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A B S T R A C T   

Gut microbiota, which comprises a broad range of bacteria inhabiting the human intestines, plays 
a crucial role in establishing a mutually beneficial relationship with the host body. Dysbiosis 
refers to the perturbations in the composition or functioning of the microbial community, which 
can result in a shift from a balanced microbiota to an impaired state. This alteration has the 
potential to contribute to the development of chronic systemic inflammation. Heart failure (HF) is 
a largely prevalent clinical condition that has been demonstrated to have variations in the gut 
microbiome, indicating a potential active involvement in the pathogenesis and advancement of 
the disease. The exploration of the complex interplay between the gut microbiome and HF pre-
sents a potential avenue for the discovery of innovative biomarkers, preventive measures, and 
therapeutic targets. This review aims to investigate the impact of gut bacteria on HF.   

Introduction 

The gut microbiota, an assembly of countless microorganisms residing in the human intestines, establishes a mutually beneficial 
relationship with the human body.1 This symbiotic interaction profoundly influences various aspects of human health, including 
metabolism, immune responses, and secretions.1 Similarly, the gut environment reciprocally influences the growth and functions of 
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these microorganisms.1 The human intestinal microbiota forms an essential ecosystem, comprising a diverse array of bacteria, archaea, 
viruses, protozoa, and fungi. A healthy microbiota mainly consists of four primary categories of bacteria: Actinobacteria, Firmicutes, 
Proteobacteria, and Bacteroides. These microbial groups dynamically adapt to shifts in human lifestyle.2 

Dysbiosis, marked by a disruption in microbial composition or activity, upsets the symbiotic equilibrium between the gut 
microbiota and the host. This disruption is influenced by host-specific factors such as genetic makeup, health status (including in-
fections and inflammation), and lifestyle choices, as well as environmental factors like diet (high sugar, low fibre), hygiene, and 
xenobiotics (antibiotics, drugs, food additives).3 Dysbiosis involves a transition from a healthy gut flora to a dysfunctional array of 
organisms, promoting disease states. Changes in gut microbiota profoundly affect various inflammatory pathways, particularly in older 
adults, potentially contributing to chronic systemic inflammation.4 

Heart failure (HF) is a multifaceted clinical condition characterized by diverse causes and underlying physiological mechanisms. It 
has a significant global impact, affecting more than 64 million individuals, and its prevalence is swiftly increasing, particularly among 
the elderly in affluent nations.5 HF manifests as a syndrome with specific symptoms and indicators resulting from impaired cardiac 
function, ultimately leading to reduced life expectancy. The European Society of Cardiology guidelines stress the importance of specific 
symptoms and signs (Tables 1 and 2), objective evidence of cardiac dysfunction, preferably through echocardiography, and, if un-
certainties persist, a positive response to targeted HF treatment to confirm a diagnosis.6 HF can present either as an acute or chronic 
form. The acute form of HF is associated with various inflammatory markers, while the chronic form is characterized by an abnormal 
inflammatory state involving pro-inflammatory agents that are considered pivotal in the development of HF.7 

Gut dysbiosis, encompasses changes in the composition and functionality of the gut microbiota, disrupting the gastrointestinal tract 
balance. This disruption can stem from various factors like diet, antibiotic usage, stress, or infections.8,9 One crucial aspect of precision 
medicine in HF is the gut microbiome. Preliminary clinical research has uncovered similar disruptions in the gut microbiome among 
individuals with HF, and studies have provided proof of the gut microbiome playing an active role in HF development and underlying 
mechanisms.10–12 A thorough understanding of how the gut microbiome interacts with the host in individuals with HF holds the 
potential to unveil new biomarkers for the disease, identify targets for prevention and treatment, and enhance the categorization of 
disease risk. Moreover, the involvement of gut dysbiosis, caused by a multitude of factors, including nutrition, inflammation, stress, 
and antibiotic use, with metabolic syndrome, which is a series of metabolic disorders such as insulin resistance, glucose intolerance, 
central obesity, dyslipidemia, and hypertension, is also crucial in understanding the intricacies between the gut microbiota and heart 
failure, since metabolic syndrome is a well-established known factor of cardiovascular disease, particularly heart failure, as shown in 
Fig. 1. 

This current review emphasizes recent advancements in understanding the role of gut microbiota in heart failure development and 
associated severe cardiovascular disease (CVD) complications. This article delves into strategies to target the gut microbiota for po-
tential HF prevention and treatment. Additionally, it explores the influence of gut microbiota on HF and potential corresponding 
interventions. 

