are used to categorize bacteriocins. The 
growth and development of gastrointestinal infections are inhibited 
by bacteriocins, which also have other advantageous properties, such 
as resistance to heat and pH (Figure 4; Rad et al., 2021). The three 
main biofilm defenses these postbiotic uses are as follows: (a) 
inhibition of twitching motility; this ability of biofilm is mediated by 
pili, whereas swimming and swarming are the results of flagella 
activity; (b) interference with quorum sensing (QS); it affects cell 
interactions, colonization, and loss of QS signals; (c) reduction of 
virulence factors (as pyocyanin, protease, and rhamnolipid); 
Pyocyanin aids in the development of biofilms and revealing infection, 
and rhamnolipid from Pseudomonas aeruginosa (Lee et al., 2020). 
L. acidophilus ATCC 4356 generated bacteriocins that prevented 

FIGURE 3

Metabolism of short-chain fatty acids (SCFAs). The metabolic pathways governing the use of SCFAs are responsible for the degradation and 
subsequent utilization of SCFAs within the biological system for energy production or participation in the biosynthesis of essential biomolecules. The 
figure was produced with BioRender (www.biorender.com; accessed 24 September 2023).
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B. subtilis BM19 from adhering to surfaces and forming biofilms 
(Moradi et al., 2020). Furthermore, they demonstrate both narrow-and 
wide-ranging inhibitory effectiveness against bacterial growth, 
attracting interest for their potential therapeutic application as next-
generation antimicrobials in reducing the threat of an infectious 
disease caused by drug-resistant pathogens (Soltani et al., 2021). The 
antiviral and anticancer properties of bacteriocins are also said to 
exist. Even though they are odorless, colorless, and biodegradable, 
further study is needed to determine their safety, toxicity, and 
immunogenicity due to their broad application in food, medicine, 
cosmetics, cancer therapy, and veterinary use (Aggarwal et al., 2022).

2.4 Exopolysaccharides

Bacterial growth produces exopolysaccharides (EPS), which have 
long chains and an enormous molecular mass (Wang et al., 2020). In 
the production of dairy and fermented foods, such as milk, curd, sour 
cream, yogurt, cheese, and buttermilk, EPS derived from lactic acid 
bacteria (Lactococcus, Leuconostoc, Streptococcus, Pediococcus, and 
Bifidobacteria) is more frequently used to improve the flavor, taste, 
texture, and shelf life of fermented foods (Roca et al., 2015). Probiotic 
bacteria (Leuconostoc, Lactobacillus, Lactococcus, Streptococcus, 
Bifidobacterium, and Enterococcus) have mostly been employed to 

synthesize EPSs for a variety of uses (Hussain et  al., 2017). The 
bacterial surface interactions and communication that are essential for 
biofilm adhesion, formation, and confirmation are mediated by these 
extracellular polymers. The different sugars included in EPS produced 
by L. fermentum strains are composed of different molar ratios of 
galactose, glucose, arabinose, and mannose. It is noteworthy to notice 
that EPS generated by L. acidophilus affected gram-negative as well as 
gram-positive bacteria. On the surface of the Escherichia coli O157:H7 
biofilm, antibiofilm activity ranged from 87% to 94% (Moradi et al., 
2020). By preventing cholesterol absorption, EPSs may also have a 
beneficial impact on lipid metabolism. In a preclinical animal (rabbit) 
model, kefiran intake (an EPS made by L. kefiranofaciens) indeed 
exhibited a delay in the initiation of atherosclerosis. Kefiran also 
reduced blood pressure and controlled blood sugar levels in rats with 
too much cholesterol. As a result, EPSs like kefiran are possible options 
for avoiding cardiovascular disorders. The Dectin-1 receptors on the 
surface of macrophages can bind with and activate β-glucans, another 
type of EPS. Consequently, β-glucans may enhance the cellular 
immune response to infections, including bacteria and viruses, 
parasites, and cancerous cells. The effectiveness of probiotics may also 
be enhanced by β-glucans, for instance, by promoting Lactobacilli’s 
adherence to the intestinal epithelium. They can also improve a 
substance called carotenoids’ bioavailability and absorption in the 
digestive system. Carotenoids are substances with anti-inflammatory 

FIGURE 4

Effects of Probiotic Gut Microbiota. Postbiotics produced by probiotic microorganisms contribute to health-promoting aspects, which include 
enhancing the barrier against infection and also due to exhibiting antibacterial, immune-modulating, and anti-inflammatory properties. The figure was 
produced with BioRender (www.biorender.com; accessed 22 September 2023).
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and antioxidant capabilities (Morifuji et  al., 2020). Although the 
precise biological significance of EPSs remains somewhat elusive, the 
food industry currently employs them for their water-binding, 
emulsifying, and stabilizing properties (Singh and Saini, 2017). 
However, in recent times, there has been a notable surge in the level 
of interest surrounding the utilization of EPSs in the domains of 
pharmaceuticals and functional food (Żółkiewicz et al., 2020). The 
Lactobacillus strains derived from fermented durian fruit exhibit 
noteworthy antimicrobial and antioxidant characteristics because of 
the production of various EPSs (Khalil et al., 2018). An instance of 
EPS derived from L. helveticus has been identified as uronic acid, a 
compound exhibiting noteworthy antioxidant characteristics in green 
tea (Li et  al., 2014). EPSs have the potential to exert a regulatory 
influence on the immune response through their interactions with key 
immune cells such as dendritic cells and macrophages. Additionally, 
EPSs have been observed to augment the proliferation of T and NK 
lymphocytes (Makino et al., 2016), thereby further contributing to 
their immunomodulatory effects. An EPS derived from tofu, a 
byproduct of L. plantarum, enhances IgA concentrations within the 
intestinal mucosa and stimulates lymphocyte proliferation (Wang 
et al., 2018). EPSs may potentially exert a favorable impact on lipid 
metabolism through their ability to impede cholesterol absorption 
(Khalil et al., 2018).

