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This review provides an overview of the key role played by perivascular adipose

tissue (PVAT) in the protection of cardiovascular health. PVAT is a specific type of

adipose tissue that wraps around blood vessels and has recently emerged as a

critical factor for maintenance of vascular health. Through a profound

exploration of existing research, this review sheds light on the intricate

structural composition and cellular origins of PVAT, with a particular emphasis

on combining its regulatory functions for vascular tone, inflammation, oxidative

stress, and endothelial function. The review then delves into the intricate

mechanisms by which PVAT exerts its protective effects, including the

secretion of diverse adipokines and manipulation of the renin-angiotensin

complex. The review further examines the alterations in PVAT function and

phenotype observed in several cardiovascular diseases, including

atherosclerosis, hypertension, and heart failure. Recognizing the complex

interactions of PVAT with the cardiovascular system is critical for pursuing

breakthrough therapeutic strategies that can target cardiovascular disease.

Therefore, this review aims to augment present understanding of the

protective role of PVAT in cardiovascular health, with a special emphasis on

elucidating potential mechanisms and paving the way for future research

directions in this evolving field.

KEYWORDS

perivascular adipose tissue, anti-inflammatory, vasodilatory, anticontractile,
hypertension, atherosclerosis
1 Introduction

Cardiovascular disease is a major cause of illness and death worldwide, through its

effects on the heart and blood vessels (1, 2). This collective name covers a variety of

diseases, including coronary heart disease, heart failure, and stroke. Despite advances in

medical treatments, cardiovascular disease continues to pose significant burdens on both

healthcare systems and individuals. In general, perivascular adipose tissue (PVAT)
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encircles nearly all blood vessels other than those supplying the

nerves and pulmonary vasculature (3–6). Traditionally, PVAT has

been considered an inert connective tissue that provides structural

support to these vessels. However, emerging evidence has revealed

that PVAT is not a passive bystander but instead has an active role

in cardiovascular disease (7, 8). In this review, we initially

summarize the recent research findings and advances related to

the cellular origin and organization of PVAT, then discuss the anti-

inflammatory, vasodilatory, and anti-constrictive actions of PVAT,

and finally examine the potential of PVAT as a future therapeutic

target for cardiovascular disease.
2 Cellular origin and structure of PVAT

2.1 Cellular origin

The complex cellular components of PVAT include various cell

types, notably adipocytes, fibroblasts, immune cells, and vascular

cells (9, 10). Adipocytes have a central role in PVAT as the primary

cells responsible for producing and releasing adipokines, cytokines,

and other biologically active molecules (11). Regarding the other

cell types, fibroblasts facilitate reshaping of the extracellular matrix

to maintain the structural integrity of PVAT (12), immune cells

(macrophages, T cells) actively participate in the inflammatory and

immune responses of PVAT (13, 14), and vascular cells (smooth

muscle cells [SMCs], endothelial cells [ECs]) have an underlying

involvement in the vascular function of PVAT (15). Research has

indicated that PVAT also contains adipocytes derived from

mesenchymal precursors known as SM22a+ cells, which are

commonly found around the aorta and act as an important

source of vascular smooth muscle cells (VSMCs) (16). Other

studies have demonstrated that adipose-derived stem cells from

percutaneous and visceral adipose tissue can differentiate into

various types of vascular cells, including ECs and SMCs (12, 17).

Despite the growing interest in PVAT, the origins of its cellular

components have not been fully elucidated. PVAT cells are

hypothesized to arise from a variety of sources, including resident

progenitor cells in adipose tissue and cells migrating from other

tissues (15). Research has shown that adipocyte progenitor cells,

also known as preadipocytes, can differentiate into mature

adipocytes and contribute to the expansion of PVAT (18).

Moreover, recent evidence has suggested that cells from the

vascular adventitia, such as pericytes and mesenchymal stem cells,

can differentiate into PVAT cells under specific conditions (19).
2.2 Tissue structure

Blood vessels have three distinct layers: the intima, media, and

adventitia layers. The intima layer primarily consists of ECs, while

the media layer is predominantly composed of SMCs. The

adventitia layer, which contains nerve endings, can be further

categorized into two sublayers: the adventitial compacta and

adventitial fat (20). The adventitial compacta primarily contains

fibroblasts, while the adventitial fat mainly consists of adipocytes.
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The terms perivascular fat and PVAT are often used

interchangeably with adventitial fat (21).

Regarding adipose tissue itself, there are typically three different

types: white adipose tissue (WAT), brown adipose tissue (BAT),

and beige adipose tissue (BeAT). Similar to other adipose tissue

depots, PVAT is a combination of WAT and BAT, with varying

proportions depending on the organs involved (22). Development

of brown and white adipocytes is associated with distinct lineages,

although there is some overlap, and their exact origins remain

uncertain. Thus, further investigations are required to fully

understand the regulatory mechanisms and developmental origins

of these adipocytes.

WAT is primarily composed of white adipocytes that house

singular, sizable lipid droplets, and it is mainly situated in the

hypodermis and perivisceral region. It specializes in storing and

mobilizing fat, and its metabolic pathways modulate the production

of proteins and lipids, which can have significant effects on

inflammation and insulin sensit ivity both locally and

systemically (23).