Key microorganisms composing gut microbiota 

The gut microbiome is dynamic and constantly evolving and consists of a multitude of bacteria from many taxonomic classifica-
tions. The primary phyla observed in the human gut are Bacteroides and Firmicutes, while there are also smaller contributions from 
other taxa such as Proteobacteria, Actinobacteria, and Verrucomicrobia.13 Within these taxonomic groups, a diverse array of genera 
and species fulfill distinct functions in the maintenance of gastrointestinal equilibrium. 

Bacteroides, a prominent microbial group inside the gut, is recognized for its significant role in the breakdown of complex car-
bohydrates and the synthesis of vital metabolites such as short-chain fatty acids (SCFAs), notably butyrate.9 The Firmicutes phylum has 
a diverse array of activities, wherein specific individuals exhibit specialization in the process of fermenting dietary fiber and producing 
SCFAs.9 The genus Prevotella, which is commonly linked to plant-based diets, plays a significant role in the metabolism of carbohy-
drates. In contrast, Proteobacteria, such as Escherichia coli, have been observed to induce inflammation when their population is 
increased.14 Akkermansia muciniphila is acknowledged for its involvement in the breakdown of mucin and the maintenance of intestinal 
barrier integrity. 

Risk factors associated with gut dysbiosis 

The makeup of the microbiota is influenced by selection forces exerted by the host and the environment. Numerous elements have 
been found as influential in shaping, structuring, and diversifying.15,16 For example, the Western diet alters gut-barrier permeability by 
decreasing Bacteroidetes and other gut barrier-promoting bacteria.15 Also, there have been reports linking obesity to dysbiosis in HF. 
The gut microbiome of obese mice, which had no leptin satiety factor, showed an alteration in the ratio of Bacteroidetes and 

Table 1 
European society of cardiology definition of heart failure.  

Criteria Description 

I. Symptoms of heart failure Symptoms present at rest or during exercise 
II. Objective evidence Objective evidence of cardiac dysfunction, preferably confirmed by echocardiography, at rest 
III. Response to treatment Favorable response to treatment specifically directed towards heart failure, in cases where diagnosis is unclear  
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Firmicutes, similar to humans.16,17 The use of antibiotics also plays a significant role in the occurrence of gut dysbiosis by disrupting 
the mechanism of competitive exclusion, which is a fundamental characteristic through which the microbiota eliminates pathogenic 
microbes.17 

Identifying and quantifying techniques in gut biota 

Several advanced tools and techniques are employed to quantify and identify gut biota composition accurately (Table 3).18,19 One 
of the most common methods is 16S rRNA sequencing, which targets a specific gene found in all bacteria. Metagenomic sequencing 
takes a broader approach, sequencing all the genetic material in a sample, providing a comprehensive view of the entire gut micro-
biome, including bacteria, viruses, fungi, and other microorganisms. 

The importance of gut microbiota to overall health 

Due to its extensive genetic content and metabolic repertoire, the gut microbiota confers a variety of advantageous characteristics 
to the host organism. The bacteria have crucial functions in maintaining the integrity of the mucosal barrier, providing essential 
nutrients such as vitamins, and offering protection against infections. Furthermore, the interplay between commensal microbiota and 
the mucosal immune system plays a pivotal role in maintaining optimal immunological functionality. The bacteria present in the colon 
exhibit the expression of carbohydrate-active enzymes, which equip them with the capacity to undergo fermentation of intricate 
carbohydrates, resulting in the production of metabolites such as SCFAs.20 The GI tract normally contains three primary SCFAs, 
propionate, butyrate, and acetate, which are commonly present in a ratio of 1:1:3.21 These fatty acids are promptly taken up by 
epithelial cells in the GI tract. Once absorbed, they play a crucial role in regulating several cellular processes, including gene 
expression, chemotaxis, differentiation, proliferation, and apoptosis.22 The gastrointestinal microbiota plays a vital role in the pro-
duction of critical vitamins that the host organism is unable to produce on its own.23 Lactic acid bacteria play a crucial role in 
manufacturing vitamin B12, a compound not naturally produced by animals, plants, or fungi.23 Numerous lines of evidence sub-
stantiate the notion that the gut microbiota plays a significant role in modulating epithelial homeostasis.24 Mice that are devoid of 
germs demonstrate a compromised process of epithelial cell turnover, which may be restored upon colonization with microbiota.25 

Bacteria have been shown to have a significant role in facilitating cell regeneration and wound healing, as shown by the instance of 
Lactobacilli rhamnosus GG.26 Moreover, there have been indications that other species, including A. muciniphila27 and Lactobacillus 
plantarum,28 have a role in enhancing epithelial integrity. Furthermore, it has been suggested that bacteria have the ability to control 
not just the qualities of epithelial cells but also the properties and turnover of mucus. 

