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Abstract: Excess body weight constitutes one of the major health challenges for societies and health-
care systems worldwide. Besides the type of diet, calorie intake and the lack of physical exercise,
recent data have highlighted a possible association between endocrine-disrupting chemicals (EDCs),
such as bisphenol A, phthalates and their analogs, and obesity. EDCs represent a heterogeneous
group of chemicals that may influence the hormonal regulation of body mass and adipose tissue
morphology. Based on the available data from mechanistic, animal and epidemiological studies
including meta-analyses, the weight of evidence points towards the contribution of EDCs to the
development of obesity, associated disorders and obesity-related adipose tissue dysfunction by
(1) impacting adipogenesis; (2) modulating epigenetic pathways during development, enhancing
susceptibility to obesity; (3) influencing neuroendocrine signals responsible for appetite and satiety;
(4) promoting a proinflammatory milieu in adipose tissue and inducing a state of chronic subclin-
ical inflammation; (5) dysregulating gut microbiome and immune homeostasis; and (6) inducing
dysfunction in thermogenic adipose tissue. Critical periods of exposure to obesogenic EDCs are the
prenatal, neonatal, pubertal and reproductive periods. Interestingly, EDCs even at low doses may
promote epigenetic transgenerational inheritance of adult obesity in subsequent generations. The aim
of this review is to summarize the available evidence on the role of obesogenic EDCs, specifically
BPA and phthalate plasticizers, in the development of obesity, taking into account in vitro, animal
and epidemiologic studies; discuss mechanisms linking EDCs to obesity; analyze the effects of EDCs
on obesity in critical chronic periods of exposure; and present interesting perspectives, challenges
and preventive measures in this research area.

Keywords: adiposity; bisphenol; body mass index; endocrine disruptors; endocrine-disrupting
chemicals; obesity; phthalate

1. Introduction

Over recent decades, the escalating global increase in overweight and obesity, also
known as “globesity”, has constituted one of the major health challenges for societies and
healthcare systems worldwide. Based on the World Obesity Atlas 2023 report, approx-
imately 38% of the world population presents with excess body weight, having a body
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mass index (BMI) of more than 25 kg/m2 [1]. This global prevalence of overweight and
obesity is expected to reach 51% by 2035, while 78% of US adults are estimated to live with
excess body weight by 2030 [2,3]. More striking than the elevated obesity rates in adults is
the higher prevalence of excess body weight among children and adolescents, which has
doubled or tripled in children of school age in many developed regions of the world [3,4].
Moreover, obesity is associated with a plethora of comorbidities, including diabetes mellitus
type 2 (T2DM), coronary heart disease, hypertension, stroke, dyslipidemia, sleep apnea,
osteoarthritis and some types of cancer [5–8].

During the past few decades, several research teams have investigated the associ-
ation between common chemical exposures and the occurrence of allergy, asthma, im-
mune dysfunction, cancer and other entities, including obesity [9,10]. The contemporary
industrialized environment in developed countries is a constant source of a variety of
chemical substances, presenting persistence and bioaccumulation potency in the food chain.
Moreover, unrecognized or little-recognized environmental chemicals, such as industrial
endocrine-disrupting chemicals (EDCs) or endocrine disruptors, have the potential to dis-
rupt the actions of hormones, causing adverse health effects. Particularly, some EDCs that
have been termed “obesogens” may also influence adipogenesis and regulatory metabolic
pathways, leading to an imbalance in the regulation of body weight resulting in weight gain
and obesity [11]. The most important EDCs that have been suspected in the development
of obesity and obesity-associated metabolic disorders are the plastic additive bisphenol
A (BPA) and the phthalate-based plasticizers. The aim of this narrative review is to sum-
marize the available evidence on the role of EDCs, specifically BPA and phthalates, in the
development of obesity, taking into account mechanistic, animal and epidemiologic studies;
discuss mechanisms linking EDCs to obesity; analyze the effects of EDCs on obesity in
critical chronic periods of exposure; and present interesting perspectives and challenges in
the research area.

2. Methods of Literature Search and Review Criteria

Although this manuscript is not a systematic review, for its preparation, we applied
the MESH search terms “obesity” and “endocrine-disrupting chemicals” in the PubMed
NIH database from inception until 20 October 2023, which yielded 670 outputs. Among
the 670 manuscripts, we excluded 19 manuscripts that were associated with brain and/or
neurogenerative disorders, 14 manuscripts that were related to environmental factors only,
11 manuscripts that were referring to cancer, 4 articles related to rheumatic/bone diseases,
3 articles related to infectious diseases and 1 item that was a book and not an article.
Furthermore, five manuscripts were written in French, two in German, one in Chinese and
one in Japanese. Therefore, out of the 670 outputs, 61 were excluded for the aforementioned
reasons, leaving a total of 609 manuscripts included in this literature search. Finally, we
acknowledge that all these manuscripts cannot be covered in the context of this review.

3. Genetic and Environmental Factors in Obesity

Obesity is a multifactorial disorder characterized by abnormal or excessive fat accu-
mulation that results from either an increase in the adipocyte size (hypertrophia) or an
increase in the number of adipocytes (hyperplasia) and presents several risks to health.
In clinical practice, BMI, which is closely associated with body fatness, is recommended by
the WHO as a population-level measure of overweight and obesity, defined as a BMI of or
above 25 kg/m2 and 30 kg/m2, respectively. [12–14]. Body fat percentage (BF%) as a % of
total body weight presents some advantages over BMI in evaluating fat mass. The BF%
cut-off points for obesity proposed by the WHO are 25% for men and 35% for women,
corresponding to a BMI of 30 kg/m2 in young Caucasians [15].

Obesity represents a complex disorder due to a multifactorial etiology comprising
genetic, epigenetic, environmental, societal and behavioral factors. Increased calorie diet,
sedentary lifestyle and decreased energy expenditure play an important role [16,17]. Obe-
sity has a strong genetic background demonstrated by family, twin and adoption studies
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that have shown heritability rates from 40 to 70% for BMI [18–21]. Nevertheless, non-
syndromic monogenic obesity involves less than 5% of the obese population. More than
95% of subjects with obesity present common polygenic obesity, which is multifactorial and
still poorly explained [22]. In particular, the relative contribution of polygenic scores from
genome-wide association studies (GWASs) has been estimated to be between 2 and 8%,
with the greater part of the BMI variation being unexplained [23]. The dominant challenge
is a combination of genetic and environmental parameters such as physical exercise, energy
intake and tobacco smoking, also including gene–gene and gene–environment interactions
that underlie the complex and dynamic etiopathogenesis of obesity [24,25]. Furthermore,
the accelerated global spread of excess body weight cannot be attributed to genetic factors
only [26]. However, the availability of high-calorie food, the type of diet and physical
inactivity are not sufficient to explain the striking increase in excess body weight. Therefore,
environmental parameters may be responsible for the elevated rates of increased body
weight during the last few decades [27]. Recent data have highlighted the role of other
environmental factors contributing to the increase in BMI, such as EDCs.

4. The Spectrum of Endocrine Disruptors

Recent data from observational, animal and experimental studies have shown that
certain chemical substances, such as EDCs, may have an impact on the endocrine system,
being involved in the development and rapid propagation of obesity [28]. Based on the
definition by the “Global assessment on the state of the science of endocrine disruptors”
of the World Health Organization (WHO) in 2002, an endocrine disruptor has been de-
scribed as “an exogenous substance or mixture that alters functions of the endocrine system
and consequently causes adverse health effects in an intact organism, or its progeny, or
(sub)populations” [29]. Certain EDCs are found in nature, such as phytoestrogens; however,
the majority of EDCs are synthetic compounds that have been released through human
activities into the ecosystem. Humans are exposed to endocrine disruptors through various
sources in their daily lives, in outdoor and indoor environments and via the use of personal
care and household products, industrial chemicals, pharmaceuticals, pesticides, herbicides,
fungicides and flame retarders; air pollution; and dietary habits. EDCs constitute a highly
heterogeneous group of chemical substances that can be categorized according to their
chemical structure and properties, their occurrence and intended use, their mechanism of
action, the potential direct or indirect impact on the endocrine system, the accumulation in
the organism, their environmental persistence and the described or suggested clinical impli-
cations [30]. The catalog of EDCs encompasses agrochemicals, such as pesticides, herbicides
and fungicides; industrial organic solvents/lubricants and their byproducts (dioxins, poly-
chlorinated bisphenyls, polybrominated bisphenyls); pharmaceutical substances; catalysts;
and plastic contaminants and plasticizers, such as bisphenols and phthalates [31]. In com-
parison to other EDCs, bisphenols and phthalates are metabolized and excreted relatively
quickly (i.e., half-lives less than 24 h) and hence are considered nonpersistent [32]. Despite
their nonpersistent nature, their ubiquitous and frequent use in a wide variety of consumer
products throughout life leads to a chronic exposure, reported to be global [33].

Potential targets of EDCs include any endocrine organ, hormonal system and/or
hormonally affected pathway [34]. Some of these EDCs may interfere with the regulation
of metabolism, energy balance and the storage of fat in the organism, leading to the
development of obesity by affecting the function of adipose tissue and disrupting metabolic
endocrine signaling [35]. Figure 1 depicts some EDCs that have been implicated in obesity.
Some of the best-documented groups of EDCs with obesogenic properties and widespread
exposure in the general population are bisphenols and phthalates, which are mainly found
in plastic products.
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Figure 1. Obesogenic endocrine-disrupting chemicals. Abbreviations: PBDEs: polybrominated di-
phenyl ethers; PCBs: polychlorinated biphenyls; PFAs: perfluoroalkyl substances. All images are 
originated from the free medical site http://smart.servier.com/ (accessed on 1 December 2023) by 
Servier licensed under a Creative Commons Attribution 3.0 Unported License. 

Globally, the production of plastics has increased significantly since the mid-20th 
century (Figure 2). After a stagnation in 2020 due to the emergence of the COVID-19 pan-
demic, this production reached 390.7 million tons in 2021 [36]. Interestingly, there was a 
parallel striking epidemic rise in obesity/overweight globally, as depicted in Figure 2, 
mainly attributed to the international food production and supply system [3,37]. Since 
1970, food production and supply with ameliorated manufacturing and distribution sys-
tems have radically shifted in the direction of elevated energy availability [3]. 

Figure 1. Obesogenic endocrine-disrupting chemicals. Abbreviations: PBDEs: polybrominated
diphenyl ethers; PCBs: polychlorinated biphenyls; PFAs: perfluoroalkyl substances. All images are
originated from the free medical site http://smart.servier.com/ (accessed on 1 December 2023) by
Servier licensed under a Creative Commons Attribution 3.0 Unported License.

Globally, the production of plastics has increased significantly since the mid-20th
century (Figure 2). After a stagnation in 2020 due to the emergence of the COVID-19
pandemic, this production reached 390.7 million tons in 2021 [36]. Interestingly, there was
a parallel striking epidemic rise in obesity/overweight globally, as depicted in Figure 2,
mainly attributed to the international food production and supply system [3,37]. Since 1970,
food production and supply with ameliorated manufacturing and distribution systems
have radically shifted in the direction of elevated energy availability [3].

Worldwide, more people have access to palatable, cheap and ultra-processed foods of
lower nutritional quality, and a number of obesogenic EDCs have gradually reached the
global food chain, with a potential influence on human metabolism. Moreover, plasticizers
are the main additives in the manufacture of plastic products, commonly used in the
production of food packaging materials to improve flexibility, durability, processing and
resistance to heat, fire and UV radiation. All these chemicals may be detached from polymer
compounds and leak into the surrounding environment after being degraded. Humans may
be exposed to those EDCs through various routes including food ingestion, the respiratory
tract and dermal exposure [10].

http://smart.servier.com/
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Figure 2. Worldwide plastic production in million metric tons and prevalence of excess body weight
(BMI: >25 kg/m2) in percentage (%). Figure is based on data from [1,36,37].

4.1. Bisphenol A

Bisphenol A (BPA), or 4,4 -isopropylidenediphenol 2,2-bis (4-hydroxy-phenyl)- propane,
was first reported by the chemist A.P. Dianin in 1891. It is a functional diphenyl compound
that possesses two hydroxyl groups in the “para” position (Figure 3), which allows it
to bind with androgen and estrogen receptors (classical nuclear ERα and ERβ, ERγ and
membrane-associated GPR30) as an antagonist or agonist [38]. BPA is classified as a xenoe-
strogen due to its similarity with diethylstilbestrol, a synthetic estrogen, and as an EDC
which enhances the ER with lower affinity compared to 17β-estradiol [39,40].
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Figure 3. Chemical structure of bisphenol A (left) and phthalates (right).

Due to its elastic, cross-linking, polymer-forming and intrinsic heat resistance proper-
ties, BPA represents one of the world’s most heavily produced synthetic industrial chemical
compounds listed by the Organization for Economic Cooperation and Development, with
more than 15 billion pounds produced worldwide annually [41–43] and over 1 million
pounds leached into the environment [44]. BPA is used worldwide in the synthesis of
polycarbonate plastics, plastic consumer products, drink and food packaging, plastic bags,
water bottles, epoxy resin linings of beverage containers and canned food, dental materials
such as sealants, electronic equipment, toys, optical lenses, paper coatings, adhesives, dye
developers and thermal papers [45].