On the contrary, BAT, which is transiently present in the

interscapular and mediastinal regions of humans, has distinctive

thermogenic properties and functions in maintaining a stable body

temperature. Furthermore, brown-like adipocytes, which are rich in

lipid droplets and mitochondria, can regulate body temperature by

generating calories through lipid metabolism (24). By employing
18F-FDG PET-CT imaging, it has been discovered that functional

BAT is prevalent in adults and consumes a substantial amount of

energy. Therefore, methods that can increase the volume or activity

of BAT have potential as treatments for metabolic diseases (25).

A comprehensive examination of human coronary arteries

indicated that PVAT expresses certain genes at intermediate

levels between WAT and BAT (26). Understanding the origins

and developmental pathways of thermogenic PVAT adipocytes in

adults is crucial for the development of therapeutic approaches that

can enhance BAT accumulation (9). Notably, PVAT in various

parts of the body shows similarities to different types of adipose

tissue. The phenotype of PVAT is influenced by its location, with

thoracic and abdominal PVAT exhibiting distinct characteristics.

Specifically, abdominal PVAT has similarities to WAT, while

thoracic PVAT shares more traits with BAT (27–29). Consistent

with this, human aortic and coronary PVAT showed similarities

with BAT in terms of the expression of BeAT (30). Because

mitochondria contain large amounts of UCP1 protein, both BAT

and BeAT are thermogenic. Unlike WAT, BAT and BeAT have

anti-inflammatory properties, and thus we focused on the cellular

origin of thoracic aortic PVAT to examine whether it exerts anti-

inflammatory effects.

To determine the proteomic similarities, a comprehensive

proteomic analysis was performed on PVAT, BAT, and WAT in

ApoE−/− mice, and a principal component analysis of the proteomic

profiles revealed common protein expression patterns in PVAT and

BAT that distinguished them from WAT (16). Furthermore, the

proteomic features of PVAT resembled those of BAT (16). Thoracic

PVAT was more similar to traditional BAT than to BeAT from a

morphologic and structural point of view. Analyses of the global

gene expression profiles using DNA microarrays revealed that
frontiersin.org

https://doi.org/10.3389/fendo.2023.1296778
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Tong et al. 10.3389/fendo.2023.1296778
PVAT had almost identical gene expression profiles to BAT, with

Ucp1, Cidea, and other genes uniquely expressed or highly

overexpressed in BAT with similar levels of expression (31, 32).

From a functional standpoint, PVAT plays a crucial role in the

regulation of intravascular temperature, similar to BAT. In

addition, PVAT exhibits thermogenic properties upon exposure

to cold temperatures. In SMPG KO model mice with VSMCs that

were rendered deficient in the adipogenic transcription factor

peroxisome proliferator-activated receptor-g (PPARg) using a

SM22a-Cre knock-in strategy (33), the absence of PVAT led to

impaired thermogenic activity, resulting in decreased temperature

and endothelial dysfunction (34). Notably, the SMPG KO mice had

no PVAT due to the absence of PPARg, resulting in a lack of PVAT

surrounding vessels like the thoracic and abdominal aorta. This lack

of PVAT further contributed to the decrease in intravascular

temperature. In mammals, variations in ambient temperature

elicit a vascular reaction that involves the functions of ECs and

SMCs. A similar physiological mechanism may exist in humans,

whereby the intravascular temperature gradient increases in large
Frontiers in Endocrinology 03
veins as blood approaches the heart (35), thus highlighting the

critical role for PVAT in the maintenance of vascular homeostasis.

The structure and functionality of PVAT are also influenced by

various physiological parameters, including aging, sex, and race.

Mechanical considerations, such as intravascular injuries, also affect

the properties of PVAT. In addition to its cellular components,

PVAT includes collagens, elastic fibers, nerve fibers, capillaries, and

other components (Figure 1).
3 Vasoprotective effects of PVAT

Under physiological conditions, PVAT has a range of beneficial

effects, including anti-inflammatory properties, optimization of free

fatty acid metabolism, and regulation of vasodilation (36). A major

underlying mechanism for how PVAT exerts its effects is through the

release of substances called adipocyte-derived relaxing factors

(ADRFs), which have important roles in modulating vascular

structure and function (7, 11, 37). ADRFs mostly comprise
FIGURE 1

PVAT and the architecture of the vascular wall. This figure is created with MedPeer (www.medpeer.cn).
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adiponectin, leptin, nitric oxide (NO), hydrogen sulfide (H2S),

hydrogen peroxide (H2O2), and fibroblast growth factor-21 (FGF-

21), although it was recently found that expression of the

mitochondrial inner membrane protein UCP1 and depletion of

dendritic cells in PVAT can also increase the anti-inflammatory

effects of PVAT (32, 38). The anti-contractile and anti-

inflammatory effects of PVAT are summarized in Tables 1,

2; Figure 2.
3.1 Anti-contractile effects of PVAT

3.1.1 Adiponectin
PVAT-derived adiponectin is involved in several physiological

procedures and has a positive role in vascular homeostasis. In the

healthy body under normal conditions, PVAT produces and

releases abundant adiponectin (53). This hormone functions as a

vasodilator by directly affecting ECs and VSMCs through multiple

mechanisms. One way in which adiponectin promotes vasodilation

is through endothelial nitric oxide synthase (eNOS) via AMPK-

mediated phosphorylation (39). This leads to increased generation

of NO, a potent vasodilator. Adiponectin also enhances eNOS

function by stimulating the phosphorylation and boosting the

generation of BH4, an essential cofactor for eNOS activity (40).

Studies in mice lacking AMPKa1, a key regulator of adiponectin

signaling, revealed a loss of the vasodilatory effect mediated by

PVAT, indicating the importance of AMPK for this process (54).