2.5 Organic acids

Organic acids are substances that are suitable for use as 
antibacterial agents. One of the most important postbiotics is known 
as organic acids. Two isomers of lactic acid, L and D, are accessible and 
efficiently suppress pathogenicity when created by bacterial 
fermentation processes (Rad et al., 2021). Organic acids act as an 
acidifier, reducing the pH of the surrounding environment and the 
ability of infections that are not acid-tolerant to survive. Acetic and 
lactic acids are created to encourage the development of producer cells 
during the generation of postbiotics by L. plantarum (Chang et al., 
2021). Low pH and high amounts of organic acids inhibit the growth 
of organisms that cause food spoilage and illnesses. Furthermore, 
organic acids may prevent pathogens’ enzymes from working properly, 
making the bacterial cell expend all its energy to release extra proton 
H+, which causes the bacteria to die (Kareem et al., 2014). This method 
of biopreservation, which includes combining several organic acids, 
could be used to generate new antibacterial agents for widespread 
usage in the food industry (Rad et al., 2021).

2.6 Vitamins and other metabolites

Vitamins are chemical substances added to food in trace amounts 
to support a variety of bodily biological processes. The majority of the 
B-complex vitamins function as coenzymes in a variety of energy 
metabolism reactions. The sole coenzyme-active vitamin is vitamin K, 
which is only fat-soluble. The majority of vitamins cannot 
be biosynthesized by humans; hence, they must be  supplemented 
exogenously. Vitamins A, D, E, and others need to be added to the diet 
as supplements, although other vitamins, such as riboflavin (vitamin 
B2) and folic acid (vitamin B9), are even generated by commensal 
bacteria in the stomach and some probiotic microorganisms. B-group 

vitamins, commonly present in a wide range of foods, undergo rapid 
degradation when subjected to thermal processing. Propionibacterium 
freudenreichii 2067 is capable of producing vitamin B12 (Nataraj et al., 
2020). These vitamins are necessary for many physiological activities, 
including the following: Vitamin K plays a role in blood clotting as a 
cofactor of gamma carboxylase activity. Riboflavin plays a role in 
redox activities as a hydrogen transporter. Folate plays a part in DNA 
replication, repair, and methylation. Many of these vital vitamins are 
provided by gut commensal bacteria, particularly lactic acid bacteria 
and Bifidobacterium species, including riboflavin, folate, cobalamin, 
thymine, pyridoxine, nicotinic acid, and niacin (Aggarwal et al., 2022). 
Since they are crucial for generating energy, regulating genes, and 
modifying intestinal immunity, vitamin B is known to have anticancer 
characteristics. The water-soluble vitamin cobalamin, or vitamin B12 
(B12), is crucial for sustaining the health of neurons and 
hematopoiesis. It is a nutrient that is present in animal products. The 
health of bones and the circulatory system has been demonstrated to 
benefit from vitamin K (Thorakkattu et al., 2022).

3 Mechanisms of action

3.1 Immunomodulation

The gut microbiome’s immunomodulatory properties have long 
been postulated. Regulatory T cells (Tregs) are induced to differentiate 
in the gut by butyrate, a SCFA. Moreover, propionate (another SCFA) 
promotes the development of peripheral Tregs. In addition to 
producing anti-inflammatory cytokines and fostering T helper (Th)2-
dependent immune responses, several postbiotic fractions 
(supernatant, cell wall fragments) recovered from B. coagulans culture 
also do so. Additionally, in vitro studies have shown that the 
supernatant of a Bifidobacterium breve culture improves dendritic cell 
survival and maturation, which in turn increases IL-10 production 
and reduces TNF-α release. As seen in individuals who are prone to 
atopic disorders, these characteristics may be to blame for reducing 
Th1-mediated responses while enhancing Th2-mediated responses 
(Ruiz et al., 2017; Żółkiewicz et al., 2020; Hickey et al., 2021). Making 
the body resistant to viral infection begins with immune system 
modification. Numerous clinical investigations have examined the 
direct and intricate connection between probiotics, ideal immune 
system performance, and homeostatic circumstances (Pacini and 
Ruggiero, 2017; Valdes et al., 2018; Mazziotta et al., 2023). Regarding 
postbiotics’ biological efficacy in decreasing inflammatory reactions, 
postbiotics demonstrate a great capacity to do so when compared to 
inflammatory reactions brought on by substances like 
lipopolysaccharide (McCabe and Parameswaran, 2018). In order to 
change the immune system, the postbiotic substance primarily affects 
CD8+ T cells, interferon-gamma (IFN-γ), granulocyte phagocytic 
activity, tumor necrosis factor-alpha (TNF-α), proinflammatory 
cytokines, and elevated levels of IL-10 and IL-4 cytokines. The 
importance of microbial species, inactivation techniques, and an 
efficient postbiotic maintenance dose in delivery systems should 
be emphasized (Khani et al., 2022). By creating the anti-inflammatory 
cytokine IL-10 in vitro utilizing L. reuteri 17,938, retinoic acid-driven 
mucosal-like dendritic cells have an impact on immunomodulation 
(Aguilar-Toalá et  al., 2018). SCFAs, produced during bacterial 
fermentation, alter immune cell function by boosting 
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anti-inflammatory responses (Nogal et al., 2021). Lipoteichoic acid 
and peptidoglycan, components of microbial cells, trigger 
immunological receptors, regulating cytokine production (Szentirmai 
et al., 2021). Bacterial activity produces metabolites such as lactate and 
acetate, which can alter T-cell differentiation and function (Wojciech 
et  al., 2020). Postbiotics also affect mucosal immunity by raising 
secretory IgA production (Szydłowska and Sionek, 2022).