BPA can be released into the surrounding environment through various means including
exposure to heat or acidic conditions, hydrolysis or degradation of the polymer and constant
diffusion of residual BPA that remains on the polymer [46]. The quantity of released BPA is
affected by duration of exposure, processing methodology and environmental conditions such
as temperature and PH [47]. Human exposure to nanomolar concentrations of environmental
BPA is continuous and widespread via oral, skin and respiratory absorption from atmospheric
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exposure, and dust particles from commercial and residential environments [48]. Exposure to
BPA in utero and through lactation is also important for the developing fetus and the neonate,
respectively [49,50]. However, the main route of exposure originates from water and diet, as
BPA may migrate from beverage and food packaging, as well as from dental sealants [46,51].
Interestingly, skin exposure is more severe than oral intake due to the sustained presence of
BPA in the organism and the elevated plasma concentrations of unconjugated toxic BPA [52].
However, this kind of exposure does not reflect a natural setting. Moreover, Christensen et al.
reported that the majority of BPA exposure was food-related (i.e., via leaching from food
packaging materials and containers) after a fasting study to exclude food intake as a potential
route of BPA exposure [53].

BPA and its conjugates have been detected in various body fluids and tissues, including
urine, saliva, plasma, feces, amniotic fluid and breast milk; however, urine samples are mainly
examined for human monitoring. Epidemiologic studies have confirmed the widespread
exposure to BPA with 95 to 99.8% of adults, adolescents, children and infants presenting
detectable concentrations of BPA and its metabolites in urine, independently of gender,
income, educational level or BMI [54,55]. Additionally, circulating free unconjugated BPA,
which is the active form of BPA, is usually determined at concentrations of nanograms per
millimeter in serum or plasma [56]. BPA kinetics analyses have shown that the rate of excretion
of BPA is not highly influenced by fasting, suggesting a slower rate of BPA excretion or a
potential bioaccumulation of BPA in human tissues, particularly in adipose tissue [45,49].
Interestingly, in a study of the urinary BPA profile in five individuals over a 48-h period of
fasting (bottled water only), BPA levels increased after the pre-fast meal, decreased over the
next 24 h, fluctuated at lower levels during the second day, and then rose after the post-fast
meal [53]. This rise may be attributed to non-food sources that could be still present, such as
dust, or the release of BPA from lipid reservoirs from past exposures [53].

Exposure to BPA has been associated with a plethora of disorders such as obesity,
T2DM, cardiovascular disease, infertility, neurodegenerative diseases and cancer, partic-
ularly breast cancer [57]. Moreover, BPA is classified as a potentially toxic and harmful
substance to reproduction and eyes, respectively, and a possibly irritating substance to the
skin and respiratory tract [58].

Due to increasing concerns about the safety of BPA and evidence of its relationship
with human health, BPA has been banned in the manufacture of baby bottles since 2011 in
the European Union (EU). The U.S. Food and Drug Administration (FDA) banned the use of
BPA in baby bottles, spill-proof cups and infant formula packaging materials in 2012–2013.
In April 2023, the European Food Safety Authority (EFSA) published a re-evaluation of
BPA’s safety, drastically decreasing the tolerable daily intake (TDI) for BPA from 4 µg/kg
of body weight per day in 2015 to 0.2 ng/kg (around 20,000 times lower than before) [59].
These restrictions were mainly based on toxicological animal studies that appraised BPA
side effects on renal, hepatic and immune function [46,60]. Nevertheless, since there is an
absence of international standardization regarding a tolerable BPA limit, BPA is actually
used in the production of polycarbonate plastic food materials. Following the bans and
restrictions, the industry has gradually employed a variety of less-studied BPA analogs with
toxicological characteristics that are not fully elucidated. However, like BPA, alternatives
such as bisphenols S (BPS), F (BPF), B (BPB), C (BPC), E (BPE), AF (BPAF), P (BPP) and Z
(BPZ) and 4-cumylphenol (HPP) have also been identified as EDCs, presenting androgenic,
estrogenic and obesogenic activity in vitro as well as neurotoxic, genotoxic and cytotoxic
potential [46,57,60–64]. BPA analogs may bind to nuclear receptors due to their phenyl
moiety and hydrophobic structure that play a role in endocrine-disrupting activity [65].

4.2. Phthalates

Phthalates are a group of chemical compounds in the family of esters derived from
phthalic acid. The common chemical structure of phthalates involves a benzene ring with
two carboxylic acid groups (ortho-phthalates, Figure 3) or one carboxylic acid group (para-
phthalates) attached. The length and structure of the alkyl side chains attached to these
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carboxylic acid groups vary, resulting in different types of phthalates with specific prop-
erties [66]. Ortho-phthalates represent the most common type of phthalates and include
diethyl phthalate (DEP), dibutyl phthalate (DBP), diisobutyl phthalate (DIBP), diisononyl
phthalate (DINP) and di(2-ethylhexyl) phthalate (DEHP). Phthalates first appeared in the
1920s, and their widespread use as plasticizers destined primarily to soften polyvinyl
chloride (PVC) started in the 1930s. Currently, the total production of phthalates is approxi-
mately 5.5 million tons per year with an increasing rise attributed to the use of PVC [67].
Phthalates constitute a large fraction of polymer additives due to the presence of various
beneficial properties, such as flexibility, compatibility with polymers, chemical stability
and durability, low water solubility, resistance to heat and weather conditions, electrical
resistivity and transparency. They are primarily used as plasticizers in the production of
flexible PVC products (vinyl flooring, PVC cables and wires, etc.); personal care products
in cosmetics, perfumes and lotions to enhance fragrance and texture; toys and children’s
products; adhesives and sealants; medical devices; building materials; coatings and inks;
textiles and carpets; and food packaging [67,68].

Because phthalates are not covalently bound to their compounds, they may easily
migrate and leak into the environment, where they can accumulate in the food chain due
to their lipophilic nature [69]. Hence, humans are exposed to phthalates through dietary
exposure, which represents the major route for intake; skin absorption; and inhalation
of indoor and outdoor air comprising dust [30,70]. Infants, toddlers and children have
a higher exposure to phthalate esters than adults through their mouthing activity and
contact with toys, carpets and floors [30]. Furthermore, certain phthalates have the ability
to pass through the placenta, potentially exposing the developing fetus to these chemicals
during pregnancy [71,72]. Epidemiological studies have shown that phthalates, particularly
the commonly used DEHP and its breakdown products, may be found in a plethora of
human body fluids such as urine, which is the most commonly studied and used matrix for
assessing human exposure to phthalates; plasma; saliva; follicular fluid; amniotic fluid; and
breast milk [72–75]. Phthalate esters present endocrine-disrupting properties associated
with detrimental reproductive and neurodevelopmental effects as well as obesity and
T2DM [30,76–78]. In response to concerns about the potential harmful effects of phthalates,
the use of certain phthalates including DEHP has been restricted in concentrations exceed-
ing 0.1% by weight of the plasticized products in Europe and elsewhere [79]; nevertheless,
there are no international acceptable limits for phthalate esters. Efforts have been made to
reduce or replace their use in various applications with non-phthalate and bio-based plasti-
cizers, polymer blends and formulations, and alternative materials. Interestingly, exposure
to most EDCs, including DEHP metabolites and BPA, decreased between 2009 and 2016
in a sample of individuals with impaired fasting glucose from the Dutch population [80].
However, there is a need to assess the use of less toxic substitute chemical compounds for
their metabolic and endocrine consequences.

5. Mechanisms Linking Endocrine Disruptors to Obesity

The hormonal system plays a crucial role in the regulation of carbohydrate, lipid
and protein metabolism as well as in the regulation of body mass. Moreover, adipose
tissue is not considered a passive storage depot for energy; it is also recognized as a
large endocrine organ secreting a plethora of various hormones and bioactive molecules
(adipokines) that play a critical role in regulating metabolism and body mass as well as other
functions [81]. EDCs are xenobiotics exhibiting endocrine disruptor properties by binding to
various nuclear receptors, altering specific cellular responses. These actions are pleiotropic
depending on the cell and receptor types, receptor density, critical chronic periods of
exposure, the presence of other cofactors, etc. Some important properties of EDCs include
the following: (1) their effects at very low concentrations in a similar fashion to hormonal
effects; (2) the exhibition of U-shaped nonmonotonic responses where decreased levels
may cause phenotypic alterations not necessarily seen with increased doses; (3) agonistic
or antagonistic actions after interacting with hormonal receptors resulting in complex
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unpredictable biological responses with stimulation, mimicking or inhibition of hormonal
effects; (4) their impact on the number of cellular receptors and the level of serum hormones;
and (5) their accumulation in adipose tissue due to their lipophilic nature which further
increases the retention of other lipophilic chemicals [82].

BPA and phthalates may interact with several nuclear hormone receptors including
ERα and ERβ, with an affinity being 103–104 times lower compared to 17β-estradiol (E2), an-
drogen receptor (AR), progesterone receptor (PR), glucocorticoid receptor (GR), thyroid hor-
mone receptors (TRα and TRβ), G-protein-coupled receptor 30 (GPR30), estrogen-related
γ receptor (ERR-γ), mineralocorticoid receptor (MR), peroxisome-proliferator-activated
receptors (PPARs) and retinoid receptors [83–87]. Obesogenic EDCs such as BPA and
phthalates may be implicated in the etiopathogenesis of obesity and associated metabolic
disorders by (1) increasing the number and size of adipocytes through the regulation of
genes involved in adipogenesis; (2) modulating epigenetic pathways during development,
enhancing susceptibility to obesity; (3) impacting neuroendocrine signals responsible for ap-
petite and satiety; (4) promoting a proinflammatory milieu in adipose tissue and inducing
a state of chronic subclinical inflammation; (5) dysregulating gut microbiome and immune
homeostasis; and (6) inducing dysfunction in thermogenic adipose tissues. Figure 4 depicts
the main mechanisms linking EDCs to excess body weight.
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Based on animal and epidemiological studies, critical periods of exposure to obeso-
genic EDCs are in utero and the neonatal period. Moreover, EDCs can promote epigenetic
transgenerational inheritance of obesity in adulthood in subsequent generations [88]. Fetal
development is sensitive to maternal exposure to infectious agents, alcohol, drugs and
toxins including EDCs [89]. The majority of EDCs cross the placenta barrier through active
or passive transportation and may be found in the amniotic fluid or the placenta. Another
critical period for exposure to EDCs is puberty due to the activation of the hypothalamic–
pituitary–adrenal and gonadal axes. Certain animal studies have shown precocity or delay
of puberty after exposure to EDCs with implications in body mass [89].

5.1. Effects on Adipogenesis

Obesity is characterized by the expansion of fat tissue, known as adipogenesis, at-
tributed to hyperplasia via the differentiation of resident precursors or their increase in size
(hypertrophy). Current data have shown that the number of adipocytes is set by the end of
childhood, constituting a major predictor of fat mass in adulthood [90]. EDCs may influence
both the linear commitment from mesenchymal stem cells (MSCs) to pre-adipocytes and the
differentiation of pre-adipocytes into mature adipocytes, regulated by several adipogenic
transcription factors such as the group of CCAAT/enhancer-binding family of proteins
(C/EBPα, β, δ) that stimulate the nuclear [35] receptor PPAR-γ which is a critical regulator
of adipocyte differentiation [91].

Mechanistic studies performed in 3T3-L1 cells (type of mouse fibroblast-like cell line
that can differentiate into adipocytes), human adipose-derived stem/stromal cells and
uncommitted NIH/3T3 cells have shown that exposure to BPA and its analogs upregu-
lates the expression of C/EBPα and PPARγ, inducing adipocyte differentiation and lipid
accumulation [61,92–94]. Although some phthalates and related metabolites exhibit greater
effects on PPARα, particularly in mice, they can be potent and selective activators of PPARγ
promoting adipogenesis [86,95–97]. Additive effects of a mixture of EDCs on adipogenesis
may also be observed [35]. Interestingly, exposure to environmentally relevant doses of
BPA, phthalates or their analogs in early life may result in elevated body weight and
fat tissue mass in male and female mice by altering the recruitment and differentiation
of adipocytes [98,99]. Finally, in human studies, an association between higher urinary
BPA levels and obesity, metabolic syndrome, T2DM and cardiovascular disease has been
reported in the general adult US population [100,101].

The exact molecular mechanism through which BPA and phthalate induce adipocyte
differentiation is unclear; however, many mechanisms are unraveled and synopsized in
Sections 6 and 7.

5.2. Effects on Epigenetic Regulation

Out of the many potential mechanisms modulating gene expression in adipose tissue,
epigenetic alterations have been of particular interest in the last few years. Epigenetics is
defined as alterations in gene function, such as DNA methylation, histone modifications and
microRNA (miRNA) interference, that occur without any modification in the DNA sequence.

EDCs may affect epigenetic pathways during early development and childhood,
resulting in epigenetic alterations and predisposition to obesity. The interconnection of
obesogenic EDCs and epigenetic alterations involves DNA methylation affecting the activity
of DNA methyltransferases and their cofactors such as methyl donor S-adenosylmethionine
or the modulation of locus-specific epigenetic patterns, histone modifications and miRNA
expression, with most data focusing on DNA methylation [88].