Gut hypothesis and inflammation in heart failure 

Scientific findings about the presence of a mucus layer between the gut microbiome and epithelium unfolded the old concept of 
direct adherence of the gut microbiome with mucosal epithelium.29 Mucus layered epithelium along with gut microbes and certain 
immune cells in lamina propria are collectively highlighted as the gut barrier demonstrating a shred of fundamental evidence in the 
maintenance of gut homeostasis.30 

Mucosal epithelium strengthens the gut barrier due to inter-cellular junctions, co-transporters, and various receptors.31 Among the 
factors influencing the gut barrier, microbiota’s role is incredible and currently gaining attention from the scientific community in both 
human health and disease. Microbiomes not only control pathogenicity by preventing the colonization of microbes, neutralizing 
microbial antigens, and producing antimicrobial products but also inculcate a complementary component of the barrier, the mucin.32 

Several biological and mechanical factors trigger disturbances in this barrier and expose the bloodstream directly to noxious stimuli, 
which develops progressive cascades of chronic inflammation. Recent data is suggestive of a similar mechanistic linkage with car-
diovascular morbidity, especially HF.33 

Our thinking over the past years is congruent with the fact that the gut microbiome is directly contributing to pathogenesis and the 
progression of heart failure, a leading cause of morbidity and mortality all over the world.34 HF-associated hemodynamic imbalance 
induces hypoxia and congestion of the bowel wall, especially villi, which are more prone to ischemia. This intestinal hypoperfusion 
state leads to distortion of the intestinal mucosa and ultimately deteriorates the integrity of the gut barrier.35,36 Moreover, recent data 
explored the presence of edematous, collagenous, and thick-walled intestinal mucosa in HF entities.36 Such histopathological erosions 

Table 2 
Heart failure - symptoms and signs.  

Symptoms Signs 

Dyspnea (on exertion, nocturnal) Edema, ascites 
Reduced exercise tolerance Elevated jugular venous pressure 
Fatigue, lethargy Crepitations or wheeze 
Orthopnea Tachycardia 
Nocturnal cough Third heart sound, murmurs 
Wheeze Hepatomegaly 
Anorexia Displaced apex beat 
Confusion/delirium (elderly) Cachexia and muscle wasting  
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Fig. 1. Association between gut microbiota and heart failure. Gut microbiota dysbiosis can occur due to multiple causes, which lead to a release of certain signalling metabolites that lead to the 
development of inflammation and metabolic disorders like insulin resistance, central obesity etc. Subsequent to these changes, heart failure could take place which paves the way for the development of 
a vicious cycle of intestinal barrier dysfunction with dysbiosis and inflammation. 
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were rationalized in the disintegration of the barrier which transforms the intestine into a leaky gut and consequently translocation to 
systemic circulation.37 

Translocated microbiota endotoxin-associated inflammation and progression of HF heightens a vicious cycle by evolving multiple 
complex immune-mediated pathways.38 Immune-mediated cytokines make the gut more permeable and acidosis secondary to 
ischemic hypoxia worsens decompression of the heart by absorption of sodium and water via sodium-hydrogen exchanger 3 
(NHE-3).39 In addition, reduced ejection fraction was documented by a direct attack of lipopolysaccharides (LPS) on cardiomyocytes.40 

Consequently, a correlation exists between the gastrointestinal system and the cardiovascular system which could be the basis for 
further diagnostic and therapeutic interventions in patients with HF. 

Various patterns were expressed in gut dysbiosis with increased enteropathogenic organisms, specifically Shigella, Salmonella, 
Yersinia, and Candida species.41 A reduced spectrum of normal flora including Coriobacteriaceae, Erysipelotrichaceae, and Rumino-
coccaceae at family levels, and Blautia, Collinsella, unclassified Erysipelotrichaceae, unclassified Ruminococcaceae at the genus level was 
documented by Huang Z et al. in HF patients.42 A statistical analysis based on 16SrDNA detected a decrease in Eubacterium rectale and 
Dorea longicatena SCFA-producing bacteria, in twenty-two hospitalized patients with HF.43 Sandek et al. also experienced bacterial 
overgrowth and adhesions in the gut of HF patients.10 Another data-based study observed the rise of Trimethylamine N -oxide (TMAO) 
producing microbial and the decline of SCFA-producing bacteria which resultantly aggravates the progression of HF. Different in-
fections, drugs, diet, acid-base imbalance, and gastroparesis were highlighted as igniting elements in gut dysbiosis and the progressive 
nature of HF.44 