3.2 Anti-inflammatory effects

Intense illnesses are identified by lymphopenia, multiple organ 
failure, excessive inflammation, acute respiratory distress syndrome 
(ARDS), and high fatality rates. The over-formation of inflammation 
in illnesses is made possible by intestinal dysbiosis, which also results 
in chronic inflammation and diminished anti-inflammatory 
mechanisms. Through its outstanding anti-inflammatory efficacy, 
postbiotics might lessen the severity of illnesses. Postbiotics also block 
a variety of proinflammatory signaling pathways to lessen cytokine 
storms (Khani et al., 2022). Clinical research on the anti-inflammatory 
properties of the B. longum CECT-7347 strain of postbiotics revealed 
that they were successful in reducing gastrointestinal disturbance and 
acute inflammatory response as well as by activating the 
immunological pathways linked to a specific immune response 
(Thorakkattu et al., 2022). Additionally, human colorectal cancer cell 
lines triggered by LPS produce less IL-8, which suggests that 
compound K has anti-inflammatory properties. Most metabolites act 
anti-inflammatory together, which is important for tissue homeostasis. 
High amounts of metabolites, however, may result in adverse host 
reactions. For instance, protracted anti-inflammatory effects may raise 
the risk of infectious disease (Sittipo et al., 2019). Certain heat-killed 
bacterial strains prevent the release of IL-8 in the intestinal cells by 
releasing soluble anti-inflammatory proteins that can trigger cellular 
immunological and anti-inflammatory responses (Aggarwal 
et al., 2022).

3.3 Antimicrobial activity

Peptides, bacteriocins, organic acids, and volatile substances 
found in the isolates’ metabolites have been connected to postbiotics’ 
antibacterial properties and may also be  in the role of inhibiting 
pathogen adhesion to the intestine (Figure 4; Tarique et al., 2022). One 
of the advantages of postbiotics is their ability to prevent harmful 
bacteria from growing and food spoiling. These substances are 
frequently used nowadays to combat pathogenic bacteria and food 
spoiling because postbiotics have advantages over antibiotics and 
artificial preservatives. The type of target bacterium (Gram-positives 
are more resistant to postbiotic compounds than gram-negatives), the 
type of probiotic from which the postbiotic is prepared, and the 
concentration of postbiotics all affect how antibacterial a postbiotic is 
(Moradi et al., 2020). Because they aid in sealing the intestinal barrier 
and competitively bind to pathogen-necessary receptors, several 
postbiotics may have direct antimicrobial effects (Nataraj et al., 2020). 
Thus, they alter the expression of genes in the host or modify the 
environment in the area. The effects of postbiotics generated from 
L. plantarum were examined in an in vitro experiment. Supernatants 
of Bifidobacterium and Lactobacillus cultures have recently been found 

to exhibit antibacterial activity as well. By stopping enteroinvasive 
E. coli strains from entering enterocytes, this could be seen in vitro. 
The inhibition of hazardous bacterial adhesion (as they compete for 
receptor sites) may be the cause of these antibacterial properties, but 
the cellular supernatants might also have local impacts on the 
expression of resistance genes, cell barriers, and intestinal environment 
(Aghebati-Maleki et  al., 2021). Pathogens are prevented in the 
stomach through competitive ejection, which depends on 
antimicrobial action. A typical candidate probiotic Lactobacillus 
isolates must produce antimicrobial compounds such as organic acids 
(acetic acid, lactic acid, and propionic acid), bacteriocin, diacetyl, 
H2O2, and surfactants in order to have antimicrobial activity opposite 
to a variety of pathogenic microorganisms (Meena et al., 2022). It has 
been demonstrated that postbiotics are antibacterial against both 
Gram-positive and Gram-negative microorganisms (Ma et al., 2023). 
Numerous known and unexplained antimicrobial substances, most 
frequently bacteriocins, enzymes, tiny molecules, and organic acids, 
are responsible for this antimicrobial activity (Aguilar-Toalá et al., 
2018). Utilizing postbiotics to prevent food-spoilage bacteria is one of 
the most significant effects on the food sector. Postbiotics exhibit 
notable antimicrobial properties due to the presence of various 
bioactive compounds such as peptides, organic acids, fatty acids, 
bacteriocins, and hydrogen peroxide molecules (Rad et al., 2021).

3.4 Gut barrier function

The gut microbiota produces various compounds, including 
vitamins, metabolites from phenols, and aromatic amino acids. The 
catabolism of aromatic amino acids (AAAs) by the gut microbiome 
results in the production of a variety of metabolites that have the 
potential to modulate immune, metabolic, and neuronal responses. 
Due to their biological activity, AAA molecules can potentially affect 
distant organs like the kidneys, brain, and cardiovascular system. 
Genetic changes in gut microbial metabolism, for example, can affect 
indoxyl sulfate plasma levels. The presence of indoxyl sulfate has been 
found to have a significant role in the advancement of chronic kidney 
disease, suggesting that modulating AAA metabolism may have 
potential therapeutic implications for renal illnesses (Żółkiewicz et al., 
2020). Postbiotics have the potential to exert a discernible influence 
on the composition and functionality of the gut microbiota. The 
inhibitory effects on the growth and virulence of potential pathogens 
can be  observed through the utilization of postbiotics, such as 
SCFA. The utilization of organic acids by specific bacterial species in 
the stomach is an additional facet of their secretory function. 
Postbiotics have the ability to bind to intestinal epithelial cells in this 
way, preventing infections from adhering to these cells. Intestinal 
permeability is controlled by postbiotics once they have bonded to the 
intestinal epithelial cells and are preventing pathogen development. 
Additionally, by reducing inflammation and strengthening the 
epithelial barrier, postbiotics help restore gut health. Postbiotics have 
the ability to improve intestinal barrier performance and prevent the 
invasion of harmful microorganisms in the initial phase. Antimicrobial 
substances such as defensins, SCFAs, and bacteriocins also directly 
impede the development of pathogens (Khani et al., 2022). The gut 
microbiome of an individual encompasses a diverse assemblage of 
bacteria comprising both beneficial and pathogenic strains and 
reflects familial inheritance. There is a very fine line between the two, 
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and any disruption of this normal microflora (dysbiosis; Sahoo et al., 
2022, 2023) affects not only the gastrointestinal tract (GIT) but also 
other organs, making them less effective (Aggarwal et al., 2022). The 
gut microbiome has the capacity to engage in interactions with specific 
immune cells as well as various types of human cells. These 
interactions provide the host with several health advantages, including 
the regulation of GIT motility, removal of toxins and mutagens, 
conversion of bile acid and steroids, generation of vitamins, mineral 
absorption, and modulation of systemic and mucosal immunity. 
Isolating lactic acid bacteria from fermented food products with 
potential probiotic effects is essential for improving the quality of the 
gut microbiota (Alameri et  al., 2022). Aromatic amino acids are 
produced and metabolized by gut microbiomes, and these bioactive 
chemicals have an impact on the cardiovascular, renal, and nervous 
systems. Also produced by the gut bacteria are dietary polyphenols 
(Thorakkattu et al., 2022). The effects of probiotic gut microbiota are 
depicted in Figure 4.