BPA was shown to reduce global DNA methylation and activate adipocyte differentia-
tion in 3T3-L1 cells [102]. Thus, altered epigenetic gene regulation could play a role in the
association between BPA exposure and obesity development. In another study, prolonged
low-dose BPA exposure in committed 3T3L1 and uncommitted NIH3T3 pre-adipocytes
showed that its effects on adipogenesis are mediated through epigenetic mechanisms via
a reduction in the PPAR-γ promoter methylation in pre-adipocytes mainly [103]. Inter-
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estingly, the ending of the BPA exposure may reverse the PPAR-γ promoter methylation
and inflammatory pattern of the 3T3L1 cells [103]. Therefore, preventing BPA exposure
is important for metabolic health. Moreover, butyl benzyl phthalate (BBP) may induce
differentiation of 3T3-L1 cells and C3H10T1/2 stem cell lines, with increased expression
levels of miR-34a-5p. MiR-34a-5p is involved in adipogenesis, obesity and potentially the
epigenetic regulation of insulin signaling [104,105].

Developmental BPA exposure may modify and reprogram the liver β-oxidation func-
tion in male rats via the epigenetic regulation of genes (DNA methylation and histone
modifications) implicated in β-oxidation, such as the carnitine palmitoyltransferase (Cpt1α)
gene [106]. BPA changed DNA methylation and histone marks (H3Ac, H4Ac, H3Me2K4,
H3Me3K36) and reduced the binding of several transcription factors (Pol II, C/EBPβ,
SREBP1) in the Cpt1a gene, which is critical for β-oxidation [106]. Hence, BPA toxicity is
characterized by DNA methylation and histone modifications.

Exposure to phthalate and its metabolites in utero may affect DNA methylation,
leading to long-term implications in body weight [88]. Prenatal exposure to DEHP may
impact fetal development [107]. A cord blood epigenome-wide study identified elevated
methylation changes in genes associated with metabolism, the endocrine system and
signaling pathways that were positively linked to maternal blood mono-(2-ethylhexyl)
phthalate (MEHP) levels [107].

Larger and longitudinal multi-omics studies are needed to elucidate the effects of
prenatal exposure to EDCs on fetal growth and long-term metabolic outcomes.

5.3. Effects on Neuroendocrine Signals of Appetite and Satiety

Obesogenic EDCs may influence the neuroendocrine control of appetite, satiety and
food preference. Bisphenols, including BPA, have been detected in post-mortem human
hypothalamic and white matter brain material [108]. In this study, the majority of bisphenol
concentrations were associated with obesity. The accumulation of bisphenols in white-matter-
enriched brain tissue may underscore their ability to cross the blood–brain barrier [108].

Exposure to BPA in utero and in adulthood may cause the arcuate nucleus of the
hypothalamus to generate elevated levels of orexigenic neuropeptides such as neuropeptide
Y (NPY) and Agouti-related peptide (AgRP), resulting in an increase in appetite [109–111].

Interestingly, NPY can also enhance lipogenic enzymes in fat tissues, leading to the
development of obesity [112]. On the contrary, proopiomelanocortin (POMC), which
generates the anorexigenic neuropeptide α-melanocyte-stimulating hormone (α-MSH),
is diminished [109]. Moreover, exposure to BPA and its analog tetrabromobisphenol
A (TBBPA) at environmental levels resulted in hyperphagia and obesity in adult male
zebrafish by stimulating the endocannabinoid receptor type 1 (CB1), which plays an
important role in the gut–brain axis control of appetite and satiety [113]. Phthalates such
as DEHP may upregulate the expression levels of NPY in male rats [114]. Finally, in a
prospective epidemiological study, BPA was strongly linked to the orexigenic gut hormones
ghrelin and leptin particularly in women, suggesting that BPA could be implicated in the
hormonal control of appetite and satiety [115].

5.4. Effects on Proinflammatory Pathways and Oxidative Stress

BPA and phthalates may induce the expression and secretion of certain proinflam-
matory cytokines such as interleukin (IL)-6 and tumor necrosis factor (TNF)-α and down-
regulate the expression of anti-inflammatory adipokines such as adiponectin, leading to a
sustained low-grade inflammation both locally and systematically, adipose dysfunction and
insulin resistance [84,116,117]. Nevertheless, the mechanisms implicated in metabolic in-
flammation are still under investigation. The majority of in vitro studies in 3T3-L1 cells and
in adipocytes derived from subcutaneous tissues have shown that exposure to 1 nM BPA
induced an increase in IL-6 and interferon (IFN)-γ while prolonged exposure upregulated
the mRNA levels of IL-6, IL-1β, IFN-γ and monocyte chemoattractant protein-1 (MCP1),
which were reversed after BPA removal [84,118]. These results were confirmed in some



Int. J. Mol. Sci. 2024, 25, 675 11 of 37

animal studies; however, the effect of BPA depends on caloric intake, diet composition and
gender [84]. Furthermore, BPA and its substitutes could promote macrophage polarization
toward the proinflammatory M1 subtype, which may be reversed by ERα inhibition in
the case of BPF [119]. BPA and certain phthalates may also enhance the generation of
reactive oxygen species (ROS), which is crucial in cellular stress and the progression of
inflammation [120,121]. Finally, in many epidemiological studies, urinary and plasma
BPA correlated positively with somatometric indices, such as BMI and waist circumfer-
ence (WC); proinflammatory biomarkers, including IL-17, a cytokine implicated in chronic
inflammation; and glycemic indices (insulin and glucose) [84,122–124].

5.5. Effects on Gut Microbiome

BPA and phthalates that accumulate in the gut may influence the gut microbiome
by altering its composition, resulting in gut dysbiosis, immune system imbalance and
altered glucose metabolism [60]. Exposure to BPA during gestation may promote obesity
phenotypes in murine models by altering gut microbiota [109]. BPA exposure decreases
the richness and diversity of the intestinal microbiota and beneficial small-chain fatty acid
(SCFAs), induces leaky gut and elevates systemic lipopolysaccharide (LPS), resulting in
chronic subclinical inflammation and altered lipid and glucose homeostasis [125,126]. In a
mouse multi-omics study, prenatal exposure to low-dose BPA altered the expression of
hepatic genes implicated in oxidative phosphorylation, fatty acid metabolism and PPAR
signaling and impacted intestinal bacterial diversity in an age- and gender-dependent
fashion [127]. Exposure to phthalate esters such as DEHP elevated cardiovascular risk in
obese mice by dysregulating the arachidonic acid metabolism of intestinal flora [128], while
prolonged exposure increased weight and liver lipogenesis in mice by inducing the uptake
of fatty acids and dysregulating the metabolism of phospholipids and choline [129].

5.6. Effects on Thermogenic Adipose Tissue

Certain natural and synthetic EDCs, including BPA and phthalates, may induce dys-
function not only in white adipocytes but also in thermogenic brown and beige adipocytes,
which regulate thermogenesis, fat metabolism and energy balance [130]. Brown and beige
adipocytes share common features that comprise the existence of multiple dense mito-
chondria, lipid droplets and the expression of uncoupling protein 1 (UCP1) which permits
the production of heat at the expense of ATP production through oxidative phosphoryla-
tion [131]. Therefore, these cells can prevent hypothermia without shivering and metabolize
excess fat via UCP1.

Although data on the effects of EDCs on thermogenic adipose tissue are scant, growing
evidence suggests that bisphenols and phthalates may target and regulate the activity of
thermogenic adipocytes. BPA and DEHP preferentially accumulate in mice thermogenic
adipose tissues at greater levels than those determined in serum, white adipose tissue
(WAT) and the brain [132,133]. Nevertheless, their effects depend on the animal used,
gender, life stage, type of exposure, and concentrations of specific chemical compounds.
For example, there is a sexual dimorphism observed after gestational exposure to BPA with
increased brown adipose tissue (BAT) depots and UCP1 in female offspring and decreased
BAT activity and adipogenesis in male offspring [134]. The same applies to developmental
exposure to DEHP where a decrease in BAT activity accompanied by hypothermia, hyper-
phagia and weight gain was observed in male mice [135] and hyperplastic brown fat was
seen in female offspring [133]. These actions may be attributed to agonistic or antagonistic
effects of EDCs on ERs, the impaired thyroid signaling that impacts the beiging of WAT and
the macrophage subpopulation located in the WAT [130,136]. Finally, differential effects of
bisphenols and phthalates are observed in macrophage polarization promoting an environ-
ment permissive for the beiging of WAT [130]. For example, BPA and BPF induce classical
macrophage M1 polarization with increased secretion of proinflammatory cytokines that
affect adipocyte beiging while DEHP may promote macrophage M2 polarization facilitating
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beiging [130]. More studies are needed to delineate the effects of EDCs on thermogenic
adipose tissues, which are critical in the regulation of energy balance.

6. Evidence from Mechanistic Studies Linking BPA and Phthalates to Obesity

Existing experimental evidence has shown that BPA and phthalates may exert their
obesogenic properties by promoting the differentiation of pre-adipocytes or MSC stems
into mature adipocytes (Table 1). In addition, these endocrine disruptors may predispose
individuals to obesity through metabolic alterations in mature adipocytes. Prolonged BPA
exposure at low, environmentally relevant, concentrations may induce pre-adipocyte prolif-
eration and differentiation due to the increased expression of adipogenic transcriptional
factors, including PPARγ. It is worth noting that these effects of BPA exposure are relevant
to the environmental concentrations, resulting in adipocyte metabolic dysfunction and
proinflammatory cytokine production [137]. Moreover, MEHP exposure at the dose of
10 µM activates undifferentiated pre-adipocytes, leading to de novo lipogenesis, through
the augmented expression of glucose transporter (GLUT)1, GLUT4 and S100B [138]. Inter-
estingly, BPA and DEHP may promote the differentiation of murine MSCs into adipocytes
at different concentrations and stages of cell determination and differentiation [139]. Fur-
thermore, BBP potentially impairs pre-adipocyte differentiation through epigenetic changes
of genes implicated in adipogenesis since BBP exposure augments miR-34a-5p expression
and attenuates the expression level of its target genes [104].

On the other hand, low BPA doses may provoke adipose tissue dysfunction, without
markedly interfering with adipocyte differentiation or the activation of adipogenic factors.
In these cases, adipogenesis is suggested to be mediated by inflammatory and insulin
signaling pathways. Alternatively, the activation of specific cellular receptors has been
proposed. Thus, BPA and 2,4-dichlorophenol (DCP) may promote pre-adipocyte differenti-
ation in the 3T3-L1 cells, through activating GRs, without increasing PPARγ expression [85].
In addition, the increased expression of insulin-like growth factor 1 (IGF-1) under BPA
exposure may enhance adipogenesis via ER stimulation [140]. In mature adipocytes, DINP
and DPHP exposure may lead to insulin resistance and inflammation as a result of oxida-
tive stress, mitochondrial dysfunction and augmented adipokine secretion [141]. In turn,
BPA may diminish insulin-stimulated glucose utilization. Moreover, exposure to BPA
may stimulate intracellular signaling pathways that promote apoptosis (c-Jun N-terminal
kinases/JNKs) or activate transcriptional factors that induce the expression of proinflam-
matory cytokines (NF-kB) [118]. Interestingly, daily BPA exposure has been reported to
increase insulin secretion in response to glucose stimulation in pancreatic cells via ERs,
in contrast to acute (60 min) exposure, which has no impact [142]. De Filippis et al. have
shown that BPA exposure had no impact on the expression of PPARγ, fatty-acid-binding
protein 4 (FABP4) and fatty acid synthase (FASN) and pre-adipocyte differentiation, high-
lighting the implication of the increased expression of IL-6 and TNF-α [143]. Notably, BPA
may induce adipogenesis through mTOR signaling and TR/RXR stimulation [144].

Multiple in vitro studies have indicated that exposure to BPA and phthalates may
disrupt cellular lipid homeostasis through a variety of underlying mechanisms, including
the regulation of specific signaling pathways. Thus, MEHP may induce lipid accumulation
by inhibiting the Janus kinase (JAK)2/signal transducer and activator of transcription
(STAT)5 signaling [145]. In addition, in vitro evidence in hepatic cellular models supports
that BPA dysregulates lipid homeostasis through the enhanced expression of apolipopro-
tein A4 (APOA4) or via the activation of the CB1 receptor [146,147]. BPA in the lowest
doses may promote the expression of the mRNA level of the 11β-HSD1 gene, resulting
in adipogenesis and lipid synthesis [148]. In addition, BPA seems to be involved in the
upregulation of several genes related to lipid metabolism, like lipoprotein lipase (LPL) and
SREBF1. As shown by Grasselli et al., non-cytotoxic levels of BPA reduced the expression
of genes involved in lipid oxidation but had no impact on the expression of lipogenic
genes [149]. Furthermore, BPA and DEHP exposure may alter the expression of lipid
metabolism markers, consequently resulting in steatosis in RTL-W1 cells [150]. Five years
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ago, Schaedlich et al. reported that DEHP exposure attenuates triacylglycerol (TG) accumu-
lation in lipid droplets of human Simpson–Golabi–Behmel syndrome pre-adipocyte cells
(SGBSs), in which reduced adiponectin levels and increased leptin levels were present [151].