Recent evolution in modern research showed a significant role of microbiota metabolite in the pathophysiology of HF. TMAO, 
secondary bile acids, and SCFA have been marked as a modulator in the lives of patients living with HF.45 

Interesting impacts of gut microbiota-modified TMAO were experienced on cardiac remodelling. Li et al. observed cardiac hy-
pertrophy and fibrosis while Orange et al. expressed Left ventricular dilatation with reduced ejection fraction secondary to TMAO.46 

Raised levels of TMAO in HF with reduced ejection fraction (HFrEF) were found significant in both diagnosis and prognosis observed 
by Salzano et al.46 Serum TMAO Levels could be the pharmacological and dietary target in order to hinder the progression of HF.47,48 

Conflicting outcomes were correlated by different researchers regarding the effect of secondary bile acids on HF patients. Some 
studies favoured post-cardiac injury-affiliated apoptotic and pro-fibrotic roles, while others valued positive feedback over cardiac 
remodelling, hypertrophy, and survivability.44,48 Hence, more clinical trial needs to be focused on recognizing bile acids as a prog-
nostic and therapeutic factor. The latest studies suggested satisfactory results in preventing mineralocorticoid-induced cardiac hy-
pertrophy and fibrosis regarding SCFA.49 Marques et al. determined improved microbiota in patients with a high-fiber diet.50 Another 
study conducted on 84 patients with HF explored that a low-fibre diet caused microbiota dysbiosis.51 

Apart from its role in cardiac pathology, SCFA also modulates systemic inflammation by activating various mechanisms that 
involve recruiting leukocytes, expressing adhesion molecules, secreting cytokines (IL-10,1L-2, TNF-alpha) and chemokines (e.g., MCP- 
1). These fatty acids cause apoptosis of chronic inflammatory cells, especially lymphocytes and macrophages, which might be helpful 
in controlling systemic inflammation.52 Orekhov et al. and Rahman et al. documented inflammation, oxidative stress secondary to 
mitochondrial damage, and various complement pathways as the basis of atherosclerosis and cancer.53,54 SCFA lessens the cumulative 
inflammatory responses and plays a key role in plaque formation and tumor aggression as emphasized by O’Sullivan et al. and Eikawa 
et al.55,56 

Clinical application of SCFA in different forms might be beneficial in inflammatory bowel disease by providing mucosal protection 
and declining gut inflammation, but further pharmacokinetics need to be explored.52 Matson et al. showed the effect of SCFA on 
melanoma patients.57 Different studies in rats expressed astonishing results of SCFA in different diseases, specifically septic shock, and 
acute lung injury (ALI) secondary to sepsis.58 Marked fall in infarct size and reperfusion injury was described by Hu et al. in rats.59 

SCFA might be beneficial in preventing cerebral fibrosis by de-activating microglial cells in rats with cerebral infarct. Clinical trials 
must be conducted to design new drug therapies for cardiac and cerebral advancements. 

Precision nutrition in heart failure 

A subsect of precision medicine, “precision nutrition” aims to individualize diet plans based on phenotype, thereby maximizing 
therapeutic benefits and bettering prognoses.60 It employs metabolomic, proteomic, and genomic data; the impact of gut flora on 
cardiovascular health is one such facet of the study.60 

Nutritional interventions in patients with HF in the form of prebiotics, probiotics, and synbiotics have been elaborated in the 

Table 3 
Techniques for studying microbiome composition and function.  

Technique Description 

Marker Gene Analysis Involves targeted sequencing of specific genes, such as the 16S rRNA gene for bacteria or the ITS region for fungi. These genes serve as 
unique barcodes for taxonomic identification. 

Shotgun 
Metagenomics 

An untargeted sequencing method that captures all genetic information from a microbiome sample, allowing the study of bacteria, fungi, 
DNA viruses, and other microbes. 