Furthermore, adiponectin was shown to suppress the proliferation

of VSMCs both in vivo and in vitro through an AMPK-related

signaling pathway (39). In addition, AMPKa1 knockout mice had

significantly lower circulating lipocalin levels, indicating that
Frontiers in Endocrinology 04
AMPK is essential for lipocalin generation and lipocalin-mediated

vasodilation (54). In summary, PVAT-derived adiponectin exerts

beneficial effects on vascular function by enhancing vasodilation

and inhibiting VSMC proliferation. The actions of adiponectin

are mediated by AMPK-dependent pathways, highlighting the

vital role of this signaling molecule in the maintenance of

vascular homeostasis.

3.1.2 Leptin
Leptin is an abundant secreted adipokine that has a key role

in the regulation of appetite and weight. It is also considered to

act as a protective adipokine for cardiovascular function (55).

The vasodilation induced by leptin occurs through both

endothelium-related and independent methods, with the specific

mechanisms depending on the types of blood vessel involved. In

major arteries, such as the aorta, leptin enhances endothelium-

dependent vasodilation by activating AMPK, a mechanism

comparable to that of adiponectin. This activation leads to eNOS

phosphorylation and ultimately increased vasodilation. Leptin also

targets vascular ECs, impeding the contractile effects of angiotensin

II by decreasing calcium release into cellular stores and stimulating

VSMC proliferation (49). In smaller arteries, such as the mesenteric

artery, leptin triggers an increase in the production of NO and

endothelium-derived hyperpolarizing factor (EDHF), both of which

contribute to endothelium-related vasodilation (50). Research has

demonstrated that leptin acts as an endothelium-dependent

vasodilator in coronary artery disease patients, as evidenced by its

effects on saphenous and internal mammary artery vascular rings

(56). Furthermore, leptin induces vasodilation in human coronary

blood vessels and promotes endothelial NO production by ECs in

humans (57). While the role of leptin in promoting sympathetic
TABLE 1 The anti-contractile and anti-inflammatory effects of PVAT in vitro study.

Factor Role Function Reference Data source

Adiponectin anti-contractile Inhibits vascular smooth muscle proliferation in vivo
and in vitro via an AMPK-dependent pathway

(39) Vitro Study

Activation of local eNOS function by stimulatory
phosphorylation and increased BH4 production

(40) Vitro Study

anti-inflammatory Macrophage phenotype favoring the switch from a
proinflammatory M1-like state to an anti-

inflammatory M2-like state

(41) Vitro Study

H2O2 anti-contractile Stimulates the sGC-1 (42) Vitro Study

H2S anti-contractile Opening ATP-sensitive K+ channels
reduction in intracellular pH in a dose-related way,
further contributing to the vasodilation process

(43, 44) Vitro Study

Inhibiting the activity of phosphodiesterase (45) Vitro Study

COX-Derived Factors anti-contractile Prostacyclin against endothelium dysfunction (46) Vitro Study

Angiotensin 1–7 anti-contractile Inducing vasodilation by endothelium-
dependent mechanisms

(47) Vitro Study

FGF-21 anti-inflammatory FGF-21 treatment greatly lower IL-6, TNF-a, and
MCP-1 expression in adipocytes and stromal

vascular fraction (SVF) cells

(48) Vitro Study
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TABLE 2 The anti-contractile and anti-inflammatory effects of PVAT in vivo study.

Factor Role Function Reference Data source

Leptin anti-contractile Increase endothelium-dependent vasodilation by
AMPK activation

(49) Vivo Study

Increase synthesis of NO and endothelium-
derived hyperpolarizing factor (EDHF)

(50) Vivo Study

Increase norepinephrine turnover in
interscapular BAT

(51) Vivo Study

Reducing the Ca2+ release from cellular reserves
and inducing VSMC proliferation

(49) Vivo Study

NO anti-contractile NO is directly produced and released by eNOS
in PVAT

(52) Vivo Study

UCP1 anti-inflammatory Blocking mitochondrial superoxide
(mtSuperoxide)–induced activation of the NLR
family pyrin domain containing 3 (NLRP3)

inflammasome and production of interleukin-1b
(IL-1b)

(32) Vivo Study

Dendritic cell depletion anti-inflammatory Dendritic cell depletion greatly limit TNF-a and
IL-6 generation

(38) Vivo Study
F
rontiers in Endocrinology
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FIGURE 2

