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Challenges and opportunities in
obesity: the role of adipocytes
during tissue fibrosis
Qian Zhang 1, Chongxuan Lu2, Feng Lu 1, Yunjun Liao 1,
Junrong Cai 1* and Jianhua Gao 1*

1Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University,
Guangzhou, Guangdong, China, 2The Second School of Clinical Medicine, Southern Medical
University, Guangzhou, Guangdong, China
Obesity is a chronic disease that affects the energy balance of the whole body. In

addition to increasing fat mass, tissue fibrosis occurred in white adipose tissue in

obese condition. Fibrosis is the over-activation of fibroblasts leading to excessive

accumulation of extracellular matrix, which could be caused by various factors,

including the status of adipocytes. Themorphology of adipocytes responds rapidly

and dynamically to nutrient fluctuations. Adaptive hypertrophy of normal

adipocytes protects peripheral organs from damage from lipotoxicity. However,

the biological behavior of hypertrophic adipocytes in chronic obesity is abnormally

altered. Adipocytes lead to fibrotic remodeling of the extracellular matrix by

inducing unresolved chronic inflammation, persistent hypoxia, and increasing

myofibroblast numbers. Moreover, adipocyte-induced fibrosis not only restricts

the flexible expansion and contraction of adipose tissue but also initiates the

development of various diseases through cellular autonomic and paracrine effects.

Regarding anti-fibrotic therapy, dysregulated intracellular signaling and epigenetic

changes represent potential candidate targets. Thus, modulation of adipocytes

may provide potential therapeutic avenues for reversing pathological fibrosis in

adipose tissue and achieving the anti-obesity purpose.
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GRAPHICAL ABSTRACT

Graphical abstract: obesity-induced adipose tissue fibrosis. In chronic obesity, the adipocytes that have undergone excessive expansion demonstrate
heightened inflammatory activity, impaired secretion function, and inadequate vascularization, ultimately creating a microenvironment conducive to
fibrosis development and leading to the formation of adipose tissue fibrosis.
1 Introduction

In recent years, the growing prevalence of obesity has become a

major public health problem worldwide. As the body’s largest energy

store, adipose tissue plays an important role in controlling energy

balance throughout the body. Benefiting from the characteristic loose

ECM structure, mature adipocytes can support fatty acid release or

storage by resizing from small cells with a diameter of 20–70 mm to

large cells with a diameter of 300 mm (1). At the same time,

adipocytes can secrete many lipid and protein factors through

endocrine action, which have a profound impact on the

metabolism of other tissues. Recent studies have shown that

adipocytes exhibit remarkable plasticity during periods of caloric

excess, driving the development of extracellular matrix remodeling.

In the early stages of obesity, adipocytes in subcutaneous adipose

tissue adapt to increased energy supply by increasing intracellular

lipid accumulation and hypertrophy. However, the over-expanded

adipocytes in chronic obesity are characterized by up-regulation of

inflammatory activity, secretion dysfunction, and abnormal

differentiation, inducing a microenvironment conducive to fibrosis

(2). Fibrosis is a chronic process of ECM excessive accumulation

characterized by hyperactivation of myofibroblasts. The highly rigid

ECM in fibrotic adipose tissue induces apoptosis and lipid leakage in

normal adipocytes through shear stress, thereby triggering common

metabolic syndromes such as dyslipidemia and insulin resistance (3).

In addition, elevated concentrations of pro-fibrotic adipokines in

circulation have been shown to exert a negative influence on other

tissues and organs. The persistent fibrotic response detected in

chronic diseases such as cirrhosis, systemic scleroderma, and heart

failure is closely related to uncontrolled adipocytes. The medical

burden caused by fibrotic diseases is enormous. It is estimated that

up to 45% of deaths in developed countries can be attributed to

organ failure due to fibrosis-related diseases (4, 5).

The synergistic involvement of myofibroblasts in tissue fibrosis

with different types of cells, such as inflammatory immune cells, has

been extensively explored. However, little attention has been paid to

the contribution of adipocytes in extracellular matrix remodeling.