Metatranscriptomics Captures RNA transcribed from microbial cells, enabling assessment of gene expression activities within the microbiome. 
Metabolomics Focuses on profiling the metabolites produced by the microbiota and their interactions with host metabolism, often using mass 

spectrometry for identification. 
Metaproteomics Identifies and quantifies the proteins present within a microbiome, also utilizing mass spectrometry for protein analysis.  
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literature.9,61,62 Probiotics are live microbes that are administered to manipulate the gut microflora and to confer health benefits.61 

Studies conducted in rats have shown probiotics to reduce cardiac remodelling after ischemic injuries.62 Similarly, Saccharomyces 
boulardii given to chronic HF patients resulted in improved LVEF and decreased left atrial (LA) diameters.9 Other studies on animals 
with moderate HF that had undergone coronary artery ligation without reperfusion proved that there were reductions in HF pa-
rameters and ventricular remodelling.63 A randomized trial by Constanza et al. also demonstrated that HF indices, namely cardiac 
output, LVEF, LA diameter, stroke volume, etc. tended towards their normal range following administration of L. rhamnosus GR-1 and 
L. plantarum 299v.64 It has been hypothesized that these advantageous effects are due to probiotics causing a fall in leptin levels.32 

Nitric oxide (NO) is a potent vasodilator, which can be derived from dietary inorganic nitrates by oral and intestinal bacteria. Its 
benefits in endothelial function and blood pressure reduction contribute to its cardioprotective effects, therefore rendering microbes 
such as Veillonella and Actinomyces which reduce nitrates potential candidates for consideration as probiotics.63 

Prebiotics are non-digestible products that promote the growth of probiotics, selectively modify microbial composition, and 
function, or induce the growth of certain microbes.32 Prebiotics like vitamins, iron, zinc, unsaturated fatty acids, inulin, etc. facilitate 
immunity and regulate stress responses thus modulating oxidative stress, renin-angiotensin system overactivity, inflammatory re-
actions, vascular resistance, and other such factors that influence cardiovascular health.61 Synbiotics are a combination of pro- and 
prebiotics. Postbiotics refer to metabolites derived from microorganisms that are beneficial to the host. They are the active component 
of probiotics and, hence, are equally effective, but are devoid of adverse effects since they do not contain live organisms.61 

The Dietary Approaches to Stop Hypertension (DASH) diet has been shown to provide mortality benefits for HF patients, especially 
those with hypertensive HFpEF.65 A decrease in markers for cardiac injury and strain like high sensitivity cardiac troponin1 and 
N-terminal b-type pro natriuretic peptide has been noted with DASH diets.60 Low sodium intake results in blood pressure reduction and 
subsequently improved LV function; additional benefits include improvement in arterial compliance, oxidative stress, and quality of 
life.60 The Mediterranean diet, owing to its ability to lower trimethylamine-N-oxide levels has also been employed for primary pre-
vention of HF.32 

Precision heart failure therapeutics 

Several studies have proved the beneficial effect of high-fibre diets on gut flora and its impact on HF; positive effects on cardiac 
function, remodelling, systolic and diastolic functions, as well as hypertrophic and dilatation changes have been noted.66 A diet rich in 
fibers decreases pathogenic species and increases symbiotic bacteria, some of which, like the acetate-producing bacteria, protects 
against myocardial hypertrophy and fibrotic development.67 A calorie-dense obesogenic diet (OBD) has the contrary effect on in-
testinal microbial composition, causing cardiac fibrosis and decreased LVEF.66 Oral charcoal adsorbents like AST-120 have been 
shown to reduce hypertrophic and fibrotic changes in animal models by altering the concentration of select microbiota metabolic 
products.68 

Fecal Microbiota Transplantation (FMT) is a method to introduce healthy gut flora into a patient to improve their microbiome 
composition.68 Trials have been conducted to study the role of FMT in CVD; myocardial injury due to inflammatory infiltration has 
been notably reduced following the procedure and peripheral resistance to insulin was seen to improve following faecal infusion.68,69 

FMT is thus a promising avenue of therapeutics; however, it is not without risks.61,68 Pathogenic and unwanted bacteria may be 
transferred, causing disease and mortality.61,68 Further research is required for the development of better screening methods for donor 
faeces, non-invasive delivery methods, and exploration of techniques such as single-species transplants. 