A major underlying mechanism for how PVAT exerts its effects is through the release of substances called adipocyte-derived relaxing factors
(ADRFs), which have important roles in modulating vascular structure and function. Adiponectin causes vasodilation by affecting adiponectin
receptors (AR) in endothelial cells, which contributes to the activation of locations 5′ adenosine monophosphate-activated protein kinase (AMPK),
which is responsible for the activation of endothelial NO synthase (eNOS). Enhanced NO concentration induces activation of cyclic guanosine
monophosphate (cGMP), which is responsible for opening large-conductance calcium-activated potassium channels (BKCa). eNOS is present in
both endothelial cells and adipocytes. Moreover, Adiponectin directly regulates the phenotype of macrophages and facilitates their transition from
the pro-inflammatory M1 macrophages to the anti-inflammatory M2 macrophages. Leptin activates leptin receptors (LR), which are responsible for
activation of not only AMPK, but also endothelium-derived hyperpolarizing factor (EDHF), which activates BKCa. Moreover, AMPK independently
activates BKCa and induces a hyperpolarization effect. Hydrogen sulfide (H2S) induces activation of BKCa in VSMCs and endothelial cells, and H2S
can inhibit the degradation of eNOS and induce its phosphorylation, resulting in NO generation via the PI3K/Akt pathway and p38 MAPK pathway.
Moreover, it induces a decrease in intracellular pH by the activation of Cl−/HCO3− ionic exchanger. Angiotensin 1–7 (Ang 1–7) by affecting
endothelial Ang 1–7 receptor (MAS) activates eNOS and increases the NO concentration. Prostacyclin interacts with receptors present on blood
vessels, and has an important role in vasodilatory properties. Hydrogen peroxide (H2O2) stimulates the soluble guanylyl cyclase (sGC-1), which
induces vasodilation through the NO/GC-1/cGMP pathway. UCP1 inhibited the activation of Nod-like receptor family pyrin domain-containing 3
(NLRP3) inflammatory and decreases the levels of pro-inflammatory factors such as IL-1b. This figure is created with MedPeer (www.medpeer.cn).
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activity is well-established, the exact mechanism by which it

counteracts the effects of the sympathetic nerve system on blood

pressure remains unclear. One study discovered that leptin induces

a hypotensive effect when the effects of the sympathetic nerves are

eliminated (56). These hemodynamic effects of leptin coincide with

the endothelium-mediated vasodilatory effects induced by the same

hormone through NO or EDHF on conduit and resistance arteries,

respectively (56).

3.1.3 Nitric oxide
NO is a gas that easily diffuses throughout the body. It is widely

recognized to act as a vasodilator, meaning that it can widen blood

vessels. NO is synthesized by three different enzymes called eNOS,

inducible nitric oxide synthase (iNOS), and neuronal nitric oxide

synthase (nNOS) (58). The iNOS enzyme is unique because it does

not require calcium ions (Ca2+) for its activity and can be stimulated

by inflammatory cytokines, indicating its potential involvement in

the progression of various inflammatory diseases (59). Meanwhile,

the nNOS enzyme is found in the neurons of the central and

peripheral nervous systems, and acts as a neurotransmitter for the

modulation of blood pressure, and the eNOS enzyme, which is

mainly found in ECs, has an anti-atherosclerotic property and

functions in local blood pressure control (59). Research has

demonstrated that eNOS is expressed not only in ECs but also in

PVAT, and that atherosclerosis, a condition characterized by

reduced bioavailability of NO, is closely related to endothelial

dysfunction (52, 60, 61). In this context, eNOS-derived NO was

shown to possess multiple anti-atherosclerotic properties, including

the ability to regulate VSMC proliferation and leukocyte adhesion,

inhibit platelet aggregation, and reduce vascular inflammation (52,

59). In obese individuals, excess PVAT-derived tumor necrosis

factor-a (TNF-a), along with increased expression of endothelin-

1(ET-1) and endothelin ETA receptors in blood vessels, disrupts the

balance of the ET-1/NO system, leading to impaired release of NO

(62). This imbalance is further exacerbated by the overproduction

of reactive oxygen species, leading to a loss of coupling with eNOS

and reduced NO generation. In contrast, when PVAT was removed

in healthy people, basal NO generation in small arteries was

decreased, suggesting that PVAT contributes to vascular NO

generation (62). NO exerts its vasodilatory effects by relaxing

VSMCs through the cGMP-PKG cascade and/or by activating

pota s s ium channe l s in SMCs to induce membrane

hyperpolarization (63). In addition, NO can up-regulate the

synthesis of H2S, another vasodilator, by increasing the

availability of its precursor as well as the expression of its

synthetic enzyme cystathionine gamma lyase. This interaction

between NO and H2S further enhances the vasodilatory effects in

the body (64).
3.1.4 Hydrogen sulfide
H2S is a gas that is synthesized by PVAT, ECs, and VSMCs. Its

role in the regulation of vascular tone is crucial. The vasodilation

caused by H2S is a result of its ability to activate BK channels in

VSMCs. This activating effect leads to hyperpolarization of the

cytosol, which in turn inactivates voltage-gated L-type Ca2+
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channels. This cascade of events ultimately leads to a decrease in

the intracellular Ca2+ concentration (43). Besides its role in

vasodilation, H2S was shown to reduce intracellular pH in a dose-

dependent manner, thus further contributing to the vasodilation

process. The underlying mechanism for these effects involves the

Cl−/HCO3− ion exchanger (65). Another study indicated that there

may be an interaction between NO and H2S in terms of their

production and pathophysiological functions (66). In the

cardiovascular and cerebrovascular systems, H2S and NO

influence one another and rely on each other for the regulation of

angiogenesis (67). Research has shown that H2S can inhibit the

degradation of eNOS and induce its phosphorylation, resulting in

NO generation via the PI3K/Akt pathway (68–70) and p38 MAPK

pathway (71). H2S can also increase cGMP by inhibiting the activity

of phosphodiesterase (45). These effects allow H2S to exert its

important anti-vasoconstrictive actions.

3.1.5 Hydrogen peroxide
H2O2 produced by PVAT has dual effects on blood vessels, by

acting as both a vasoconstrictor and a vasodilator depending on

various factors. These factors include the concentration of H2O2,

type of blood vessel, and contractile state of the vessel (72). In

healthy individuals, the H2O2 concentration is typically non-toxic.