In conclusion, EDCs may exert in vitro obesogenic effects through a plethora of mechanisms
involving the disruption of adipocyte differentiation and inflammation as well as changes in insulin
metabolism and sensitivity. Although they are of clinical importance, further studies reflecting
obesogenic features in real life are needed to elucidate their potential association with obesity.

Table 1. Major in vitro studies portraying associations between BPA and phthalates, and obesity.

Authors, Year Type of Cell Culture Main Findings Remarks

Bisphenol A and obesity

Riu et al., 2011 [152] NIH3T3-L1 cell line
(pre-adipocytes)

1. ↑ adipogenesis
2. ↑ lipid accumulation
3. ↑ mRNA level of PPARγ
4. ↑ PPARγ activity

1. Animal in vitro model
2. ED: TBBPA
3. Obesogenic effects at 10 µM

Valentino et al., 2013 [118] Primary hADSCs

1. (-) mRNA level of PPARγ, GLUT4
2. ↓ of glucose utilization
3. ↓ tyrosine phosphorylation of
insulin receptor (IR)
3. ↓ of PKB/Akt phosphorylation
4. ↑ of IL-6, IFN-γ
5. ↑ of JAK/STAT, JNK
6. ↑ activity NF-kB pathway

1. Human in vitro model
2. ED: BPA
3. Biological effects at 1 nM

Bastos Sales et al., 2013 [102]
Murine N2A, human SK-N-AS
neuroblastoma cells and murine
pre-adipocyte fibroblasts (3T3-L1)

1. Modest ↓ in global DNA methylation in
murine N2A cells
2. No changes in global DNA methylation
in human SK-N-AS cells.
3. ↑ adipocyte differentiation in murine
3T3-L1 pre-adipocytes

1. Animal and human in vitro model
2. ED: BPA and a range of several
EDCs not belonging to bisphenols
3. Biological effects at ≥ 10 µM

Menale et al., 2015 [137] Primary pre-adipocytes

1. ↑ adipogenesis
2. ↑ lipid accumulation
3. ↑ mRNA level of ERα (10 nM, 100 nM)
4. (-) mRNA level of ERβ
5. ↑ production of IL1B, IL18, CCL20 (10
nM)

1. Human in vitro model
2. ED: BPA
3. Obesogenic effects at 1 nM, 10 nM,
100 nM

Ariemma et al., 2016 [92] 3T3-L1
Pre-adipocytes

1. Undifferentiated cells:
- ↑ proliferation
- ↑ differentiation
- ↑ expression of PPARγ, C/EBPα and
FABP4/AP2
2. Mature adipocytes:
- Hypertrophy
- ↑ lipid accumulation
- ↑ mRNA of leptin, IL6, IFNγ
- ↓ glucose utilization

1. Animal in vitro model
2. ED: BPA
3. Obesogenic effects at 1 nM

Longo et al., 2020 [103]
3T3L1 and NIH3T3 (committed and
uncommitted pre-adipocytes,
respectively)

- ↓ DNA methylation at PPARγ promoter,
without affecting mRNA expression in
pre-adipocytes
- Transient ↑ in PPARγ expression and lipid
accumulation at D4 of differentiation in
3T3L1 cells
- Ending BPA exposure restores the PPARγ
promoter methylation and inflammatory
profile of 3T3L1 cells.
- Expression of PPARγ is barely detectable
and its promoter is completely methylated
in NIH3T3 cells
- ↑ PPARγ expression is more evident both
in pre-adipocytes and during the adipocyte
differentiation

1. Animal in vitro model
2. ED: BPA
3. Biological effects at low doses: 1 nM

Cohen et al., 2021 [153] Primary hADSCs

1. ↑ adipogenesis and lipid production at
0.1 nM
2. ↓ adipogenesis and lipid production at 10
nM

1. Human in vitro model
2. ED: BPA
3. Biological effects at 0.1 nM, 10 nM

Yamasaki et al., 2021 [154] ST-13 cell line (pre-adipocytes)

- Undifferentiated cells:
1. (-) lipid accumulation
2. (-) mRNA level of PPARγ
3. ↑ mRNA level of AACS, PLIN1, FAS,
CIDEA, LSD-1
- Mature adipocytes:
1. (-) lipid accumulation
2. (-) mRNA level of AACS, SCOT

1. Animal in vitro model
2. ED: TBBPA
3. Obesogenic effects at 0.5 µM, 1 µM
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Table 1. Cont.

Authors, Year Type of Cell Culture Main Findings Remarks

Schaffert et al., 2021 [121] SGBSs (pre-adipocytes)

1. ↑ binding to PPARγ (50 µM)
2. (-) PPARγ activity (10 nM, 100 nM, 1 µM,
10 µM)
3. ↓ lipid accumulation (10 nM, 100 nM,
1 µM, 10 µM)
4. ↑ leptin (10 nM)
5. ↓ cellular ROS level (10 nM, 100 nM,
1 µM, 10 µM)
6. ↓ insulin sensitivity (1 µM)

1. Human in vitro model
2. ED: BPA
3. Obesogenic effects at 10 nM, 100 nM,
1 µM, 10 µM, 50 µM

Marqueno et al., 2021 [155] ZFL cell line (primary mouse
hepatocytes)

1. ↑ lipid accumulation (5 µM, 50 µM)
2. ↑ ROS generation (20 µM, 50 µM, 70 µM,
100 µM, 150 µM, 200 µM)

1. Animal in vitro model
2. ED: BPA
3. Biological effects at 5 µM, 20 µM,
50 µM, 70 µM, 100 µM, 150 µM,
200 µM

Lee et al., 2022 [156] Huh-7 cell line (primary
hepatocytes)

1. ↓ cell viability (200 µM, 400 µM)
2. ↑ lipid accumulation (10 µM, 50 µM,
100 µM, 200 µM)
3. Fatty acid uptake ↑ (10 µM, 50 µM,
100 µM)
4. ↑ intracellular ROS formation (10 µM,
50 µM, 100 µM, 200 µM)

1. Human in vitro model
2. ED: BPA
3. Biological effects at 10 µM, 50 µM,
100 µM, 200 µM, 400 µM

Phthalates and obesity

Sargis et al., 2010 [85] 3T3-L1 cell line (pre-adipocytes)

1. ↑ adipogenic differentiation
2. ↑ lipid accumulation (100 nM)
3. ↑ PPARγ and glucocorticoid-like activity
(1 µM)
4. ↑ adiponectin and protein expression of
IR-β (1 µM–100 pM)

1. Animal in vitro model
2. Pthalate: DCHP
3. Obesogenic effects at 100 pM, 1 nM,
10 nM, 100 nM, 1 µM

Dimastrogiovanni et al., 2015 [150] RTL-W1 cell line
(hepatocytes)

1. ↑ lipid accumulation
2. ↓ alteration of membrane lipids
3. ↓ mRNA level of CD36, FAS, LPL

1. Animal in vitro model
2. Pthalate: DEHP
3. Biological effects at 5 µM

Zhang et al., 2017 [105] C3H10T1/2 cell line (MSCs)

1. ↑ adipogenesis
2. ↑ mRNA level of AP2, PPARγ
3. ↑ lipid accumulation
4. ↑ protein level of FOXO1
5. ↑ acetylation of FOXO1,
β-catenin
6. ↓ protein level of SIRT1, SIRT3

1. Animal in vitro model
2. Pthalate: BBP
3. Biological effects at 50 µM

Schaedlich et al., 2018 [151] SGBSs (pre-adipocytes)

1. ↓ TGsaccumulation
2. ↓ adiponectin production
3. ↓ protein level of PPARα, PPARγ
4. ↓ phosphorylation of ERK1, ERK2
5. ↑ lipolysis
6. ↑ ROS formation

1. Human in vitro model
2. Pthalate: DEHP
3. Obesogenic effects at 50 µg/mL

Zhang et al., 2019 [145] BRL-3A cell line
(hepatocytes)

1. ↑ lipid accumulation (100 µM, 200 µM)
2. ↑ mRNA level of FAS, PDK4, AP2
(10 µM, 50 µM, 100 µM, 200 µM)
3. ↑ mRNA level of PPARγ (50 µM,
100 µM, 200 µM)
4. ↓ JAK2/STAT5 signaling
5. ↓ level of indicators of oxidative stress:
SOD ↓, MDA ↑ (10 µM, 50 µM, 100 µM,
200 µM)

1. Animal in vitro model
2. Pthalate: MEHP
3. Biological effects at 10 µM, 50 µM,
100 µM, 200 µM

Perez-Albaladejo et al., 2021 [157] PLHC-1 cell line (hepatocytes)

- DBP:
1. ↑ TG accumulation (20 µM)
2. ↑ ROS formation (5 µM, 20 µM, 50 µM,
100 µM)
- DEHP:
1. ↑ TG accumulation (5 µM, 10 µM)
2. ↑ ROS formation (100 µM)

1. Animal in vitro model
2. Phthalates: DBP and DEHP
3. Biological effects at
- DBP: 5 µM, 20 µM, 50 µM, 100 µM
- DEHP: 5 µM, 10 µM, 100 µM

Meruvu et al., 2021 [104] 3T3-L1 cells

- ↑ miR-34a-5p expression
- ↑ adipogenesis
- ↓ Nampt, Sirt1 and Sirt3 gene expression
levels; ↓ Nampt protein
- ↓ adipogenesis, ↑ Nampt protein and
NAD+ after miR-34a-5p knockdown in the
presence of BBP

1. Animal in vitro model
2. Phthalate: BBP
2. Biological effects at various doses of
BBP without exogenous adipogenic
stimuli

Al-Abdulla et al., 2022 [158] MIN-6 cell line (pancreatic cells)

1. ↓ viability of cells after 24 exposure at
1 µM
2. ↑ mRNA level of SUR1, GLUT2 at 10 µM
3. ↓ GSIS (20 µM glucose)
4. ↓ insulin content at 1 µM

1. Animal in vitro model
2. Pthalate: DEHP
3. Dose: 100 pM, 1 nM, 10 nM, 100 nM,
1 µM, 10 µM
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Table 1. Cont.

Authors, Year Type of Cell Culture Main Findings Remarks

Schaffert et al., 2022 [141] SGBSs
(pre-adipocytes)

1. DINP:
- ↑ binding to PPARγ
- (-) PPARγ activation
- (-) lipid accumulation
- ↑ adipsin (10 µM)
- Mature adipocytes:
* 10 µM: ↑ MCP-1, LAP3, GPX1
* 10 nM: ↑ GPX8, GSR
* 10 nM, 10 µM: ↑ LEP, GPX4
* 10 nM, 10 µM: ↓ adiponectin
2. DPHP:
- ↑ binding to PPARγ
- (-) PPARγ activation
- Undifferentiated cells:
* (-) lipid accumulation
* ↓ MCP-1 (10 nM, 10 µM)
- Mature adipocytes:
* ↓ lipid accumulation (10 µM, 25 µM,
50 µM, 100 µM)
* 10 µM: ↑ LEP, MCP-1, LAP-3, GPX4,
GPX8, adipsin
* 10 nM: ↑ GSR
* 10 nM, 10 µM: ↑ GPX1, GSTO1
* 10 nM, 10 µM: ↓ adiponectin
3. MHINP:
- ↑ binding to PPARγ (100 µM, 200 µM,
400 µM)
- ↑ PPARγ activation (1 µM)
- Undifferentiated cells:
* ↑ pre-adipocyte differentiation, lipid
accumulation (10 µM, 25 µM, 50 µM,
100 µM)
* 10 µM: ↑ LEP, PLIN1, GPD1, FASN,
FABP4, FABP5
* 10 nM: ↓ MCP-1
* 10 nM, 10 µM: ↑ adipsin
- Mature adipocytes:
* 1 µM: ↑ lipid accumulation
* 10 µM: ↑ LAP3, adipsin
* 10 nM: ↑ GSR, GPX8
* 10 nM, 10 µM: ↑LEP, MCP-1, GPX1, GPX4,
GSTO1
* 10 nM, 10 µM: ↓ adiponectin
4. OH-MPHP:
- ↑ binding to PPARγ
- ↑ PPARγ activation
- Undifferentiated cells:
* ↑ pre-adipocyte differentiation, lipid
accumulation (10 µM, 25 µM, 50 µM)
* ↑ LEP, GPD1, FASN, FABP4, FABP5
(10 µM)
- Mature adipocytes:
* 10 µM: ↑ LAP3, GPX1, GPX4, GPX8,
adipsin
* 10 nM, 10 µM: ↑ LEP, GSR, MCP-1, GSTO1
* 10 nM, 10 µM: ↓ adiponectin
* 10 nM, 10 µM, 25 µM, 50 µM, 100 µM: ↓
lipid accumulation

1. Human in vitro model
2. Phthalates: DINP, DPHP, MHINP,
OH-MPHP
2. Obesogenic effects at
- DINP: 10 nM, 10 µM,
- DPHP: 10 nM, 10 µM, 25 µM, 50 µM,
100 µM
- MHINP: 10 nM, 10 µM, 25 µM,
50 µM, 100 µM, 200 µM, 400 µM
- OH-MPHP: 10 nM, 10 µM, 25 µM,
50 µM, 100 µM, 200 µM, 400 µM