3.5 Metabolic effects

The host experiences physiological and nutritional benefits from 
postbiotics, including non-viable intact microorganisms, their 
subcellular components, and metabolic byproducts released by living 
bacteria during their growth or after bacterial cell lysis (Salminen 
et al., 2021). The disruption of cell membranes, drop in cytosol pH, 
generation of hydroxyl radicals, and interference with cellular 
metabolic activity were all signs of organic acid’s antibacterial activity 
against periodontal infections. Hydrogen peroxide and released 
proteins also had this effect. The COVID-19 pandemic may 
be controlled because recent research reveals that postbiotic structure 
and metabolic activity might be utilized as biomarkers for anticipating 
viral diseases like coronavirus sickness. Many of the health benefits of 
pre-, pro-, and syn-biotics appeared to be mediated by a variety of 
metabolic byproducts, cellular and subcellular structural elements, 
and whole or ruptured dead microorganisms. Cell-free supernatants, 
teichoic acid, cell wall fragments, bacterial lysates, vitamins, short-
chain fatty acids, enzymes, exopolysaccharides, amino acids, different 
peptides, and fermentation by-products are examples of postbiotics, 
which microbial compounds are the structural and metabolic 
products. The postbiotic components are synthesized by probiotics 
through various mechanisms, which include the consumption of 
prebiotics, prolonged storage or processing, such as pasteurization or 
baking, and metabolic processes undertaken by the probiotics 
themselves (Aggarwal et al., 2022). It is imperative to acknowledge 
that considerable variation exists in the gut microbiota composition 
across diverse populations and even among individuals. Its functional 
and metabolic characteristics are related to the gut microbiota’s 
makeup. As a result, each person may have a different level of 
component microbial metabolization (Wegh et al., 2019). Postbiotics 
can also be given in a controlled and regular way; however, when 
living bacteria are given, the quantity and metabolic function of the 
specific strain determines how much active structure will be present 
in the colon. Recently, cell-free formulations with the potential to 
be utilized as medications for treating or preventing diseases have 
been created using the metabolic byproducts of several beneficial 
bacteria (Aguilar-Toalá et al., 2018).

3.6 Antioxidative activity

Probiotics slow the growth of viruses and bacteria that cause food 
to spoil while being stored, making them a significant tool for food 
preservation and disease prevention. Probiotics also have potent 
antioxidant effects, which help to keep food from oxidizing during 
storage (Chetwin et al., 2019; Barros et al., 2020). Postbiotics have 
specific defense mechanisms that effectively reduce the harmful effects 
of reactive oxygen species (ROS), which may degrade nucleic acids, 
lipids, carbohydrates, and proteins. Antioxidant enzymes, particularly 
superoxide dismutase (SOD), catalase (CAT), and glutathione 
peroxidase (GPx), play important roles in combating reactive oxygen 
species (Sahoo et al., 2019; Aghebati-Maleki et al., 2021; Patel et al., 
2023; Sahoo and Chainy, 2023; Patani et  al., 2023b). Hydrogen 
peroxide (H2O2) undergoes a catalytic transformation into molecular 
oxygen and water through the enzymatic action of CAT, which is 
ubiquitously found in various biological entities, including probiotics 
and other living organisms (He Z. et al., 2019). CAT can be classified 
as a postbiotic entity due to its origin as a metabolite produced by 
probiotic bacteria. As a member of the reductase oxidase family, CAT 
is known for its role in the prevention of ROS in general and by 
inhibiting ROS reactivity, it functions as an endogenous antioxidant 
and confers cellular protection against oxidative stress (Kleniewska 
and Pawliczak, 2019). The metalloenzyme, SOD, facilitates the process 
of dismutation, wherein superoxide radicals (O2

−) undergo 
transformation into conventional oxygen (O2) and hydrogen peroxide 
(H2O2) molecules (Lin et al., 2020; Prajapati et al., 2023). By virtue of 
its antioxidative properties, SOD serves as a protective agent against 
the harmful effects of oxidative stress on various tissues (Sahoo and 
Chainy, 2007) and also represents a variant of the postbiotic entity that 
exhibits potential utility as an antioxidant moiety (Hassaan et  al., 
2021). Similarly, GPx, a crucial selenoenzyme, also safeguards cells 
against oxidative stress by participating in various biological processes. 
Its primary function involves the detoxification of H2O2 and 
hydroperoxides through the utilization of reduced glutathione (Sahoo 
and Roy, 2012; Brigelius-Flohé and Flohé, 2020). The postbiotics 
derived from L. plantarum RG14 were found to enhance antioxidant 
activity in post-weaning lambs, as evidenced by increased GPx levels 
in both serum and ruminal fluid (Izuddin et al., 2020).

4 Approaches for postbiotic 
production

4.1 Fermentation

The strains of Lactobacillus, Streptococcus, Bifidobacterium, 
Eubacterium, Saccharomyces, and Faecalibacterium are the most 
widespread bacteria and fungi that create postbiotics. Numerous 
fermented foods, such as pickled vegetables, sauerkraut, yogurt, and 
kombucha, contain these microorganisms. Natural fermentation 
results in postbiotics that cannot be  controlled and may not 
be significant enough to have an in vivo physiological effect. In order 
to enable their study and use in culinary, pharmaceutical, and 
nutraceutical applications, researchers have looked at manufacturing 
strategies to create postbiotics in a regulated and efficient manner 
(Thorakkattu et al., 2022).
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An industrial fermentation-based strategy is becoming more 
common for producing postbiotics with potential health advantages. 
For example, studies have shown that fermentation of probiotic 
bacteria such as Bifidobacterium and Lactobacillus strains can 
effectively produce postbiotics (Thorakkattu et  al., 2022). During 
fermentation, these microbes create a wide range of metabolites, 
including organic acids, peptides, and exopolysaccharides. Anti-
inflammatory, antioxidant, and immunomodulatory activities have 
been demonstrated for these postbiotics (Rafique et al., 2023). Because 
industrial fermentation allows for the regulated synthesis of these 
bioactive chemicals, it is a viable and sustainable method for 
producing functional components for use in a variety of health-
promoting applications. As researchers continue to investigate the 
complex interaction between gut microbiota and human health, the 
role of postbiotics produced by fermentation has been recognized as 
a valuable route for improving health (Wegh et al., 2019).