Trimethylamine N-oxide 

TMAO is synthesized in the gut via a two-step procedure.61 First, dietary precursors such as choline, L-carnitine, and phosphati-
dylcholine are converted to TMA by the gut floral enzyme system CutC/D (TMA lyases).61 The cholines can be directly converted to 
TMA, but L-carnitine forms an intermediate γ-butyrobetaine, which subsequently forms TMA.61 Choline is the most common dietary 
precursor and is found in eggs, dairy, and fish; red meat has high levels of L-carnitine.34,69 Choline also undergoes enterohepatic 
circulation, which can result in TMAO synthesis long after oral intake.34 Next, the hepatic flavin-containing monooxygenases (FMO) 
oxidize TMA to TMAO which can be excreted by the kidneys or stored in tissues.61 

TMAO exerts its detrimental effects - cardiac remodelling, mitochondrial dysfunction, fibrosis, and hypertrophy via the trans-
forming growth factor-β1 (TGF-β1)/Smad3 pathway.34,70 Elevated levels have been linked to poorer acute and chronic HF prognoses 
and are thus a predictor for severity, complications, and mortality.34 Murine studies conducted to support these theories have 
demonstrated that TMAO causes reversible LV dilation, and increased BNP levels.70 Thus, it has been concluded that dietary modi-
fication control can be achieved on circulating TMAO levels which results in improvement in myocardial and LV functions and BNP 
levels.70 

Vegan diets eliminate major sources of TMAO precursors and result in a microbiome that has a lower capacity to synthesize it.69 

In-vivo synthesis can be blocked by targeting either the gut floral or the hepatic enzymes. Inhibition of the hepatic enzymes, however, 
can lead to TMO accumulation in the liver and may result in hepatitis.68 Iodomethylcholine, Fluoromethylcholine and 3,3-dimethyl-1--
butamol (DMB) are non-lethal TMA lyase inhibitors.34,70 DMB is a competitive CutC inhibitor that does not affect commensal pop-
ulations and has been shown to suppress TMAO production and prevent cardiac remodelling.70 

Antibiotics lead to only a transient decrease in TMAO because synthesis re-starts after resistant strains begin proliferating.70 Other 
prospective therapeutic modalities include meldonium, a carnitine and γ-butyrobetaine analog, which inhibits the TMAO synthesis 
pathway, and resveratrol, which alters the microbiome.32 
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Gut microbiome-related heart failure biomarkers 

Gut microbiota can also influence the host by generating bioactive metabolites. These metabolites may potentially influence in-
testinal well-being, immune system function, and even the cardiovascular system.71 

Short-chain fatty acid 

In a recent prospective study conducted by Modrego et al., an increase in SCFA levels in the body, especially butyrate, was 
associated with a favorable prognosis in patients diagnosed with HF.72 Their data indicated that the improved prognosis and reduction 
of inflammation 12 months after an initial episode of HF were linked to the recovery of the gut microbiota composition. This recovery 
was marked by an increase in the presence of beneficial bacteria and short-chain fatty acids (SCFAs), along with a decrease in the 
prevalence of pathogenic bacteria. In a separate study conducted by Bartolomaeus et al. using rat models, it was observed that SCFAs, 
particularly propionate, notably reduced cardiac hypertrophy, fibrosis, vascular dysfunction, and hypertension.73 These findings imply 
that promoting increased SCFA production might serve as a beneficial non-pharmacological preventive approach for individuals with 
heart failure. 

Phenylalanine 

In recent studies, higher phenylalanine concentrations have been found in patients with advanced heart failure than in healthy 
individuals.74,75 The study conducted by Czibik et al. established a pathogenic role of increased phenylalanine levels leading to cardiac 
aging, thus highlighting phenylalanine modulation as a potential therapeutic strategy for age-associated cardiac impairment.76 Hir-
aiwa et al. conducted an observational study to understand the significance of the leucine/phenylalanine ratio as a prognostic tool for 
diagnosing HF. Their findings revealed that a leucine/phenylalanine ratio of less than 1.7 was linked to an increased risk of death and 
hospitalization due to worsening HF, whereas a ratio exceeding 1.7 was associated with a lower risk of experiencing the same out-
comes. Consequently, these results suggest that this ratio could serve as a valuable predictor of future cardiac events in patients with 
HF.77 

Ricinoleic acid 

Ricinoleic acid (RA), a gut microbiota metabolite and the main component of castor oil is known to exert remarkable analgesic and 
anti-inflammatory effects.78 Levels of ricinoleic acid have been reported to be significantly decreased in patients with chronic HF.79 

Moreover, ricinoleic acid levels were negatively associated with bacterial communities found to be enriched in the gut of patients with 
chronic HF and positively correlated with those present in the microbiota of healthy patients without any underlying cardiovascular 
pathology.80 