Abbreviations: AACS: acetoacetyl-CoA synthetase; AP2: adipocyte protein 2; BPA: bisphenol A; BBP: benzyl butyl
phthalate; CCL20: chemokine (C-C motif) ligand 20; C/EBPα: CCAAT/enhancer-binding protein α; CD36: fatty acid
translocase; CIDEA: cell-death-inducing DNA fragmentation factor-alpha-like effector A; DCHP: bis(2-propylheptyl)
phthalate; DBP: dibutyl phthalate; DEHP: di(2-ethylhexyl) phthalate; DINP: diisononyl phthalate; DPHP: bis(2-propylheptyl)
phthalate; ED: endocrine disruptor; ERα: estrogen receptor α; ERβ: estrogen receptor β; ERK1/2: extracellular-signal-
regulated protein kinase 1/2; FABP4: fatty-acid-binding protein 4; FABP5: fatty-acid-binding protein 5; FABP4/AP2:
fatty-acid-binding protein 4/adipocyte protein 2; FASN: fatty acid synthase; FOXO1: forkhead box protein O1; GLUT2:
glucose transporter type 2; GLUT4: glucose transporter type 4; GPD1: glycerol-3-phosphate-dehydrogenase; GPX1:
glutathione peroxidase 1; GPX4: glutathione peroxidase 4; GPX8: glutathione peroxidase 8; GSIS: glucose-stimulated
insulin secretion; GSR: glutathione-disulfide reductase; GSTO1: glutathione S-transferase omega-1; IFN-γ: interferon-γ;
IL: interleukin; IR-β: insulin receptor subunit β; JAK/STAT: Janus kinase/signal transducer and activator of transcription;
JNK: c-Jun N-terminal kinase;LAP3: leucine aminopeptidase 3; LEP: leptin; LPL: lipoprotein lipase; LSD-1: lysine-
specific demethylase-1; MCP-1: monocyte chemoattractant protein-1; MDA: malondialdehyde; MEHP: mono-2-ethylhexyl
phthalate; MHINP: monohydroxy isononyl phthalate; N2A: Neuro-2A cells; NAD: nicotinamide adenine dinucleotide;
Nampt: nicotinamide phosphoribosyltransferase; NF-kB: nuclear factor kappa-light-chain-enhancer of activated B cells;
OH-MPHP: 6-hydroxy monopropylheptyl phthalate; PDK4: pyruvate dehydrogenase kinase 4; PPARα: peroxisome-
proliferator-activated receptor α; PPARγ: peroxisome-proliferator-activated receptor γ; PKB/Akt: protein kinase B/AKT;
PLIN1: perilipin-1; ROS: reactive oxygen species; SCOT: succinyl-CoA-3-oxoacid CoA-transferase; SIRT1: sirtuin 1; SIRT3:
sirtuin 3; SOD: superoxide dismutase; SUR1: sulfonylurea receptor 1; TBBPA: tetrabromobisphenol A; TGs: triglycerides.
↑ increase, ↓ decrease.
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7. Evidence from Animal Studies Linking BPA and Phthalates to Obesity

A significant number of in vivo studies in animals propose an association of BPA
exposure with adipogenesis (Table 2). In fact, BPA exposure during pregnancy and lactation
may provoke weight gain in the postnatal period, as well as an increase in the adipose tissue
mass in the offspring. Interestingly, these features occur at low maternal BPA concentrations
in comparison to the environmental levels of BPA. According to Wei et al., these unfavorable
outcomes may become more evident when animals are exposed to a high-fat diet, and
this is thought to be attributed to impaired glucose tolerance [159]. Surprisingly, elevated
BPA levels in plasma do not seem to lead to maternal weight gain and increased body
fat, due to the augmented secretion of α-fetoprotein during gestation. BPA’s binding to α-
fetoprotein may abrogate its protective effects on the developing fetus, which are normally
achieved through its binding to estrogen [160]. On the other hand, several in vivo studies
have focused upon the potential adverse effects of different phthalates regarding obesity,
implicating a wide range of proposed mechanisms. Most of these obesogenic features
are investigated using rodents or zebrafish animal models and are thought to be dose-
dependent or gender-related, respectively. Notably, effects on body weight and visceral
adipose tissue mass have been reported at environmentally relevant doses, suggesting that
phthalate exposure may be associated with obesity risk in humans.

Obesogenic features of BPA are correlated with its ability to exhibit hormone-like
properties by interfering with specific receptors. In particular, BPA resembles the effects
of estrogen, via binding to ERα and Erβ receptors. In such cases, attenuated adiponectin
secretion, as well as increased adipocyte differentiation and lipid accumulation, may be
seen [109]. In addition, BPA exposure may disable the beneficial impact of some adipokines
in lipolysis, resulting in impaired lipid metabolism and difficulty in maintaining normal
body mass. Existing in vivo experimental evidence has shown the adipogenic effects of
BPA exposure due to its ability to interact with PPAR. BPA modulates PPAR-γ signaling,
resulting in augmented expression of genes that induce adiposity [161]. On the other hand,
BPA seems to inhibit the expression of PPAR-α, thus promoting liver TG deposition via
alterations in lipid oxidation [113]. PPAR-γ activation is suggested to play an essential role
in adipogenesis induced by phthalate exposure as well. According to Hao et al., DEHP
injection in C57BL/6J mice increased adipose tissue weight due to the enhanced expression
of adipogenic transcriptional factors PPAR-γ, C/EBP and SREBF1 [162]. In addition, DEHP
exposure in female mice, for a period of 10 weeks, is associated with weight gain and
increased adipose tissue mass, whereas insulin sensitivity impairment and maladaptive
adipose tissue function were observed. Changes in circulating and tissue adiponectin,
as well as the augmented expression of ERs and the activation of PPAR-γ, may be in-
volved [163]. PPAR-γ activation seems to be also involved in adipogenesis, following
MEHP exposure, resulting in the differentiation of pre-adipocyte-like adipocytes into lipid-
laden and insulin-responsive adipocytes [164]. Interestingly, Zhuang et al. pointed out the
role of the transforming growth factor (TGF)-β signaling pathway in adipocyte differentia-
tion, via the stimulation of the adipogenic factors PPAR-γ and CEBPα, in contrast to the
estrogen signaling pathway, which had no effect [165].

Recently, Tian et al. reported that the activation of CB1 may be a potential sequela of
BPA exposure, resulting in increased appetite and ultimately obesity. The CB1 receptor is
expressed in a variety of tissues, including nervous system and fat tissues, and may have an
essential role in regulating food intake and energy storage [113]. Furthermore, BPA exerts
its harmful effects on the central nervous system through the stimulation of orexigenic
hypothalamic neuropeptides, AgRP and NPY [166]. Similar data suggest that DEHP, follow-
ing 5 weeks of exposure, favors food intake and increased body weight in male C3H/He
mice, probably due to the augmented expression of hypothalamic neuropeptides involved
in the appetite regulation and the synergistic effects of hypothyroidism and hypothalamic
leptin resistance [135]. Evidence from animal studies has underscored that exposure to
phthalates may lead to alterations in lipid metabolism, resulting in dysregulation of energy
homeostasis (Table 2). In zebrafish, DEHP at low doses alters the expression of liver genes
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associated with fatty acid metabolism, consequently leading to non-alcoholic fatty liver
disease (NAFLD). Notably, these effects were absent following 17α-ethinylestradiol expo-
sure, which typically lacks estrogen features [167]. On the other hand, high concentrations
of DEHP may weaken diet-related obesity in mice, potentially via PPAR-α-dependent
stimulation of hepatic fatty acid catabolism. Notably, this effect is observed in mice, but
not in humans [97]. In rats, DEHP at the dose of 5–200 mg/kg daily alters the lipid profile,
resulting in reduced concentrations of high-density lipoproteins (HDLs) and increased
levels of total cholesterol and triglycerides [168]. Furthermore, MEHP has been proposed
to boost the pathological progression of liver steatosis in a zebrafish animal model, upon
co-administration with ethanol. In such cases, DNA damage and apoptosis seem to be
mediated via CYP4A and alcohol dehydrogenase (ADH) involvement [169].

Exposure to BPA may also have an impact on the intestinal microbiota due to its ability to
alter LPS and gut SCFA levels. Consequently, impaired lipid homeostasis and chronic low-grade
activation of the inflammatory cascade may develop [109]. In accordance with this observation,
long-term DEHP exposure may provoke gastrointestinal dysbiosis, thus increasing fat storage in
zebrafish, as a result of the disrupted expression of genes associated with lipid metabolism [170].
Early-life BPA exposure could account for transgenerational epigenetic alterations, which
may have an impact on obesity risk, across several generations. These effects are believed to
occur due to specific changes in the DNA methylation pattern of genes modulating metabolic
pathways. Susiarjo et al. showed that maternal exposure to BPA in C57BL/6 mice may
induce metabolic abnormalities due to the overexpression of the imprinted insulin-like growth
factor 2 (IGF-2) gene and increased DNA methylation at the IGF-2 locus [171]. Similar to
BPA, phthalates also seem to facilitate epigenetic transgenerational effects on obesity. Prenatal
phthalate exposure may modify DNA methylation at loci near genes, resulting in alterations
in metabolic hormone signaling pathways. Specifically, Bis(2-ethyhexyl) tetrabromophthalate
(TBPH) and its metabolite TBMEHP may induce demethylation of the PPAR-γ promoter DNA,
leading to changes in lipid metabolism in early larval stages of zebrafish. As a result, lipid
lipolysis and energy homeostasis may be disrupted [172].

In agreement with in vitro experimental data, potential in vivo obesogenic effects of BPA
and phthalates seem to be mediated by mechanisms involving the activation of adipogenic
transcriptional factors, stimulation of specific receptors and enhancement of the inflamma-
tory cascade. In addition, disruption of gut dysbiosis, as well as transcriptional epigenetic
alterations associated with DNA methylation modification, may also be involved.

Table 2. Major animal studies showing associations between BPA and phthalates and obesity.

Author, Year Type of Animal Used Main Findings Remarks

Bisphenol A and obesity

Pu et al., 2017 [161] Primiparous female sheep

1. ↑ differentiation rate in adipocytes
2. ↑ mRNA expression of PPARγ in fetal
adipose tissue
3. ↑ expression of FABP4, GLUT4 and
SOX6 in the offspring
4. ↑ gene expression of GR, ESR1, ESR2
and ERRα

1. Type of exposure: sc
2. Exposure duration: 147 days
3. Daily BPA dose: 0.5 mg/kg

Desai et al., 2018 [160] 12-week-old female Sprague–Dawley rats

1. ↑ body weight
2. ↑ mass of adipose tissue
3. Hypertophic adipocytes in male
offspring
4. ↑ expression of PPARγ
5. ↑ TNF-α and CD68 in adipose tissue

1. Findings occurred in the offspring
2. Type of exposure: drinking water
3. Exposure duration: 2 weeks before
mating up to weaning
4. Daily BPA dose: 5 mg/L

Stoker et al., 2019 [173] 90-day-old female Wistar rats

1. ↑ food intake
2. ↑ epididymal and perirenal fat
deposition
3. ↑ fasting serum glucose and leptin in
male mice
4. ↑ expression of hypothalamic orexigenic
neuropeptides in male mice

1. Findings occurred in the offspring
2. Type of exposure: drinking water
3. Exposure duration: pregnancy day 9 to
weaning
4. Daily BPA dose: 50 µg/kg
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Table 2. Cont.