H2O2 can permeate the cell membrane and easily diffuse into SMCs,

where it stimulates soluble guanylyl cyclase (sGC-1) and acts as a

receptor for NO in smooth muscle to induce vasodilation via the

NO/sGC-1/cGMP pathway (42). In the obese population, the

contractile response to H2O2 did not change. However, H2O2

increased COX-2 expression, which subsequently promoted arterial

vasoconstriction (73). A study demonstrated that the mitochondrial

electron transport chain in PVAT has a role in modulating aortic

muscle contraction. This is achieved through increased production

of the superoxide anion (O2
−), which is subsequently converted into

H2O2. In this process, H2O2 acts as an important signaling molecule

to modulate the contraction of vascular smooth muscle (74).

Mitochondrial decoupling and H2O2 removal increase peripheral

vasoconstriction by PVAT.

3.1.6 COX-derived factors
PVAT is recognized as a source of various factors that originate

from adipose tissue. These factors are generated by an enzyme

called cyclooxygenase (COX) and include TXA2, prostaglandin D2,

prostaglandin E2, prostaglandin F2a, prostaglandin H2, and

prostaglandin I (prostacyclin) (75, 76). In particular, prostacyclin

is known for its vasodilatory properties. Specifically, it interacts

with receptors present on blood vessels, and has an important

role in protection against endothelium dysfunction and

atherosclerosis (46).

3.1.7 Angiotensin 1–7
All components of the renin–angiotensin–aldosterone system

(RAAS) can be found in the aortic and mesenteric PVAT, with the

exception of renin (77). The RAAS components have varying effects

on vascular tone. One component, Angiotensin 1–7, is known to

promote vasodilation through its interaction with the endothelium
frontiersin.org
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(78). On the contrary, angiotensin II, which is also produced by

PVAT, induces vasoconstriction (79). Angiotensin 1–7 (Ang 1–7)

by affecting endothelial Ang 1–7 receptor (MAS) activates eNOS

and increases the NO concentration. This increase in NO leads to

blood vessel dilation through the activation of BK channels (47).
3.2 Anti-inflammatory effects of PVAT

3.2.1 Adiponectin
Adiponectin is known for its anti-atherogenic properties (80).

In human atherosclerotic plaque, the two most prominent

macrophage types are inflammatory M1 macrophages and anti-

inflammatory M2 macrophages (81). Adiponectin inhibits the

typical pro-inflammatory activity of M1 macrophages and

enhances the anti-inflammatory activity of M2 macrophages, and

the expression of high levels of lipocalin potentially impedes the

progression of metabolic and cardiovascular disorders by

facilitating the development of an anti-inflammatory macrophage

phenotype (41, 82). Macrophages can be polarized towards the M1

state by interferon-g and TNF-a, while polarization toward the M2

state occurs through the actions of interleukin (IL)-4 and IL-13. M2

macrophages also secrete the anti-inflammatory cytokine IL-10 and

reduce the production of pro-inflammatory cytokines. A study

suggested that lipocalin directly regulates the phenotype of

macrophages and facilitates their transition from the pro-

inflammatory M1 state to the anti-inflammatory M2 state (41).

Furthermore, as shown in a model of collar-induced carotid

atherosclerosis, adiponectin derived from PVAT has anti-

atherosclerotic properties through its capacity to initiate Akt/

FOXO3-dependent autophagy in macrophages (83).

3.2.2 UCP1
The mitochondrial inner membrane protein UCP1 is

predominantly detected in BeAT/BAT and was originally

recognized as a thermogenic protein responsible for eliminating

excessive energy as heat. The gene expression patterns in the mouse

thoracic PVAT are remarkably similar to the patterns in

interscapular BAT (iBAT), and human coronary PVAT also

shows expression of brown adipocyte-specific genes such as

UCP1. Recent research has revealed that UCP1 has a protective

role against vascular dysfunction and atherosclerosis by inhibiting

the activation of Nod-like receptor family pyrin domain-containing

3(NLRP3) inflammatory vesicles in PVAT (84). This inhibition

causes a reduction in NLRP3 inflammatory vesicles, which in turn

decreases the levels of pro-inflammatory factors such as IL-1b (41).

Notably, UCP1 deficiency did not alter the circulating or BAT levels

of inflammatory factors. Furthermore, reintroduction of UCP1 in

iBAT did not revert the increased atherosclerosis in UCP1-deficient

mice, implying that the vascular regulation by UCP1 can be

attributed, at least in part, to UCP1 in PVAT. Gu and colleagues

conducted ex vivo research and showed that UCP1 in PVAT

directly prevents endothelial dysfunction in intact aortic rings

from mouse and porcine models (32). Through co-culture studies,

they found that short-term processing of PVAT with BAM15 or co-

expression with IL-1b-neutralizing antibodies improved
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endothelium-dependent PVAT relaxation in obese individuals. In

conclusion, their study provides support for the notion that UCP1

partly exerts its vasculoprotective effects through its anti-

inflammatory effects in PVAT.

3.2.3 Dendritic cell depletion
Previous research has demonstrated that the depletion of

adipocytes expressing CD11c mRNA has a significant effect on

reducing inflammatory responses in both obese visceral adipose

tissue and the general circulation (85). In a murine model of type 2

diabetes mellitus (T2DM), dendritic cells predominantly

accumulated in PVAT, rather than in the vessel wall itself. The

buildup of dendritic cells in PVAT was related to the

overproduction of proinflammatory cytokines, which in turn led

to a decrease in the ability of PVAT to enhance vasodilatory and

anticontractile activity in patients with T2DM. Recent

investigations further indicated that depletion of dendritic cells

considerably reduced the production of TNF-a and IL-6 in adipose

tissue of a mouse model of type 2 diabetes, while simultaneously

reducing the generation of IL-10 (38). In conclusion, depletion of

dendritic cells dramatically reduces the generation of pro-

inflammatory agents in diabetic PVAT, thereby attenuating

chronic inflammation.