Other gut microbiota metabolites associated with heart failure 

Wang et al. concluded that bacteria found in higher quantities in the gut of HF patients, such as Escherichia, Shigella, and Kleb-
siella, were negatively correlated with serum biocytin and riboflavin levels. Haemophilus also exhibited a negative correlation with 
serum levels of alpha-lactose, cellobiose, isomaltose, lactose, melibiose, sucrose, trehalose, and turanose, potentially suggesting a 
cardioprotective effect of these metabolites.81 In contrast, Klebsiella demonstrated a positive correlation with serum bilirubin and 
ethyl salicylate levels, which may indicate a detrimental impact of these metabolites on cardiovascular outcomes in patients. These 
metabolites warrant further research for the development of therapeutics aimed at blocking their action, potentially offering car-
dioprotective benefits.80 

Pharmacology and its effects on gut microbiome 

The gut microbiome affects the pharmacokinetics and pharmacodynamics of over 50 drugs, despite being overlooked.82 Solubility, 
pH, transit time, permeability, and microbial metabolism all have an impact on drug absorption. The gut microbiota can alter drug 
efficacy and safety.83 It can, for example, limit drug absorption, as demonstrated by digoxin and eggerthella lenta.84 Microbes also have 
an impact on drug metabolism and distribution, such as in the case of benzodiazepines used to treat inflammatory bowel disease.85 

Furthermore, microbial metabolites can disrupt host drug metabolism.85 The microbiota can influence drug metabolism indirectly by 
affecting liver enzyme expression.86 Understanding these interactions is critical for personalized medicine and drug therapy 
optimization. 

It is unclear how the microbiome affects pharmaceutical responses, especially in cardiovascular medicine. Dutch research on 1,135 
patients found that beta-blockers, ACE inhibitors, statins, and platelet inhibitors dramatically affect the gut microbiome.87 An 
investigation with 2,700 British TwinsUK participants confirmed this.88 

Statins 

The gut microbiota may alter three of the most prescribed statins—atorvastatin, rosuvastatin, and simvastatin—according to 
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studies. When taken with simvastatin, the bile acids lithocholic, taurolithocholic, and glycolithocholic, which are all made by bacteria, 
lower LDL-C. On the other hand, genetic variations like the SNP gene that codes for the transporter SLCO1B have an impact on statin 
response and bile acid levels as well.89 A study by Nolan et al. showed how statin in a mouse model affected the composition of the gut 
microbe and reduced hepatic expression of CYP27a1.90 Similarly, a study by Liu et al. showed that rosuvastatin changed bacterial 
taxonomy, influencing LDL-C levels.91 In animal studies, atorvastatin influenced gut microbial populations.92 These data demonstrate 
a link between gut microbiota, statins, and treatment outcomes. 

Amlodipine and captopril 

The gut microbiota and certain antihypertensive medicines are poorly understood, largely based on animal research. Amlodipine is 
well absorbed in the digestive tract, but it decreases with time in rat and human faeces. Amlodipine absorption increased in rats 
administered ampicillin, a medication that suppresses the gut microbiota, prior to amlodipine, indicating that the gut microbiota 
influences drug absorption.93 Similarly, a study by Santisteban et al. showed that captopril therapy increased the length of the villi and 
decreased intestinal permeability and fibrosis in rats with high blood pressure. This fixed the dysbiotic state that comes with high blood 
pressure.94 

Warfarin, aspirin, and indomethacin 

Warfarin, a thromboembolic disease anticoagulant, can interact with antibiotics, increasing the risk of bleeding events. Antibiotics 
may interfere with warfarin metabolism via CYP enzymes or disrupt vitamin K-producing gut microorganisms.95 Aspirin, an anti-
platelet medication used to treat cardiovascular disease, may cause injury to the upper GI tract due to its effect on gut flora.96 Aspirin 
and other NSAIDs influence the gut microbiome. Prevotella, Bacteroides, Ruminococaceae, and Barnesiella are four bacteria that can 
distinguish aspirin users from non-users.97 Indomethacin, another nonsteroidal anti-inflammatory medicine, was discovered to have 
bidirectional effects on the intestinal microbiota; it altered the microbiome, which influenced indomethacin metabolism. In the 
gastrointestinal tract, glucuronidases deconjugate indomethacin metabolites, enhancing drug exposure.98 Although hereditary factors 
have a role in aspirin resistance, the gastrointestinal microbiome’s contribution to aspirin responsiveness is not entirely known.99 