Izuddin et  al. (2018) state that an in vitro experiment was 
conducted to examine the effects of various postbiotic inclusion levels 
of L. plantarum RG14 on the rumen fermentation patterns, gas 
production kinetics, and microbial population in goat rumen fluid. 
The co-production of bacteriocins, EPSs, and conjugated linoleic acid 
(CLA) by B. lactis BB12 in supplemented cheese whey was improved 
using the Box–Behnken design (Amiri et  al., 2021). The role of 
bacteria and yeasts utilized for sourdough (SD), the development of 
postbiotic-like components impacted by SD fermentation and the 
baking process, and the implications of functional SD bread intake for 
human health (De Vero et al., 2021; Pérez-Alvarado et al., 2022).

4.2 Enzymatic conversion

Cultured celery powder may include nitrites that have already 
undergone nitrate reductase (NiR) conversion in order to serve as a 
natural source of nitrite for meat products. In slower curing processes, 
non-converted celery juice powder can also serve as a source of 
nitrate. For the microbial route to convert nitrate to nitrite, certain 
NiR enzyme-producing strains are required. Nitrite reduction to nitric 
oxide happens naturally during meat curing as a result of interactions 
between the various meat components and the chemicals utilized. 
Cured meats can be made without using sodium nitrite directly by 
combining a natural nitrate source with starter cultures that reduce 
nitrite. However, converting nitrate to nitrite requires an incubation 
stage that initiates the microbial enzymatic activity (Oliveira et al., 
2021). Gordonibacter urolithinfaciens, and Ellagibacter 
isourolithinifaciens are two bacterial species identified within the 
human gastrointestinal tract that possess the capability to metabolize 
ellagic acid and produce urolithins. Different catechol-dehydroxylases 
are responsible for catalyzing the dehydroxylation reactions that result 
in the production of urolithins, which are bioactive postbiotics. 
Because various catechol-and double-bond-containing phenolics 
(resveratrol, esculetin, scoparone, and umbelliferone) were not 
degraded, the enzyme activities appear to have a limited substrate 
range (García-Villalba et al., 2020).

With a focus on examining the metabolism of carbohydrates and 
enzymatic function, as well as its capability to restrict pathogen 
growth, the metabolic profile of L. plantarum K16 was studied. In 
addition, the L. plantarum K16 strain had good activity for the 
enzyme’s valine arylamidase or cystine arylamidase, hydrolyzing 10 to 

20 nmoles of the substrate. This strain’s naphthol-AS-BI-
phosphohydrolase was more active, capable of hydrolyzing 20 to 30 
nmoles of the substrate (Diez-Gutiérrez et al., 2022).

4.3 Synthetic biology

In the rapidly expanding field of synthetic biology, preprogrammed 
cellular behavior is attempted to be created and realized utilizing both 
natural and synthetic biological components. Numerous 
biotechnological advancements, ranging from sophisticated medicines 
to the biosynthesis of chemical products, have been made because of 
this form of forward engineering (Ullah et al., 2016). The development 
and fast analysis of extensive libraries of genetic components by next-
generation sequencing techniques facilitated the advancement in the 
research related to the biosynthesis of chemical products. Synthetic 
cell-to-cell communication, intricate and expansive genomic circuits, 
and CRISPR-based regulation are noteworthy advancements 
(Marchand and Collins, 2016). Synthetic biology offers a way to 
research structure–function interactions among bacteria and create 
new biotic treatments in the field of microbiota engineering. The 
ability of the designed microorganism to perceive, record, and react 
to its immediate environment is expanded by incorporating synthetic 
genetic components (Bober et al., 2018). Synthetic biology is essential 
to post-biotic production because it allows for the efficient and 
sustainable manufacture of useful substances using living organisms 
or biological components. Furthermore, synthetic biology has made 
it possible to build biofactories where created cells manufacture 
medicines like insulin and vaccines, providing more affordable and 
scalable production techniques (Fang et al., 2020).

5 Challenges in postbiotic production

5.1 Yield optimization

The optimization of yield in postbiotic production poses a 
formidable challenge, as it necessitates the delicate equilibrium of 
intricate factors such as complex metabolic pathways, strain-specific 
variability, and meticulous fine-tuning of fermentation conditions in 
order to achieve maximum productivity (Thorakkattu et al., 2022). 
This endeavor includes selecting the correct probiotic strains, 
developing their metabolic pathways, optimizing growing conditions, 
and implementing efficient downstream processing procedures while 
considering economic viability and regulatory compliance (Fenster 
et al., 2019). Things become considerably more complicated when 
production is scaled up from the laboratory to the industrial level (Du 
et  al., 2022). Successful yield optimization is critical for realizing 
postbiotics’ full potential in health and industry, fostering innovation, 
and assuring cost-effectiveness while maintaining product quality and 
regulatory standards (Wegh et al., 2019).

5.2 Stability and storage

Postbiotics, the metabolic byproducts or cellular components of 
probiotics or microorganisms employed for various health and 
industrial uses, present important stability and storage problems. 
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A postbiotic product must be  stored properly to preserve its 
effectiveness and safety. Supernatants, cell wall constituents, and 
extracellular metabolites are examples of postbiotics that can 
be sensitive to environmental elements like temperature, humidity, 
and light. In order to prevent microbial deterioration and maintain 
their bioactivity, it is essential to store them in carefully regulated 
conditions, often at refrigeration temperatures (2–8°C) or even 
freezing temperatures (−20°C or below; Vinderola et al., 2022b).