3.2.4 FGF-21
FGF-21 is a member of the fibroblast growth factor gene family

that has a vital role as an endocrine regulator. Its primary functions

include promotion of weight loss, regulation of insulin signaling,

and control of glucose and lipid metabolism (86). FGF-21-induced

glucose uptake and FGF-21 anti-inflammatory effects were shown

to be mediated by separate signaling channels, and FGF-21 was

further found to exhibit anti-inflammatory effects, particularly in

adipocytes, that were facilitated by the fibroblast growth factor

receptor substrate 2/ERK1/2 signaling pathway (48).
4 Relationship between PVAT and
cardiovascular disease and the
potential of PVAT as a
therapeutic target

Table 3 summarizes the associations of PVAT with

atherosclerosis, hypertension, and heart failure. We searched for

potential therapeutic targets based on various aspects of the

pathogenesis of these diseases as well as the cardioprotective

effects of PVAT.
4.1 PVAT and atherosclerosis

PVAT, which envelops blood vessels, was previously believed to

be an inactive and unresponsive tissue. However, emerging

evidence has strongly suggested that PVAT plays a critical role in

regulating vascular function and contributes to the development of

atherosclerosis (16, 31, 93–95). Atherosclerosis is a chronic and
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progressive metabolic disease characterized by buildup of lipids,

dysfunction of the endothelium, and infiltration of inflammatory

cells (96). The initial trigger for atherosclerosis is dysfunction or

injury to the endothelium resulting from high shear stress, which

induces adherence of inflammatory cells to the damaged

endothelium and leads to cholesterol buildup within the arterial

wall, facilitating the development of atherosclerosis (97, 98). These

observations support the theory that atherosclerosis develops from

the inside to the outside, because the adhesion of inflammatory cells

to the dysfunctional endothelium triggers the accumulation of

cholesterol in the artery wall (97). However, there is also evidence

showing that PVAT, located in the outermost layer of the arterial

wall, can contribute to the development of atherosclerosis through a

different mechanism known as outside-to-inside pathogenesis (99).

This outside-to-inside pathogenesis often occurs through disrupted

endothelial function caused by impaired function of PVAT itself or

changes in its function arising from variations in physical and

chemical factors in the external environment. One study showed

that thermogenic PVAT in the aorta was able to restore endothelial

function in senescent mice (16). Activation of PVAT in the mice by

mild cold treatment improved the endothelial function and

prevented the occurrence of atherosclerosis. In contrast, mice

deficient in PVAT exhibited serious atherosclerotic lesions that

were not attenuated by mild cold irradiation. Furthermore, absence

of PVAT led to increased infiltration of macrophages in the

perivascular region of the aorta as well as increased generation of

inflammatory cytokines, thereby inducing increased vascular

inflammation and atherosclerotic plaque in the aortic lumen (16).

Meanwhile, PVAT-induced inflammation and fibrosis may be part

of the pathological process for arterial stiffness. A recent study

demonstrated that secretion of mature IL-1b by macrophages is

dependent on triggering the NLRP3 inflammasome, a member of
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the Nod-like receptor family (87). And this inflammasome is

involved in an intracellular mechanism that acts through caspase-

1 to mobilize the proinflammatory cytokines IL-1b and IL-18. Thus,
owing to their distinctive functional and biochemical properties, it

can be argued that perivascular adipocytes play an important role in

the initiation of inflammation in atherosclerosis (26).

Numerous studies have demonstrated that adipokines derived

from PVAT have a direct effect on the progression of atherosclerosis

(100–103). A potential role for adipokines derived from

subcutaneous adipocytes in atherosclerosis has also been

suggested (40, 83).

Grafting of wild-type mouse thoracic PVAT to the carotid

arteries of ApoE−/− mice significantly decreased the plaque

macrophage content, without affecting plaque size (83). In

contrast, transplantation of thoracic PVAT from ApoE−/− mice

resulted in elevated amounts of inflammatory cytokines compared

with transplantation of wild-type PVAT (104). In addition,

melatonin was able to maintain the anti-contractile activity of

PVAT and increase the expression of adiponectin and its

receptors (105).

Another study demonstrated the anti-inflammatory effects of a

cyclopentane triterpenoid called (16S,20S,24R)-12b-acetoxy-16,23-
epoxy-24,25-dihydroxy-3b-(b-D-xylopyranosyloxy)-9,19-

cyclolanost-22 (23)-ene (AEDC), derived from the buttercup family

(Ranunculaceae). This compound showed promising results in the

treatment of LPS-264.7 macrophages because it inhibited IL-1b
generation and secretion. The underlying mechanism for the