Author, Year Type of Animal Used Main Findings Remarks

Lin et al., 2019 [174] 3-week-old male Wistar rats

1. ↑ fat deposition (visceral, liver)
2. ↑ TCHOL, LDL, TGs
3. ↓ HDL
4. ↑ TNF-α, IL-17
5. ↑ mRNA of SREBP1 and ACC1
6. ↑ TLR4 and NF-κB in the liver
7. ↓ HSL, ERα and ZAG in the liver

1. Type of exposure: drinking water
2. Exposure duration: 8 weeks
3. Daily BPA dose: 1 µg/mL

Tian et al., 2021 [113] 5-month-old wild-type adult male Danio
rerio

1. ↑ weight gain, length, food intake
2. ↑ lipid accumulation in liver
3. Microvesicular fatty changes,
hepatocyte ballooning, infiltration with
inflammatory cells
4. ↑ of CB1
5. ↑ of insulin signaling pathways
6. ↓ expression of PPARα in adipose tissue
and liver
7. ↓ gpr55

1. Type of exposure: water in static system
2. Exposure duration: 28 days
3. Daily BPA dose: 20, 100 and 500 µg/L

Shih et al., 2021 [175] 15-week-old female Sprague–Dawley rats

1. ↑ abdominal lipid weight up to 77% in
female offspring
2. ↑ TCHOL, LDL, TGs
3. ↓ HDL
4. ↑ leptin
5. ↑ of Prevotella, C. perfringens, C.
ruminantius in feces

1. Type of exposure: oral gavage
2. Exposure duration: 6th-36th day after
pregnancy
3. Daily BPA dose: 50 µg/kg

Zhuang et al., 2023 [165] 7-week-old male and female ICR mice

1. ↑ weight gain in the offspring
2. ↑ size of adipocytes
3. ↓ insulin sensitivity
4. No obesogenic effects via estrogen
signaling pathway
5. Obesogenic effects via TGF-β signaling
pathway

1. Type of exposure: drinking water
2. Exposure duration: 7 days treatment up
to delivery
3. Daily BPA dose: 0.5 µg/kg

Phthalates and obesity

Hao et al., 2013 [162] C57BL/6J mice

1. ↑ expression of PPARγ, aP2, LPL and
FAS
2. ↑ expression of C/EBP, Srebf1
3. ↑ glucose, TCHOL, TGs in serum
4. Obese phenotype only at the dose of
0.25 mg/kg in female offspring
5. ↑ weight gain in male offspring

1. Type of phthalate: DEHP
2. Ip DEHP at the dose of 0.5 mg/kg in
six-week-old male mice
3. Female mice:
- Type of exposure: gavage
- Exposure duration: from day 12 of
gestation until day 7 of lactation
- Daily DEHP dose: 0.05, 0.25 or 0.5 mg/kg

Klöting et al., 2015 [163] Obesity-resistant 129S6 mice

In female (but not in male) mice:
1. ↑ weight gain
2. ↑ fat mass
3. ↓ insulin tolerance
4. ↓ Pparg and adiponectin in scAT
5. ↑↑ Esr1 protein levels in SC and visceral
adipose tissue
6. (-) TCHOL, TGs in serum
7. ↑ in phospholipid and carnitine

1. Type of phthalate: DEHP
2. Type of exposure: oral
3. Exposure duration: 10 weeks
4. Daily DEHP dose: 0.05 mg/kg

Lv et al., 2016 [135] Male C3H/He mice

1. ↑ food intake, adipogenesis and weight
gain in all exposure groups except for 0.05
mg/kg
2. Interruption in hypothalamic
appetite-related neuropeptides:
- ↑ expression of AgRP in all groups
- ↑ expression of NPY at 50 and 200 mg/kg
- ↓ expression of POMC at 200 mg/kg
3. Hypothalamic leptin resistance
resulting in hypothyroidism
4. ↓ WAT lipid metabolism at 0.5 mg/kg
5. ↑ WAT lipid metabolism at 50 and 200
mg/kg

1. Type of phthalate:
DEHP
2. Type of exposure: gavage
3. Exposure duration: 5 weeks
4. Daily DEHP dose: 0.05, 0.5, 5, 50 and
200 mg/kg

Zhang et al., 2020 [176] C57BL/6 J male and female mice

1. Weight gain in male mice on HFD at 3
mg/kg/d
2. At the dose of 3 mg/kg/d:
- ↑ activation of SREBP1
- (-) of SREBP2, PPARγ
- ↑ expression of downstream regulatory
genes of SREBP1 (FAS, ACC, HMGCR)
3. ↓ insulin tolerance in male mice
between HFD + BBP3 and HFD groups

1. Type of phthalate: BBP
2. Type of exposure: oral
3. Exposure duration: 16 weeks
4. Daily BBP dose:
4 µg/kg, 169 µg/kg,
3 mg/kg, 50 mg/kg
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Table 2. Cont.

Author, Year Type of Animal Used Main Findings Remarks

Guo et al., 2020 [172] Zebrafish embryos 0.75 hpf

- ↑ expression of PPARγ due to the
following:
1. Significant regional DNA demethylation
2. Upregulation of tet1 and tet2 gene
transcription)
- As a result,
↓ TCHOL and TGs due to ↑ expression of
downstream genes involved in lipid
metabolism

1. Type of phthalate:
TBPH and TBMEHP
2. Type of exposure: glass Petri dish
containing 100 mL of TBPH or TBMEHP
3. Exposure duration: until 72 hpf
4. Daily TBPH and TBMEHP dose:
0.2–2000 nM

Buerger et al., 2020 [177] Zebrafish (Danio rerio)

GI dysbiosis in the OF + DEHP group as a
result of the following:
- ↑ of Bacteroidetes
- ↑ of UFAs
- ↑ lipid metabolism
- ↓ carbohydrate metabolism
- ↓ glycerolipid metabolism
- ↓ glycerophospholipid metabolism
- ↓ carbohydrate, galactose, inositol
phosphate, taurine and hypotaurine
metabolism

1. Type of phthalate: DEHP
2. Type of exposure: oral
3. Exposure duration: 60 days
4. Daily DEHP dose: 3 mg/kg

Abbreviations: ACC1: acetyl-CoA carboxylase 1; AgRP: Agouti-related protein; AP2: adipocyte protein 2; BPA:
bisphenol A; CB1: endocannabinoid receptor type 1; CD68: cluster of differentiation 68; C/EBP: CCAAT/enhancer-
binding protein; ESR1: estrogen receptor 1; ESR2: estrogen receptor 1; ERRα: estrogen-related receptor α; FABP4:
fatty-acid-binding protein 4; FAS: fatty acid synthase; GLUT4: glucose transporter type 4; GR: glucocorti-
coid receptor; HDL: high-density lipoprotein cholesterol; HSL: hormone-sensitive lipase; IL-17: interleukin-17;
LDL: low-density lipoprotein cholesterol; LPL: lipoprotein lipase; NPY: neuropeptide Y; NF-κB: nuclear factor
kappa-light-chain-enhancer of activated B cells; PPARγ: peroxisome-proliferator-activated receptor γ; POMC:
proopiomelanocortin; SC: subcutaneous; SOX6: SRY-box transcription factor 6; SREBP1: sterol regulatory element-
binding transcription factor 1; TNF-α: tumor necrosis factor-α; TCHOL: total cholesterol; TGF-β: transforming
growth factor-β; TGs: triglycerides; TLR4: toll-like receptor 4; WAT: white adipose tissue; ZAG: ZAG adiponectin.
↑ increase, ↓ decrease.

8. Evidence from Human Studies Linking BPA and Phthalates to Obesity

There is an abundance of epidemiological studies assessing the effects of BPA and
phthalates on human adiposity (Table 3). Urinary and, to a lesser extent, serum concentrations
of BPA and different phthalate metabolites have been used as surrogates of exposure. In several
studies, urinary measurements have been adjusted for creatinine concentration to account for
the confounding effect of urine dilution due to the individual hydration state.

Table 3. Major studies depicting associations between endocrine disruptors and obesity.

Author, Year Study Design/Population Main Findings Comments

Bisphenol A and obesity

Lin et al. (2023) [178]

Umbrella review of systematic reviews
with meta-analyses on the association of
BPA exposure with multiple outcomes,
including obesity

- Higher BPA exposure significantly
associated with obesity risk in both sexes
(females: OR 1.51; males: OR 1.88)
- Significant associations with generalized
and abdominal obesity (OR 1.22 and 1.41,
respectively) as well as overweight in
adults (OR 1.25)
- Significantly increased risk for type
2 DM (OR 1.28)

Higher BPA exposure associated with
obesity in children and adults, with less
heterogeneity among studies in females

Deodati et al. (2023) [179]

Case–control study among n = 122
children (n = 66 and n = 56 with and
without obesity, respectively) matched
for age and gender

- Significantly higher creatinine-adjusted
urinary BPA concentrations in obesity
than normal weight (10.77 vs. 5.50 µg/g,
respectively) among girls, but not boys.
- Significantly higher risk of obesity in
children with BPA levels above the
median eating packaged food
(OR = 11.09)

Potential gender-specific relationship
between BPA exposure and higher odds
of childhood obesity in girls

Chen M et al. (2023) [180] Cross-sectional study among n = 426
children aged 7 years old

- Urinary concentrations of BPA
substitutes BPS, BPAF exhibit a
significant positive association with BMI,
WC, overweight/obesity only among
boys
- No associations between adiposity
measures and BPA or other substitute
compounds

Associations between BPS, BPAF, but not
BPA exposure and obesity in boys
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Table 3. Cont.

Author, Year Study Design/Population Main Findings Comments

Bi J et al. (2022) [181]

Prospective observational study
including n = 796 individuals with
normal weight, among whom 133
developed overweight or obesity during
follow-up

- Presence of a statistically significant
inverted U-shaped relationship between
serum BPA and incident
overweight/obesity
- Significant positive correlation between
log10-BPA and increase in waist-to-hip
ratio
- Serum adiponectin mediates 46% of
association between BPA and incident
overweight/obesity

Non-monotonic relationship between
baseline BPA and incident
overweight/obesity among individuals
with normal weight, potentially
indirectly mediated by adiponectin

Choi et al. (2022) [182]

Cross-sectional study including 1046
adult participants in NHANES
(2013–2016) and 3268 adult participants
of the Korean National Environmental
Health Survey (2015–2017)

Those in the higher urinary BPA tertiles
had significantly higher odds for obesity
(OR = 1.58 and 1.41 for 3rd and 2nd vs.
1st tertile, respectively)
Similar associations for urinary BPF
and BPS

Exposure not only to BPA but also to
substitutes BPF and BPS is associated
with adult obesity

Gajjar et al. (2021) [183]

Prospective observational cohort
of n = 212 children with urinary BPA and
BPS measurements at 8 years and body
composition assessments at 8 years
(bioimpedance) and 12 years (DXA)

No evidence for a synchronous or
prospective association of urinary BPA or
BPS with increased adiposity

Wu et al. (2020) [184]
Cross-sectional study including n = 2372
children and adolescents (aged 6–19)
participating in NHANES

BPA levels significantly associated with
higher weight in a statistical approach
implementing weighted quantile sum
statistical model but not in other
approaches

Evidence for an association between BPA
exposure and childhood/adolescent
obesity

Ribeiro et al. (2020) [185]
Meta-analysis of studies investigating
BPA exposure and multiple adverse
health outcomes, including obesity

- BPA is significantly associated with
overweight (OR 1.254), obesity (OR 1.503)
and increased WC (OR 1.503) in adults
- OR 1.8 for childhood obesity

Positive association between BPA
exposure and generalized as well as
abdominal obesity

Wu et al. (2020) [186] Meta-analysis of 10 observational studies

- Statistically significant dose–response
positive relationship between BPA and
overweight/obesity risk in both sexes
- 11% increase in obesity risk for every 1
ng/mL of BPA

Continuous positive relationship
between BPA and obesity irrespective of
sex

Jacobson et al. (2019) [187]
Cross-sectional study including n = 1831
children and adolescents (aged 6–19)
participating in NHANES

Urinary BPS and BPF but not total
bisphenols or BPA were significantly
associated with, particularly abdominal
obesity

Substitute bisphenol exposure may
predispose individuals to
childhood/adolescent obesity

Liu et al. (2019) [188]
Cross-sectional study including n = 745
children and adolescents (aged 6–17
years) participating in NHANES

Urinary BPA (OR 1.74) and BPF (OR 1.54)
are significantly associated with obesity,
with stronger associations between boys
Similar findings for abdominal obesity

Urinary BPA and its substitute BPF
associated with obesity, particularly in
boys

Zhang et al. (2019) [189] Cross-sectional study including n = 1269
adults participating in NHANES

Among other chemicals, increased
urinary BPA and BPS are significantly
associated with higher obesity prevalence

Exposure to BPA, and BPS may
predispose individuals to adulthood
obesity, although the authors recommend
considering the joint effects of different
chemical exposures

Hao et al. (2018) [190]
Prospective study (mean follow-up:
4 years) among 888 Chinese adults
without abdominal obesity at baseline

OR = 2.30 for incident abdominal obesity
each unit increase in log [BPA] urinary
concentration after adjustment for
confounding factors
Individuals in the lowest tertile of BPA
concentrations had the lowest risk for
incident central obesity (ORs 1.73 and
1.81 for those in the 2nd and 3rd tertiles,
respectively)

Prospective association of BPA exposure
with incident central obesity in Chinese
adults

Do et al. (2017) [191] Cross-sectional analysis of data
from n = 4733 adults aged (18 to 79 years)

For each natural-log unit increase in
urinary BPA concentration, significant
increase of 0.33 kg/m2 in BMI and
1.00 cm in waist circumference

Dose–response relationship between BPA
exposure and generalized as well as
abdominal obesity

Song et al. (2014) [192]

Prospective (10 years) cohort study of
977 women with baseline measurements
of urinary BPA and 9 phthalate
biomarkers

After adjustment for dietary and lifestyle
variables, those in the highest BPA
quartile gained on average an additional
0.23 kg/year (0.07–0.38) of body weight
during follow-up

BPA exposure is associated with greater
longitudinal weight gain in women

Bhandari et al. (2013) [193]

Cross-sectional analysis of data
from n = 2200 children and adolescents
(aged 6 to 18 years) from NHANES
(2003–2008)

- OR for obesity = 2.55 for children in the
highest vs. lowest quartile of urinary BPA
- Associations more robust among males
and non-Hispanic Whites

BPA is associated with
childhood/adolescent obesity, with
potential gender- and race-specific effects

Shankar et al. (2012) [194]
Cross-sectional analysis of data
from n = 3967 adult participants in
NHANES (2003–2008)

ORs = 1.69 and 1.59 for generalized and
abdominal obesity for the 4th vs. 1st
quartile of urinary BPA concentrations,
persistent after adjustment for several
confounders and consistent among
gender and race–ethnic groups

BPA exposure is associated with central
and abdominal obesity in both genders
and all race groups, irrespectively of
traditional risk factors



Int. J. Mol. Sci. 2024, 25, 675 21 of 37

Table 3. Cont.