Packaging is also important for postbiotic stability. Because 
oxygen and moisture can hasten the breakdown of postbiotic 
substances, impermeable packaging materials and vacuum-sealed 
containers are frequently utilized to limit exposure to these elements. 
Additionally, postbiotic items can be protected from light-induced 
degradation by using opaque or UV-resistant packaging. Regular 
monitoring of postbiotic products during storage is required to ensure 
long-term stability. Stability testing entails assessing several 
characteristics, such as active ingredient concentration, pH, microbial 
contamination, and overall quality. Manufacturers use recognized 
stability testing techniques to assess shelf-life and storage settings that 
will keep postbiotic products effective (De Almeida et al., 2023).

5.3 Safety considerations

There has been a surge in research and entrepreneurial attention 
toward the utilization of microbial administration to enhance health 
due to the considerable potential of probiotics in generating 
advantageous health outcomes. There has been an increase in 
consumer attention toward products that promote health and well-
being. Because of considerable advances in research on the interactions 
between food, microbiota, and host, microorganisms have been 
administered, or the human microbiota has been altered utilizing 
cutting-edge therapeutic approaches in recent years (Reid et al., 2019). 
Postbiotics are presumed to possess a lower risk profile compared to 
probiotics due to the absence of bacterial growth within them. This 
crucial characteristic serves as a preventive measure against the 
development of bacteremia or fungemia, which are two potential 
hazards commonly associated with probiotic interventions (Yelin 
et al., 2019).

However, the progenitor bacterium’s safety profile cannot 
guarantee the safety of postbiotics. Postbiotic regulatory guidance 
must, therefore, be anticipated based on potential risks and safety 
issues. Significant research is required to increase our understanding 
of the key problems of postbiotic safety, both on a small scale in the 
lab and in animal models and clinical trials (Thorakkattu et al., 2022). 
Because of the increased need for food and feed as a result of modern 
countries’ growing human populations, the quality and safety of food 
and feed products are critical for societal health and well-being. Given 
the possible risks, regulatory advice and safety concerns regarding 
postbiotics and associated functional foods should be anticipated. The 
most of the probiotic foods contain Lactobacillus and/or 
Bifidobacterium species, which are rarely known to cause clinical 
diseases in humans. Despite all of the risks associated with foodborne 
bacteria, some helpful bacteria, such as Lactobacillus and 
Bifidobacteria, can outperform pathogenic bacteria and generate 
antimicrobial agents, which increase food safety and shelf life (Moradi 
et al., 2020). Because postbiotics are safe, they should be used in the 
food and pharmaceutical industries (Aghebati-Maleki et al., 2021).

6 Applications of postbiotics

Postbiotics provide a diverse range of benefits for overall well-
being, from improving gut immunity and digestion to demonstrating 
potential anti-inflammatory characteristics (da Silva Vale et al., 2023). 
Table 1 shows postbiotic-producing organisms and their applications.

6.1 Therapeutics

There is evidence that postbiotics are beneficial for health, 
including localized effects on specific gut epithelial tissues with 
immunomodulatory, anti-inflammatory, and antibacterial properties, 
as well as systemic effects by affecting numerous organs or tissues 
with anticarcinogenic and antiproliferative benefits as well as the 
prevention of celiac disease (Malashree et al., 2019). Therefore, there 
is an imminent necessity for undertaking postbiotics research in 
humans, alongside the imperative verification of the therapeutic and 
non-therapeutic impacts of these bioactive compounds. Novel 
postbiotic formulations could pave the way for innovative therapeutic 
and preventative clinical strategies in a variety of fields, including 
diabetes, wound healing, adjunctive therapeutic medications, food 
biopreservation, food packaging, biofilm management, functional 
food, food supplements, and pharmaceutical food. Using cutting-
edge technology, studies are being done to identify and isolate 
various postbiotic components as well as their bioactivities for 
potential therapeutic applications in the future of medicine 
(Aggarwal et  al., 2022). These bioactive substances have shown 
promise in treating various medical problems, including 
inflammatory bowel disease, irritable bowel syndrome, and allergies 
(Hagan et al., 2021). Furthermore, postbiotics may help to maintain 
a healthy gut flora, boosting overall digestive health. Because 
postbiotics are non-viable, they are a safer choice for people with 
impaired immune systems who may not be  candidates for live 
probiotics (Wegh et al., 2019). The therapeutic effects of L. paracasei 
derived postbiotics on colitis in mice were discovered, with a 
significant reduction in inflammatory markers and an increase in 
overall gut health. As research on postbiotics progresses, the 
therapeutic applications of postbiotics are expected to broaden, 
offering new possibilities for developing therapies aimed at 
enhancing human health (Aggarwal et al., 2022).

6.2 Functional food and beverages

According to research, postbiotics include anti-inflammatory, 
antioxidant, and immunomodulatory properties, contributing to gut 
health and overall well-being (Żółkiewicz et al., 2020). A recent study, 
for example, looked at the postbiotic potential of L. plantarum 
metabolites, finding that they can boost the production of short-chain 
fatty acids, which are known to support intestinal epithelial integrity 
(Markowiak-Kopeć and Śliżewska, 2020). Furthermore, research on 
metabolites produced from B. breve exhibited potential in controlling 
glucose metabolism (Ohno et al., 2022). Integrating postbiotics into 
functional foods and beverages, such as yogurt, fermented drinks, or 
even snacks, is an innovative strategy for delivering these health 
advantages in a practical and pleasant way (Thorakkattu et al., 2022). 
As our understanding of postbiotics grows, their inclusion into 
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ordinary food choices has enormous potential for boosting gut health 
and preventing a variety of chronic diseases (Wegh et al., 2019).

6.3 Personal care products

The skin microbiome is comprised of a diverse assemblage of 
fungi, bacteria, and viruses, collectively forming a complex population. 
Maintaining skin commensal bacteria is critical for preventing the 
growth of pathogenic microbes or opportunistic pathogens that are 
already present (Skowron et  al., 2021). Consequently, developing 
bioactive compounds capable of controlling the skin’s microbiota has 
gained significance among scientists and the cosmetics industry 
(Nicholas-Haizelden et al., 2023). Scientific evidence is mounting that 
metabolites generated from probiotics have a strong potential to 
prevent skin disorders (da Silva Vale et  al., 2023). According to 

scientific data, utilizing topical probiotics can lower the number of 
bacteria that cause acne, including Staphylococcus epidermidis, 
S. aureus, Streptococcus pyogenes, and Cutibacterium acnes (Aggarwal 
et al., 2022). Recently, there has been a significant amount of focus 
directed toward the investigation of probiotics and postbiotics for 
skincare, as these organic products have garnered recognition for their 
remarkable effectiveness (Zhang et al., 2022).