Digoxin 

Digoxin is a well-known medication for treating heart failure whose absorption depends on gut bacteria. Eggerthella lenta changes 
digoxin into the inactive microbial metabolite dihydrodigoxin, which stops 10% of patients’ bodies from absorbing the drug.84 Digoxin 
turns on the cardiac glycoside reductase (cgr), which is a cytochrome-encoding operon that is missing in E. lenta strains that do not 
reduce but are present in strains that do reduce. This is what makes digoxin work. Digoxin taken with antibiotics or an arginine-rich 
diet stops this microbial response, which raises systemic digoxin levels and causes changes in drug levels that are clinically 
important.89 

Ongoing trials and their implications in HF management 

Continuous evolution in the HF research landscape supports evidence that the gut microbiome plays a vital role in the progression 
of HF. Recently, several noteworthy studies have explored the association between heart failure and gut microbiome. In patients with 
HFpEF, the GutHeart trial100 aimed to investigate whether modulating the gut microbiota improves cardiac function. This study, 
involving a three-month intervention with either the probiotic yeast S. boulardii or the locally acting oral antibiotic rifaximin, showed 
no significant benefits of gut microbiota modification for HF management. However, it revealed a complex relationship between gut 
and heart health. Similarly, a pioneering study,101 is investigating the role of altered gut microbiota in the initiation and establishment 
of HF and pre-HFpEF. If this hypothesis is validated, monitoring gut microbiota could serve as an early detection tool for individuals at 
risk of developing HF or pre-HFpEF. Additionally, this could lead to the development of preventive strategies, such as dietary in-
terventions or probiotics, to modulate the microbiome and reduce the risk of HF. Another trial, PROBHF,102 explored the potential of 
probiotics as adjunctive therapy for patients with advanced HF. If their hypothesis that daily probiotic supplementation will lead to 
favourable changes in various biomarkers related to inflammation and cardiac function in HF patients compared to a placebo group is 
supported, it could lead to new strategies for managing heart failure, with a focus on inflammation, nutrition, and patient well-being. 

EMPAGUM103 suggested that empagliflozin, a drug primarily used for diabetes, might affect the gut microbiota in patients with 
HFpEF. If a link between empagliflozin-induced changes in gut microbiota and improved HFpEF outcomes is established, it could open 
new avenues for tailored HF management strategies. While it is also essential to acknowledge the critical role of preoperative opti-
mization in enhancing the overall quality of care and outcomes for patients with HF, a study in China104 supports those proactive 
preoperative interventions, particularly focusing on nutrition and immune enhancement, can potentially improve the outcomes of HF 
patients undergoing LVAD surgery. 

To shed light on new potential treatments for patients with ischemic heart failure, a trial105 investigated the differential metabolic 
markers associated with ischemic HF and the influence of faecal flora on the course of heart failure in patients with ischemic HF. While 
promising, these findings suggest the need for further research to establish causal relationships and to better understand the mech-
anisms involved. Clinical trials and studies with larger patient populations are essential to validate these hypotheses. 
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Conclusion and future directions 

In conclusion, our study demonstrates the importance of considering the extent and ways dysbiosis could contribute to the 
pathophysiology of HF through inducing systemic inflammation, oxidative stress, and the accumulation of specific metabolites, which 
all concludingly may exacerbate the severity of cardiac dysfunction in patients and worsen their prognosis. Therefore, observing the 
complex interplay between gut microbiota and the pathogenesis of HF could provide valuable knowledge regarding 1) prospective 
prevention and treatment schemes, 2) novel use of gut microbiota as biomarkers, and 3) our understanding of HF. Potential therapeutic 
avenues include dietary interventions, such as including supplements including probiotics and prebiotics, in addition to faecal 
microbiota transplantation, antibiotics, and lifestyle modifications, which could all contribute to the modulation of gut microbiota. 
Furthermore, integrating such interventions into clinical practice could assist physicians in revolutionizing the quality of care provided 
to patients, and thereby improving outcomes for patients suffering from such challenging conditions. It is also imperative to 
acknowledge that understanding how medications impact the gut microbiota and the subsequent effects of such impact could update 
the strategies for providing optimal management regimens. Further study is needed to understand how gut bacteria affect the body, 
how they might be controlled, and how they improve patient outcomes. More randomized controlled studies might shed light on gut 
microbiota’s function in HF’s genesis and progression and its interactions with cardiovascular disease drugs. Additional studies might 
examine the role gut microbiota plays in the etiology of various comorbidities that aggravate HF, preserving an understanding of the 
many processes involved in HF. 
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