Author, Year Study Design/Population Main Findings Comments

Trasande et al. (2012) [195]

Cross-sectional analysis of data
from n = of 2838 children and adolescents
(aged 6–19 years) participating in
NHANES

- Lowest prevalence of obesity in the 1st
vs. 2nd-4th quartiles of ascending urinary
BPA concentrations (10.3% vs. 20.1%,
19.0% and 22.3%, respectively)
- Association of BPA and obesity
significant in Whites but not Blacks or
Hispanics

Association between BPA exposure and
obesity likely exhibits race-specific effects

Wang et al. (2012) [196] Cross-sectional study of n = 3390, aged
>40 years

- Those in the highest quartile of urinary
BPA concentrations showed significantly
higher prevalence of generalized
(OR = 1.50) and abdominal obesity
(OR = 1.28)
- Among participants without overweight
or obesity, higher BPA was significantly
associated with IR (OR 1.94)

Evidence for a positive association
between BPA exposure and obesity, as
well as IR among lean individuals

Carwile et al. (2011) [197]
Cross-sectional study including n = 2747
adults (aged 18–74) participating in
NHANES (2003–2006)

Higher risk of general (OR 1.74) and
abdominal (OR 1.58) obesity among
individuals in the highest vs. lowest
quartile of urinary BPA concentration

BPA exposure is associated with general
and abdominal obesity in US adults

Phthalates and obesity

Deodati et al. (2023) [179]

Case–control study among n = 122
children (n = 66 and n = 56 with and
without obesity, respectively) matched
for age and gender

- Early downstream metabolites of
Di(2-ethylhexyl) phthalate in urine
significantly higher in girls with obesity
than normal weight
- Significant positive correlation of
Di(2-ethylhexyl) phthalate metabolites
with serum leptin levels

Significant correlation of certain
phthalate metabolites with increased
adiposity in girls

Stevens DR et al. (2023) [198]
Prospective study among n = 438 infants
from the Healthy Start prospective
pregnancy cohort.

- Significant inverse association between
maternal urinary mono-benzyl and di-
n-butyl phthalate at 28th gestational
week and percentage fat mass at birth in
male infants

Maternal phthalate exposure in
pregnancy is inversely associated with fat
mass in male, but not female, infants at
birth

Li et al. (2023) [199]

Case–control study among n = 240
children with overweight/obesity (OBE)
and n = 240 age- and gender-matched
controls

Among 9 phthalates, monomethyl
phthalate and monobutyl phthalate were
significantly higher in controls than
children with overweight/obesity but not
after adjustment for physical activity and
caloric intake.

No significant differences in phthalate
concentrations between OBE and controls

Wu et al. (2022) [200]

Meta-analysis of observational studies for
the association between phthalate
compounds and obesity in adult and
pediatric populations

- Mono-n-butyl-, monobutyl-,
monoisobutyl-, monoethyl- and
mono(2-ethyl-5-carboxypentyl) phthalate
significantly associated with obesity,
specific compounds more strongly
correlate with general or abdominal
obesity
- Stronger associations in women and in
studies from the United States and
Europe

Compound-specific effects on general
and abdominal obesity, with potential
gender- and study-site-specific effects

Boyer et al. (2023) [201]

Measurement of the concentrations of
9 phthalates in n = 379 pregnant women,
in relation to gestational weight gain
(difference between pre-pregnancy and
median 35.1 weeks weight)

Significant direct association between
mono-(3-carboxypropyl) phthalate and
mono-n-butyl phthalate was positively
associated with gestational weight gain
(1.81 kg and 0.77 kg at 35 weeks)
interquartile range increase among
women with obesity

Phthalate exposure is associated with
greater weight gain in pregnancy,
particularly among women with obesity
at baseline

Vieyra et al. (2023) [202]

Prospective observational study n = 1125
participants of the Woman Health
Initiative (WHI) with available urine
phthalate measurements and DXA-based
estimations of VAT and SAT

Significant positive associations of
baseline di-isobutyl phthalate
biomarkers, monocarboxy-isononly
phthalate, and di(2-ethylhexyl) phthalate
with VAT three years later, which
persisted after adjustment for SAT

Higher levels of certain urinary phthalate
compounds are longitudinally associated
with higher VAT over time in
postmenopausal women

Milankov et al. (2023) [203] Cross-sectional study among n = 60
women with PCOS

Total urinary phthalate concentrations
significantly positively correlate with
BMI, waist circumference, waist-to-height
ratio, VAI, FPG and HOMA-R

Increased phthalate exposure associated
with obesity, insulin resistance and
hyperglycemia in women with PCOS

Wang et al. (2023) [204] Cross-sectional study among n = 798
students (7–10 years)

Significantly increased risk of abdominal
obesity for the fourth vs. first quartile
(OR = 5.29 and 3.73) and 273% (OR = 3.73;
95% CI: 1.57, 8.86) of urinary
concentrations of monoethyl phthalate
and monoisobutyl phthalate

Monoethyl-phthalate and
monoisobutyl-phthalate exposure are
associated with abdominal obesity in
children

Peng et al. (2023) [205]

Prospective observational analysis
of n = 1369 women in the Study of
Women’s Health Across the Nation
Multi-Pollutant Study

Significantly higher levels of spot urinary
phthalates (except
mono-carboxy-isononyl phthalate) were
associated with faster increases in body
fat percentage and fat mass, but not total
body weight change over time

Urinary phthalate concentrations
positively correlated with fat gain in
middle-aged women
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Table 3. Cont.

Author, Year Study Design/Population Main Findings Comments

Kupsko et al. (2022) [206]
Prospective observational study of
514 mother–child pairs in pregnancy
until twelve years post-term

Higher maternal urine di (2-ethylhexyl)
phthalate metabolites significantly
associated with greater odds of high and
increasing weight in infants
Higher di-isononyl phthalate metabolites
significantly associated with greater odds
increasing weight in infants

Exposure to certain phthalates during
pregnancy exerts a significant impact in
infant weight trajectories during
childhood

Ribeiro et al. (2019) [207]

Meta-analysis of 29 studies for the
association between phthalate
compounds and obesity in adult and
pediatric populations

- The low number of studies for many
phthalate compounds precludes
meta-analysis
- Statistically significant association solely
between mono(2-ethyl-5-carboxypentyl)
phthalate and obesity in adults
(OR = 1.67)

Positive association between many
phthalate compounds and adiposity
measures, most formally non-significant;
possible publication-bias-related effects

Díaz Santana et al. (2019) [208]

Cross-sectional (n = 997) and prospective
(n = 660) observational study among
participants of the Woman Health
Initiative (WHI)

- Significant positive associations
between urinary phthalate biomarker
concentrations and obesity in
cross-sectional analysis
- Baseline urinary
mono-(2-ethyl-5-oxohexyl)-, monoethyl-,
mono-hydroxybutyl- and
mono-hydroxyisobutyl phthalate
significantly correlate with weight gain
after 3 years
- No associations with weight changes at
6 years

Exposure to certain phthalates may
predispose individuals to obesity and
short-term weight gain

Rodriguez-Carmona, et al.
(2019) [209]

Prospective cohort study among n = 178
pregnant women

Higher urinary mono-3-carboxypropyl
pthalate is significantly associated with
moderately increased weight gain over
the next 5.2–10.7 years
Higher mono-benzyl phthalate
significantly associated with lower
weight gain in the same timeframe

Prospective association between
phthalate exposure in pregnancy and
prospective weight changes in women

Buckley et al. (2016) [210]

Prospective cohort study assessing the fat
mass of n = 180 children (4–9 years) in
relation to maternal third-trimester
urinary phthalate concentrations in
pregnancy

- No continuous associations between
maternal urinary phthalate
concentrations and fat mass in offspring,
without apparent gender-specific effects
- 3.06% lower fat mass in children in the
highest vs. lowest quartile of summed
di(2-ethylhexyl) phthalate metabolites

No evidence for an impact of maternal
phthalate exposure and increased
infantile fat mass

Valvi et al. (2015) [211]

Prospective cohort study of n = 391
mothers with creatinine-adjusted
measurements of urinary phthalates in
the 1st and 3rd trimesters of pregnancy

High-molecular-weight phthalate
metabolites in maternal urine
significantly associated with lower BMI
z-scores in boys and higher in girls 4–7
years of age

Potential gender-specific effects of
maternal phthalate exposure and
infantile BMI trajectories

Yaghjyan et al. (2015) [212]

Cross-sectional analysis
including n = 6005 women without
diabetes participating in NHANES
(1999–2004)

- Significant positive associations
between monobutylphthalate,
mono-2-ethylhexyl- to
mono(2-ethyl-5-hydroxyhexyl) phthalate
ratio and BMI, WC

Among the observed associations, the
higher mono-2-ethylhexyl- to
mono(2-ethyl-5-hydroxyhexyl) phthalate
ratio may be reflective of slower
oxidative metabolism of
mono-2-ethylhexyl-pthalate

Song et al. (2014) [192]
Prospective cohort study of n = 977
women with baseline measurements of
urinary BPA and 9 phthalate biomarkers

After adjustment for dietary and lifestyle
variables, significant albeit moderate
positive dose–response relationship
between phthalic acid, monobenzyl- and
monobutyl-phthalate and weight gain
over 10 years

Exposure to certain phthalates is
associated with accelerated weight gain
in women

Lind et al. (2012) [213] Prospective cohort study among n = 1016
individuals of 70 years of age

Baseline serum concentrations of
mono-isobutyl phthalate and
mono-methyl phthalate significantly
positively associated with DXA- and
abdominal MRI-derived indices of
adiposity in women two years later, but
not in men

Circulating concentrations of certain
phthalates are associated with increased
adiposity only in women, suggesting
possible sex-specific associations of
phthalates with obesity

Hatch et al. (2008) [214]
Cross-sectional analysis of data
of n = 4369 NHANES participants
(1999–2002)

- Positive trends of BMI and WC across
quartiles of concentrations of
mono-benzyl, mono-2-ethyl-5-oxohexyl,
mono-ethyl, mono-n-butyl,
mono-2-ethyl-5-hydroxyhexyl,
particularly among males 20–59 years old
- Similar trends across mono-ethyl
phthalate quartiles in adolescent girls,
less strong in adult women
- Inverse trend for mono-2-ethylhexyl
phthalate in adolescent girls and several
inverse associations in adults 60–80 years
- No associations in children

Exposure to several phthalates may be
associated with increased adiposity, but
age-group- and gender-specific effects
likely exist
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Table 3. Cont.

Author, Year Study Design/Population Main Findings Comments

Stahlhut et al. (2007) [78]
Cross-sectional analysis of data
of n = 1443 men participating in
NHANES (1999–2002)

- Urinary concentrations of
monobenzylphthalate,
mono(2-ethyl-5-hydroxyhexyl) phthalate,
mono(2-ethyl-5-oxohexyl) phthalate and
monoethylphthalate are significantly
associated with increased waist
circumference, after adjustment for
confounders
- Monobutylphthalate,
monobenzylphthalate and
monoethylphthalate concentrations
exhibit significant positive correlations
with HOMA-R

Exposure to certain phthalates is
associated with higher abdominal obesity
and insulin resistance

Abbreviations: BMI: body mass index; BPA/BPF/BPS: bisphenol A, F and S; DXA: dual X-ray absorptiometry; FPG:
fasting plasma glucose; HOMA-R: Homeostatic Model Assessment for Insulin Resistance; NHANES: National
Health and Nutrition Examination Survey; PCOS: polycystic ovary syndrome; SAT: subcutaneous adipose tissue;
VAI: visceral adiposity index; VAT: visceral adipose tissue, WC: waist circumference.

8.1. Bisphenol A and Obesity

In general, the majority of human cross-sectional epidemiological studies in adult
patients demonstrate a direct association between BPA measurements in urine and gen-
eralized (indexed by the BMI) as well as abdominal (based on WC measurements) obe-
sity [182,189,191,194,196,197]. This observation is further strengthened by the findings of
longitudinal studies [190,192] demonstrating accelerated weight gain and higher incidence
of central obesity among individuals with higher urinary or serum BPA concentrations [181].
The findings regarding this relationship are not equivocal, since other studies with similar
methodologies have failed to demonstrate any substantial associations [183,187]; however,
existing meta-analyses of the available clinical studies point towards a consistent association
of higher BPA measurements with the prevalence of overweight and generalized or central
obesity [178,185,186], while one study has demonstrated the presence of an inverse U-shaped
dose–effect relationship between serum BPA and incident overweight/obesity in individuals
with normal weight [181]. Similar associations have also been found between BPA and child-
hood/adolescent obesity [179,184,187,188,193,195] and are additionally supported by relevant
meta-analyses [215] despite the presence of studies with neutral results [183]. Importantly,
even though some disparity among studies exists in this regard, the overall association of
BPA exposure with obesity risk likely affects both genders to a significant degree. The results
of a recent umbrella meta-analysis have strengthened this notion; however, a considerable
heterogeneity among studies in males was noted, rendering the association between BPA
and obesity more convincing for females [178]. Furthermore, the available observations have
been conducted in ethnically diverse populations, allowing for the generalizability of the
findings. Few observational studies have pointed towards race-dependent effects of BPA
on obesity risk [193,195], while in others, the risk appears to be consistent across different
ethnic backgrounds [194]. The studies on the impact of BPA exposure during gestation on
infantile birth weight have yielded inconclusive results, demonstrating either neutral effects,
restricted fetal growth or abnormally high birth weight [216,217], with most data favoring
a relationship with growth restriction, especially when exposure during early pregnancy is
taken into account [218]. These findings do not contradict the bulk of evidence favoring an
obesogenic effect of BPA, but rather demonstrate the overall deleterious endocrine-disrupting
properties of the compound.