6.4 Agriculture and animal health

Postbiotics emerged as promising agents for improving 
agricultural practices and benefiting animal health (Thorakkattu 
et  al., 2022). Postbiotics are a sustainable and environmentally 
friendly way to improve soil health and crop productivity in 
agriculture. These substances have the ability to increase nutrient 

TABLE 1 Postbiotic-producing organisms and their applications.

Sl. no. Postbiotic producing 
organisms

Name of postbiotics Applications References

1 B. coagulans MTCC 5856 Cell-Free Supernatants Formulation of a cream containing 

(LactoSporin) for the treatment of Acne 

vulgaris

Majeed et al. (2020)

2 L. kunkei Bioactive peptides (PlnA) Topical application for 3 months of a 

product containing a postbiotic resulted 

in a significant improvement in patients 

diagnosed with alopecia

Rinaldi et al. (2020)

3 Bifidobacterium breve C50 and 

Streptococcus thermophilus

Thermally non-viable Lower abdominal distention Improved 

inflammatory and immune markers

Campeotto et al. (2011)

4 L. delbrueckii subsp. bulgaricus, 

Lactobacillus thermophilus

Cell free supernatant Modulation of gut microbiota Zeng et al. (2016)

5 L. casei, L. rhamnosus GG Thermally non-viable and Cell free 

supernatant

Anti-inflammatory Wang et al. (2013) and Cicenia 

et al. (2015)

6 Lacticaseibacillus paracasei K71 Thermally non-viable Anti-allergic Moroi et al. (2011)

7 L. plantarum L-14 Exopolysaccharide Reduction of obesity Lee et al. (2021)

8 L. brevis Long chain polyphosphate Colitis with metabolic disorder Isozaki et al. (2021)

9 L. plantarum 70,810, L. casei Fermentation products Anti-tumor Wang et al. (2014) and Fichera 

et al. (2016)

10 L. paracasei D3-5 strain LTA (lipoteichoic acids) Anti-aging Wang et al. (2020)

11 Lactobacillus spp. Heat killed cells Anti-biofilm effect against oral pathogens Ciandrini et al. (2017)

12 L. rhamnosus GR-1 Cell-free supernatant Immunomodulatory activity Koscik et al. (2018)

13 L. delbrueckii subsp. Bulgaricus EPS Cholesterol-lowering effect Tok and Aslim (2010)

14 L. gasseri Biosurfactants Antibiofilm ability against methicillin-

resistant S. aureus (MRSA)

Giordani et al. (2019)

15 L. plantarum LTA (lipoteichoic acids) Antibiofilm activity against S. mutans Ahn et al. (2018)

16 L. paracasei Peptidoglycan Anti-tumor effect Fichera et al. (2016)

17 L. kefiranofaciens Surface layer proteins Melioration of Clostridium difficile 

induced cytotoxicity

Carasi et al. (2012)

18 L. acidophilus DDS-1 SCFA Increases in short-chain fatty acids 

(butyrate, propionate, and acetate) levels

Vemuri et al. (2019)

19 L. rhamnosus strain ASCC 1520 SCFA Gut microbiota alteration Dai et al. (2019)

20 B. bifidum SCFA (acetate) Increase in TEER values Hsieh et al. (2015)
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availability, control diseases, and improve plant growth (Vassileva 
et al., 2020). Postbiotics contribute to crop resilience against various 
environmental stressors, such as drought and disease, by promoting 
a balanced soil microbial community (Fiodor et  al., 2021). 
Furthermore, the application of postbiotics in agriculture aligns with 
the increased desire for organic and sustainable farming practices 
(Aggarwal et al., 2022).

Postbiotics have demonstrated significant promise for improving 
gut health and overall wellness in animal health. Postbiotics provide 
advantages for livestock, in particular when they are fed. These 
substances help regulate the gut bacteria, fostering an environment 
suitable for digestion and nutritional absorption (Zhong et  al., 
2022). Animals with better gut health have increased growth rates, 
feed efficiency, and illness resistance. Additionally, the use of 
postbiotics as antibiotic replacements in livestock farming tackles 
issues with antibiotic resistance and promotes the development of 
healthy meat products (Rahman et al., 2022). By highlighting the 
significance of microbial populations in improving productivity and 
reducing the environmental impact of conventional agricultural 
operations, the application of postbiotics in both agriculture and 
animal health shows a holistic approach to sustainable practices 
(Manfredini et al., 2021).

7 Future perspectives

7.1 Advances in postbiotic production 
techniques

Future studies in animal models and clinical trials on humans are 
needed to determine the viability of postbiotics that support GI health 
(Malashree et al., 2019). Due to their equivalent positive benefits on 
health and low risk of introducing live bacteria, postbiotics are 
superior to probiotics, according to research in the field of biotics. 
Preterm newborns and those with weak immune systems will benefit 
the most from this in particular (Żółkiewicz et al., 2020). Necrotizing 
enterocolitis (NEC), a dreadful intestinal illness that affects premature 
or newborns with very low birth weights, is currently being treated 
with microbial metabolites. In addition, postbiotics are helpful in the 
treatment of diseases like multiple sclerosis and Alzheimer’s disease, 
for which there are currently no effective cures (Aggarwal et al., 2022). 
The field of postbiotics and numerous other related therapies have 
profited from a wealth of studies into microbiome-targeted diet and 
medication. There will be the emergence of new postbiotics, both 
inside and outside of the current classifications, testing the limits of 
science and regulation. Numerous metabolites will be obtained from 
novel sources that satisfy economic and environmental goals in order 
to fulfill a variety of compositional and functional areas in the 
microbiome (Sudhakaran et al., 2022). Postbiotics are extracts of dead 
bacteria and microorganisms that can strengthen the probiotics’ 
biological effects on the host. Because postbiotics are created when 
bacteria feed on prebiotics, eating a diet rich in probiotic and prebiotic 
foods may assist in guaranteeing that the gut has an adequate supply 
of these crucial nutrients. Clinical research is anticipated to shift in 
the future as more knowledge about postbiotics becomes available, 
focusing more on their composition as well as their bioactivity. Future 
studies should focus on identifying the link between the health effects 

of postbiotics and their unique mechanisms because postbiotics are 
continually changing (Thorakkattu et al., 2022).