suppression involved SIRT3 autophagy-mediated inactivation of

NLRP3 inflammatory vesicles and SIRT3-SOD2-mediated

scavenging of reactive oxygen species (106). AEDC not only

prevented inflammatory crosstalk between macrophages and

adipocytes but also blocked the migration of macrophages to

adipocytes. By mitigating macrophage accumulation, AEDC

effectively alleviated adipose tissue inflammation. Therefore, there

is a need to further develop AEDC as a potential drug of choice for

the treatment of adipose tissue inflammation and related

metabolic diseases.
4.2 PVAT and hypertension

Hypertension is a significant risk factor for various medical

conditions, including stroke, aortic aneurysm, and coronary artery

disease. It is characterized by a gradual increase in arterial blood

pressure. Although contributing factors to hypertension include

problems with the heart, kidneys, and nervous system, research has

demonstrated that obesity also has a role in its development and

progression. Existence of PVAT in obese individuals was found to

reduce the contractile reaction of vascular rings. Nevertheless, this

anti-contractile activity was markedly attenuated in obese

individuals and obese mice (107). The pathogenesis of

hypertension is complex and multifactorial, with various

mechanisms by which adipose tissue could be involved in its

development, particularly through variations in the secretion of

adipokines. Adipocytes secrete numerous substances that affect

vascular tone, and in obesity, their expression of vasodilators,
TABLE 3 Associations between PVAT and cardiovascular diseases.

Cardiovascular
Disease

Relationship Reference

Atherosclerosis Lack of PVAT augmented
macrophage infiltration in the
perivascular area of the aorta

(16)

Increased production of
inflammatory cytokines, which

resulted in vascular inflammation
and increased atherosclerotic
lesions in the aortic wall

(16)

PVAT-derived APN might be one
of the anti-inflammatory adipokines
able to inhibit the development

of atherosclerosis

(40, 83)

NLRP3/IL-1b pathway causes
arterial inflammation and fibrosis

(87)

Hypertension PT1R Activation in PVAT
Promotes Vascular Inflammation
and Endothelial Dysfunction

(88)

RAAS, particularly AGT, is highly
expressed in PVAT

(89–91)

Heart Failure lower NO bioavailability of PVAT (92)
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such as lipocalin, NO, and H2S, is reduced. Adipose tissue also has

its own RAAS, with angiotensinogen(Agt) being highly expressed in

obese adipose tissue and potentially leading to renal dysfunction.

Abnormal RAAS activation is crucial in the primary and later stages

of hypertension. Elevated levels of Agt were observed in adipose

tissue of rats suffering from primary hypertension and obesity, and

the levels and capacities of Agt, plasma renin, and angiotensin-

converting enzyme in the adipose tissue were directly correlated

with obesity (89–91). These observations suggest that adipose tissue

may be the main source for the RAAS in obese hypertensive patients

(108). Locally, angiotensin II is derived from Agt, which is also

present in PVAT. The entire vessel wall expresses four angiotensin

receptors, and angiotensin type 1 receptor (AT1R) activation in

PVAT enhances vascular inflammation and endothelial

dysfunction (88).

Renin-angiotensin antagonists have been observed to maintain

the anti-contractile function of perivascular tissues. In one study,

researchers conducted in vitro hypoxic experiments that simulated

the disinhibition of the anti-contractile function of PVAT in obese

patients (109). Specifically, they contracted the tissue with

increasing amounts of norepinephrine under normoxia or

hypoxia and then incubated the tissue with captopril or

telmisartan. Their findings showed that renin-angiotensin

antagonists could effectively prevent the loss of the anti-

contractile function of PVAT.

In addition, aldosterone may directly influence PVAT by

promoting a proinflammatory phenotype. Angiotensin receptor

blockers (ARBs) have potential as therapeutic targets by reducing

the release of angiotensin II and aldosterone through the angiotensin-

converting function of PVAT. ARBs also promote the generation of

perivascular relaxing factors, which generate vasodilation by opening

voltage-dependent K-channels on vascular ECs (110, 111). RAAS

inhibition by ARBs and aldosterone inhibitors induces lower blood

pressure and provides cardiovascular benefits, with effects that extend

beyond the main target organs, such as the kidney and heart, to also

affect PVAT (112).

SIRT3 has been identified as a regulator of glycolysis-dependent

NLRP3 inflammatory vesicle activation, suggesting that SIRT3 may

have potential as a therapeutic target for reducing PVAT

inflammation. A recent study showed that bone marrow SIRT3

deficiency aggravated PVAT remodeling, leading to macrophage

infiltration and adipose tissue dysfunction (84). Furthermore,

NLRP3 deficiency protected macrophage function and prevented

hypertension-induced inflammatory damage to PVAT.
4.3 PVAT and heart failure

Enhanced RAAS activation throughout the body, accompanied

by heightened amounts of angiotensin II in the bloodstream, plays a

crucial role in heart failure. Endothelial dysfunction, as a

consequence of heart failure, is closely related to RAAS activation

(113). A study even demonstrated a decrease in the anti-contractile

effect of PVAT in the thoracic aorta of rats with heart failure (114).

This reduction in the effect of PVAT may be attributed to the

considerably decreased availability of NO. Existing literature
Frontiers in Endocrinology 09
indicates that decreased NO availability is a common occurrence

in heart failure-induced endothelial dysfunction (92, 115). This

reduced bioavailability of NO may arise through a decrease in its

synthesis and/or an increase in its degradation by reactive oxygen

species (92).