Apart from measures of adiposity, exposure to BPA has been associated with obesity-
related metabolic perturbations and a more adverse overall metabolic profile, including
insulin resistance, hyperglycemia and overt T2DM [219–221] independently of traditional
risk factors, arterial hypertension [222] and dyslipidemia [223,224]. It is unclear whether
these observations emerge as direct consequences of BPA exposure or are indirectly medi-
ated by its putative obesogenic effects.

Due to the overall adverse safety profile of BPA, the use of other bisphenols such as BPS,
BPF or BPAF in the manufacture of plastics has been increasing. However, these compounds
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are not free of endocrine-disrupting properties [225]. With respect to obesity, there are increas-
ing reports of an association with BPF, PBS or PBAF exposure [180,182,187–189], occasionally
more robust than that of BPA [180,187], although other studies have not ascertained significant
effects of BPF or BPS exposure on obesity risk [183].

8.2. Phthalates and Obesity

Most available cross-sectional studies have demonstrated a direct association between
one or more of the numerous measured phthalate metabolites and measures of adipos-
ity [78,203,204,208,212,214]. Supportive evidence has also been provided by prospective
observational studies, which have generally demonstrated associations between phthalate
urine [192,202,205,209] or serum [213] concentrations and prospective weight or fat mass
over follow-up durations as prolonged as approximately 10 years. Another prospective
study ascertained a significant association of baseline urine phthalates with weight gain
in the short (after 3 years) but not long term (6 years) [208], suggesting that the effect
of phthalates on weight gain may be short-lived and may vary with changing levels of
exposure over time. Interestingly, increased baseline phthalate concentrations were also
associated with impaired weight loss during a dietary intervention, suggesting obesogenic
properties [226]. It should be noted that the sum of available prospective studies has based
their associations on momentary urinary measurements at baseline, which arguably do not
necessarily reflect the cumulative exposure over time.

Disparities also remain as to whether the effects of specific phthalate compounds are
sex- or age-group-dependent [210,213,214], while evidence also shows that higher adiposity
at the time of phthalate measurement facilitates the obesogenic effects of phthalates [201]; it
is unclear, however, whether the latter is an actual priming effect of already-existing obesity
or if it could merely reflect a confounding effect of higher cumulative phthalate exposure
and obesogenic effect also in the time period preceding the measurement. Available meta-
analyses indicate that the presence of an association between phthalate exposure and obesity
is likely, although the reported results are highly heterogeneous. Furthermore, the presence
of sex-specific effects or publication bias in available reports cannot be excluded [200,207].

Certain reports have also demonstrated similar associations in adolescents [214] while
the evidence for an association with childhood obesity are conflicting [204,214]—at least
regarding the presence of effects independent of other confounding factors pertinent to diet
and/or physical activity [182]. Similarly, conflicting results appear in prospective studies
investigating the effects of intrauterine exposure to phthalates (based on concentrations
in maternal urine during pregnancy) and infantile obesity, with some demonstrating an
adverse relationship between maternal exposure and offspring weight gain [206], some
demonstrating neutral [210] or even beneficial effects [210,211] and others demonstrating
phthalate-compound-specific effects [209]. A recent meta-analysis indicated an overall
association of prenatal exposure to the most broadly used di-(2-ethylhexyl)-phthalate with
decreased BMI z-scores in infants but no impact on fat mass, suggesting that the correlation
between phthalate exposure and BMI is mediated by decreased muscle growth [227].

9. Perspectives, Controversies and Challenges

Even though the bulk of evidence tends to suggest overall adverse effects of exposure
to BPA and phthalates on obesity-related endpoints, the methodological limitations of
available observations should also be considered. The majority of available clinical studies
are of cross-sectional nature, hence not allowing for concrete conclusion, although existing
prospective epidemiological analyses have generally yielded compatible results. Further-
more, practically, the majority of studies have based their results on single momentary
measurements of these pollutants, particularly in urine. The use of single measurements
for nonpersistent chemicals is poor [228]. In observational studies, multiple repeated
specimens need to be collected for EDC determination over an extended chronic period
of toxicological relevance, i.e., before and during at-risk temporal windows for a disease,
and with consideration of exposure patterns [80,228]. The probability of background con-
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tamination of samples during handling, conservation or even laboratory measurement
constitutes another source of potential bias [229–231]. However, despite these theoretical
considerations, it appears that, at least in the case of BPA assays, contamination is in
fact negligible in most laboratories [232], and in any case, this does not itself present a
sufficient ground for discrediting the ascertained associations between BPA or phthalate
measurements and adverse health outcomes, including obesity. Another factor that should
be considered when examining the effects of exposure on adiposity and other metabolic
readouts is that BPA and phthalate exposure also occurs during the consumption of fat-
and sugar-rich, highly caloric, palatable meals of low nutritional value (“junk food”) [233];
hence, the epidemiological associations could potentially be mere reflections of an un-
healthy dietary lifestyle. Certain studies have taken dietary factors into account as potential
confounders [179,192,199]; nevertheless, this remains a considerable potential source of
bias that should not be overlooked in epidemiological studies. Lastly, exposure to multiple
chemicals can occur from single sources; therefore, a causal nature of the observed corre-
lations cannot be readily assumed, while the estimation of combined effects of multiple
exposures becomes particularly challenging for studies of observational nature.

In any case, and even though available data from human studies are not unanimous
for an unequivocal obesogenic effect of BPA or phthalate exposure, the majority of available
evidence, coupled with the results of preclinical and in vitro studies, collectively present
a strong argument in support of this notion. Furthermore, the fact that both compound
groups have been associated with an adverse profile of other relevant cardiometabolic risk
determinants such as insulin resistance and T2DM [234–238], dyslipidemia [223,239,240]
and hypertension [241,242] renders the exposure to these ubiquitous chemicals a reasonable
source of public health concern.

A gradual replacement of both BPA and phthalates by alternative compounds in the
production of plastic has been undertaken on a large scale in order to diminish the proven
and putative adverse health effects of exposure. For example, Canada has banned the
marketing of baby bottles containing BPA since 2010 [243]. This has led to the increasing
use of bisphenols other than BPA, which are, however, not free of endocrine-disrupting
pharmacological actions [225]. On the contrary, obesogenic properties [187–189] and possi-
ble links to an increased cardiovascular risk [244–246] have also been attributed to BPF and
BPS. Collectively, all these issues mandate the displacement of the sum of bisphenol com-
pounds and their replacement by alternative plasticizers, such as those derived from plant
biomass [243]. Accordingly, viable alternatives to phthalates include adipates, diisononyl
cyclohexane-1,2 dicarboxylate (DINCH) and bis-2-ethylhexyl terephthalate, which exhibit a
less hazardous profile, although human exposure has been steadily increasing in the latest
years [247,248].

Currently, the replacement of phthalates and bisphenols constitutes a field of active
applied research. Due to the ubiquitous use of plastics and the subsequent exposure hazard
to humans, there is a pressing need for meticulous testing of candidate compounds in
preclinical and epidemiological studies in order to establish their safety with regard not
only to potential endocrine disruption but also to overall long-term health effects.

10. Conclusions

Based on the available data from mechanistic, animal and epidemiological human
studies including meta-analyses, the weight of evidence points towards the contribution of
EDCs to the etiopathogenesis of obesity. Moreover, these ubiquitous chemicals such as BPA
and phthalates as well as their analogs have been linked to obesity-associated disorders,
namely insulin resistance, T2DM, dyslipidemia, hypertension and, similar to advanced
glycation end products (AGEs), female hormone imbalances [249,250]. Undoubtedly, the
type of diet, caloric intake and the lack of somatic exercise are crucial factors in the obesity
pandemic; however, the decrease in exposure to obesogenic EDCs, particularly during
susceptible time windows such as prenatal, neonatal, pubertal and reproductive periods,
may also contribute to decreasing excess body weight and its associated implications in
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the population. It is important to underscore that similar to hormones, EDCs may act in
several organs at very low levels promoting time- and tissue-specific effects, including
metabolic, endocrine, neurological, reproductive and transgenerational implications. Be-
sides known EDCs, there are many chemical compounds or complex mixtures presenting
hormonal/growth factor signaling (metabolism, carcinogenesis)-disrupting actions, such
as (anti)estrogenic or antiandrogenic actions and deregulation of the IGF-1–IGF-1 receptor
axis [251,252], particularly in plastic bottled water [253,254]. It is of paramount importance
that all chemical compounds should undergo testing for their endocrine-disrupting prop-
erties at low levels by using in silico, mechanistic and animal studies before marketing.
International standardization is required for the biomonitoring and evaluation of EDCs to
improve policymaking and understanding regarding the actual exposure of people to EDCs
and their potential implications for health. Limitations of their use or substitution as well
as educational programs in maternity clinics about the use of EDCs and their obesogenic
and metabolic consequences represent important preventive measures. An example of
substitution of EDCs in water bottles could be the use of alternative materials such as
glass, aluminum or stainless steel. Although difficult to use, glass is a safe reusable bottle
material for storing both food and liquids because it is chemical-free, constructed from
natural products and dishwasher-safe. Before any regulatory action, subjects should be
informed so that they may decrease or avoid exposure to EDCs as much as possible for
themselves and their children.
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ADH: alcohol dehydrogenase; AGEs: advanced glycation end products; AgRP: Agouti-related pep-
tide; AhR: aryl hydrocarbon receptor; APOA4: apolipoprotein A4; AR: androgen receptor; BAT:
brown adipose tissue; BF%: body fat percentage; BMI: body mass index; BPA: bisphenol A; BPB:
bisphenol B; BPC: bisphenol C; BPE: bisphenol E; BPAF: bisphenol AF; BPP: bisphenol P; BPZ:
bisphenol Z; CB1: endocannabinoid receptor type 1; C/EBP: CCAAT/enhancer-binding family of
proteins; CPT1α: carnitine palmitoyltransferase α; CRP: C-reactive protein; DBP: dibutyl phthalate;
DCP: 2,4-dichlorophenol; DEHP: di(2-ethylhexyl) phthalate; DEP: diethyl phthalate; DIBP: diisobutyl
phthalate; DINP: diisononyl phthalate; DPHP: di(2-propylheptyl) phthalate; E2: 17β-estradiol; EDCs:
endocrine-disrupting chemicals; EFSA: European Food Safety Authority; ER: estrogen receptor;
ERR-γ: estrogen-related γ receptor; EU: European Union; FABP4: fatty-acid-binding protein 4; FASN:
fatty acid synthase; FDA: Food and Drug Administration; GPR30: G-protein-coupled receptor 30;
GLUT: glucose transporter; GR: glucocorticoid receptor; GWAS: genome-wide association study;
HDL: high-density lipoprotein; HOMA-IR: Homeostatic Model Assessment for Insulin Resistance;
HPP: 4-cumylphenol; IFN: interferon; IGF: insulin-like growth factor; IL: interleukin; IR: insulin
resistance; JAK: Janus kinase; JNK: c-Jun N-terminal kinase; LBP: lipopolysaccharide-binding protein;
LPL: lipoprotein lipase; LPS: lipopolysaccharide; MCP: monocyte chemoattractant protein-1; MEHP:
mono-(2-ethylhexyl) phthalate; MR: mineralocorticoid receptor; mTOR: mammalian target of ra-
pamycin; NAFLD: non-alcoholic fatty liver disease; NF-κB: nuclear factor kappa-light-chain-enhancer
of activated B cells; NPY: neuropeptide Y; PPAR: peroxisome-proliferator-activated receptors; PR:
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progesterone receptor; PVC: polyvinyl chloride; ROS: reactive oxygen species; SGBSs: Simpson–
Golabi–Behmel syndrome pre-adipocyte cells; SREBF1: sterol regulatory element-binding factor
1; STAT: signal transducer and activator of transcription; T2DM: diabetes mellitus type 2; TBBPA:
tetrabromobisphenol A; TBPH: Bis(2-ethyhexyl) tetrabromophthalate; TDI: tolerable daily intake; TG:
triacylglycerol; TGF: transforming growth factor; TNF-α: tumor necrosis factor-α; Treg: T regulatory
cell; TR: thyroid hormone receptors; TSH: thyroid-stimulating hormone; VEGFA: vascular endothelial
growth factor A; WAT: white adipose tissue; WHO: World Health Organization.
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