7.2 Integration with precision medicine

Another cutting-edge topic for postbiotic research is the 
development of prototype “precision postbiotics” for effective 
therapeutic and preventative medicine. In contradistinction to a 
universal pharmacological intervention, precision medicine prioritizes 
the provision of medical care that is individualized and customized to 
suit the unique characteristics and requirements of each patient. 
Therefore, it is fascinating to build precise postbiotics for particular 
diseases in particular patient subgroups (Aggarwal et al., 2022). In 
healthy children, the use of postbiotics for a variety of illnesses or to 
promote general health has been shown to be effective; however, due 
to inconsistent findings in research looking into various causes of 
diarrhea, this practice should be  used with caution, especially in 
children, in this situation. In these investigations, postbiotics exhibited 
favorable outcomes in treating diarrhea, in contrast to the findings for 
diarrhea in adults. Prebiotics were present in some of the items utilized 
in some research; therefore, it is important to proceed cautiously when 
evaluating their findings (Wegh et al., 2019).

7.3 Regulatory considerations

To the best of our knowledge, regulatory organizations have not 
yet developed a postbiotic framework or concept that specifically 
addresses the use of postbiotics in foods or dietary supplements. 
Postbiotic formulations for use in medicine or pharmaceuticals are 
subject to some regulatory regulations. The European Food Safety 
Authority (EFSA) regulates the necessities for food and updates them 
frequently in relation to the assessment of food safety in Europe. 
Contrarily, the European Pharmacopeia lays out clear rules that 
outline the maximum permitted levels of live microorganisms in 
pharmaceutical preparations and therapeutic goods (Thorakkattu 
et  al., 2022). The Food and Drug Administration (FDA) in the 
United  States has not made any specific statements regarding 
postbiotics. Because postbiotics can be manufactured under a variety 
of regulatory categories, the FDA will likely regulate postbiotics in 
accordance with the regulations that are specific to the regulatory 
category that has been selected for a product in development. The 
product must meet the requirements of the relevant regulatory 
category regarding its intended use, safety, and efficacy (Yelin et al., 
2019). The FDA and EFSA’s probiotic regulatory frameworks, based 
on the generally recognized as safe (GRAS) and qualified presumption 
of safety (QPS) lists, do not apply to postbiotic preparations since they 
cannot contain live bacteria. Postbiotics are exempt from these 
frameworks. As a result, there appears to be a regulatory gap that 
allows for more freedom in product development and 
commercialization for postbiotic preparations than is strictly 
necessary to ensure that the postbiotic compounds themselves are not 
harmful. So, until the FDA and EFSA can develop a regulatory 
framework specifically for postbiotics, research is needed to determine 
a suitable set of safety and regulatory standards that should be applied 
to postbiotic preparations (Scott et al., 2022).
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7.4 Commercialization opportunities

The biotics market is still evolving today. While consumers have a 
good understanding of probiotics, there still needs to be  more 
awareness regarding prebiotics and postbiotics. Postbiotics will become 
more evident to industry professionals after being defined by the 
International Scientific Association of Probiotics and Prebiotics 
(ISAPP) in 2021 (Salminen et  al., 2021). The postbiotics from 
Lactobacillus exhibit a variety of traits, including antibacterial and 
antioxidant activities, antibiofilm capabilities, as well as certain health 
advantages and medicinal uses for people; nevertheless, there are no 
commercially available postbiotics for food applications. Several 
barriers prevent the use of postbiotics in food technology, including 
safety concerns, insufficient in vivo and clinical trials, and commercially 
available postbiotics for human use (Moradi et al., 2020). Numerous 
postbiotics are currently commercially available that have uses besides 
food, but little is known about how to prepare them, how to analyze 
them, and what influences the production of each postbiotics 
compound. This lack of knowledge could hinder future research and 
widespread application in the food industry (Moradi et  al., 2021). 
Selected soluble components of particular bacteria may develop into a 
group of biological strategies used by bacteria to treat a variety of 
ailments, but connecting science and business is extremely difficult 
(Aguilar-Toalá et al., 2018). Fermented foods have become the primary 
source of probiotics in commercial products with the purpose of 
promoting gut health, despite most consumers being unaware of the 
presence of microbial components. Nisin, a bacteriocin derived from 
postbiotics, has gained significant recognition for its widespread 
commercial application as a bio-preservative. The antimicrobial 
peptide, Nisin, is synthesized through the metabolic activities of a 
consortium of Gram-positive bacterial strains, specifically those 
belonging to the Lactococcus and Streptococcus genera. Nisin, 
synthesized by the bacterium Lactococcus lactis, has demonstrated 
notable efficacy in inhibiting biofilm formation and exerting 
antimicrobial activity against various oral pathogens. Consequently, it 
has promise as a potential postbiotic therapy for human usage, aiming 
to promote a healthy and beneficial oral microbiome (Scott et al., 2022).

8 Conclusion

This scholarly review article delves into the intricate realm of 
postbiotics, offering a comprehensive examination of their production, 
mechanisms of action, and diverse applications, particularly 
emphasizing their impact on human health and well-being. The 
examination of various production methodologies, including 
fermentation, enzymatic conversion, and synthetic biology methods, 
underscores the remarkable versatility of postbiotic formation. The 
study offers a road map for developing the sector by tackling the 
difficulties related to optimizing yields, improving stability, and 

ensuring safety. The information presented here not only expands our 
understanding of postbiotics but also reveals their potential to reshape 
the landscape of medicinal development and functional food 
ingredients. The insights offered in this review establish postbiotics as 
an important component in pursuing innovative and environmentally 
friendly options for human well-being as the scientific community 
continues to unravel the intricacies of the microbiome. Finally, the 
diverse perspective presented in this article contributes to the 
expanding body of research determining the future of postbiotics as 
transformative factor in the realms of health and nutrition.
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