The above studies emphasize the potential contribution of

PVAT to the pathophysiology of vascular dysfunction in heart

failure and provide novel insights into the management of this

disease. Thus, the use of RAAS inhibitors and the promotion of

increased NO in patients with heart failure may be useful

therapeutic strategies for the treatment of heart failure.
5 Discussion

Following the discovery of the anti-constrictive properties of

PVAT in 1991, growing numbers of basic and clinical investigations

have revealed important roles of PVAT in the cardiovascular

system, its structural composition and cellular origins, and the

release of various vasoactive molecules, thereby highlighting its

essential effects on the cardiovascular system. Moreover, many

studies have demonstrated its value as a possible therapeutic

target from the viewpoint of its protective functions in the

normal physiological state. Therefore, PVAT has potential as a

candidate therapeutic target for restoring, delaying, and/or

counteracting vascular dysfunction.
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González MC, et al. Anticontractile effect of perivascular adipose tissue and leptin
are reduced in hypertension. Front Pharmacol (2012) 3:103. doi: 10.3389/
fphar.2012.00103

38. Qiu T, Li M, Tanner MA, Yang Y, Sowers JR, Korthuis RJ, et al. Depletion of
dendritic cells in perivascular adipose tissue improves arterial relaxation responses in
type 2 diabetic mice. Metabolism (2018) 85:76–89. doi: 10.1016/j.metabol.2018.03.002

39. Chen H, Montagnani M, Funahashi T, Shimomura I, Quon MJ. Adiponectin
stimulates production of nitric oxide in vascular endothelial cells. J Biol Chem (2003)
278(45):45021–6. doi: 10.1074/jbc.M307878200

40. Margaritis M, Antonopoulos AS, Digby J, Lee R, Reilly S, Coutinho P, et al.
Interactions between vascular wall and perivascular adipose tissue reveal novel roles for
adiponectin in the regulation of endothelial nitric oxide synthase function in human
vessels. Circulation (2013) 127(22):2209–21. doi: 10.1161/circulationaha.112.001133
frontiersin.org

https://doi.org/10.1093/eurheartj/ehx144
https://doi.org/10.5551/jat.GL2017
https://doi.org/10.1016/j.cardiores.2006.03.013
https://doi.org/10.1016/j.vph.2012.02.003
https://doi.org/10.1111/j.1476-5381.2011.01479.x
https://doi.org/10.1155/2011/490650
https://doi.org/10.1042/cs20110151
https://doi.org/10.1111/bph.13734
https://doi.org/10.1038/s42255-021-00380-0
https://doi.org/10.1161/atvbaha.110.207175
https://doi.org/10.1111/j.1476-5381.2011.01430.x
https://doi.org/10.1089/scd.2008.0117
https://doi.org/10.1172/jci19246
https://doi.org/10.3389/fphys.2020.00058
https://doi.org/10.1007/s10571-012-9822-6
https://doi.org/10.1161/circulationaha.112.104489
https://doi.org/10.1038/ncpcardio0444
https://doi.org/10.1080/13813455.2016.1212898
https://doi.org/10.1161/atvbaha.119.312732
https://doi.org/10.1111/j.1476-5381.2011.01404.x
https://doi.org/10.1111/j.1476-5381.2011.01404.x
https://doi.org/10.2174/138161207781039634
https://doi.org/10.3109/07853890.2010.535557
https://doi.org/10.1038/s41574-021-00471-8
https://doi.org/10.1159/000321319
https://doi.org/10.1056/NEJMoa0810780
https://doi.org/10.1161/circresaha.108.182998
https://doi.org/10.1152/ajpregu.00567.2012
https://doi.org/10.1161/atvbaha.109.192658
https://doi.org/10.1677/joe-07-0284
https://doi.org/10.1007/s13105-019-00721-4
https://doi.org/10.1152/ajpheart.00376.2011
https://doi.org/10.1126/sciadv.abl4024
https://doi.org/10.1161/01.Atv.0000202661.61837.93
https://doi.org/10.1161/circulationaha.108.815803
https://doi.org/10.1146/annurev.ph.14.030152.000445
https://doi.org/10.1089/ars.2020.8103
https://doi.org/10.3389/fphar.2012.00103
https://doi.org/10.3389/fphar.2012.00103
https://doi.org/10.1016/j.metabol.2018.03.002
https://doi.org/10.1074/jbc.M307878200
https://doi.org/10.1161/circulationaha.112.001133
https://doi.org/10.3389/fendo.2023.1296778
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Tong et al. 10.3389/fendo.2023.1296778
41. Ohashi K, Parker JL, Ouchi N, Higuchi A, Vita JA, Gokce N, et al. Adiponectin
promotes macrophage polarization toward an anti-inflammatory phenotype. J Biol
Chem (2010) 285(9):6153–60. doi: 10.1074/jbc.M109.088708

42. Montfort WR, Wales JA, Weichsel A. Structure and activation of soluble
guanylyl cyclase, the nitric oxide sensor. Antioxid Redox Signal (2017) 26(3):107–21.
doi: 10.1089/ars.2016.6693

43. Wang R. Shared signaling pathways among gasotransmitters. Proc Natl Acad Sci
U.S.A. (2012) 109(23):8801–2. doi: 10.1073/pnas.1206646109

44. Fang L, Zhao J, Chen Y, Ma T, Xu G, Tang C, et al. Hydrogen sulfide derived
from periadventitial adipose tissue is a vasodilator. J Hypertens (2009) 27(11):2174–85.
doi: 10.1097/HJH.0b013e328330a900

45. Bucci M, Papapetropoulos A, Vellecco V, Zhou Z, Pyriochou A, Roussos C, et al.
Hydrogen sulfide is an endogenous inhibitor of phosphodiesterase activity. Arterioscler
Thromb Vasc Biol (2010) 30(10):1998–2004. doi: 10.1161/atvbaha.110.209783
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