Here, we update our current understanding of adipose tissue

fibrotic remodeling in the obese state, focusing on the role of

adipocytes. A better understanding of the autocrine, paracrine
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and endocrine communication mechanisms of adipocytes may

provide further insights into the pathobiology of obesity-related

fibrotic diseases. Finally, we delve into the challenges and prospects

encountered in this field, aiming to stimulate significant research in

related domains and provide novel insights for the prevention and

treatment strategies of fibrosis-related diseases.
2 Adipocytes regulate adipose
tissue fibrosis

2.1 Adipocytes promote fibrosis by
releasing free fatty acids

In obesity, the inherent ability of adipose tissue to store and sense

nutrients is compromised, resulting in free fatty acids (FFA) spilling

into the periphery and circulation (Figure 1). Miller et al. explored the

effect of free fatty acids on adipose tissue function by developing a

unique dietary regimen and found out that the peroxidized n-3-

enriched diet led to lipotoxicity of white adipose tissue, as evidenced

by increased fibrosis, lipofuscin, and reduced anti-inflammatory

markers (6). Mechanisms of lipotoxicity involve various cellular

processes, including mitochondrial damage, and activation of

intracellular inflammation-related signaling pathways (7).

Furthermore, signaling pathways related to fatty acid-mediated

adipose tissue fibrosis are also particularly enriched. Targeted

stimulation of ERK signaling in hypertrophic adipocytes increases

free fatty acid production and release from lipolysis, which further

upregulates inflammatory pathways in adipocytes (8). Obese adults

with low fatty acid prevalence have less adipose tissue fibrosis

compared with high fatty acid prevalence, which is associated with

lower activation of the SAPK/JNK pathway (9). In addition, the bile

acid-activated nuclear receptor, FXR has been implicated in the

control of and may be a key determinant of adipocyte size and

adipose tissue function under metabolic stress. Sustained FXR

expression in adipose tissue limits its storage capacity, leading to

elevated plasma-free fatty acids, ultimately promoting adipose tissue

fibrosis (10). Besides, lipotoxic cell damage also mediates fibrotic

responses in various organs such as the heart and kidneys (11, 12).
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2.2 Adipocytes contribute to fibrosis via
dysregulated secretion of adipokines

Apart from its crucial involvement in lipid metabolism, adipose

tissue serves as an essential endocrine organ by releasing a range of

specific cytokines and hormones referred to as adiponectins (13).

Adipokines interact with receptors on target cells, triggering

intracellular signaling pathways and inducing various effects. In

cases of obesity-induced disrupted fibrotic adipose tissue, there is an

overproduction of dysregulated adipokines that often display

proinflammatory and profibrotic characteristics.

2.2.1 Adiponectin
Adiponectin, one of the most abundant circulating adipokines, is a

protective protein highly expressed in adipocytes (14, 15). Activation of

adiponectin receptors has been shown to exert potent anti-

inflammatory and anti-fibrotic effects in nonalcoholic steatohepatitis

(NASH) models (16). In vitro studies have demonstrated that

adiponectin can inhibit fibroblast activation induced by TGF-b, LPS,
and Wnt signaling pathways, as well as downregulate collagen and a-
SMA gene expression (17, 18). Therefore, adiponectin can be identified

as a negative regulator of tissue fibrosis. Unfortunately, obesity

significantly reduces the secretion of adiponectin (19). In humans,

plasma concentration of adiponectin is negatively correlated with body

weight and BMI (20). Furthermore, exercise-induced mitigation of

high-fat diet-induced hypertrophy in adipocytes and collagen

deposition leads to a significant increase in adiponectin levels within

the adipose tissue (21).
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2.2.2 Proinflammatory cytokines
Low-grade chronic inflammation caused by adipocytes in

obesity is thought to be a key factor in adipose tissue fibrosis.

Although increased numbers of adipocytes are well tolerated for

obesity, hypertrophy of their size is considered a deleterious process

(22). When a certain threshold is reached, anabolic stress causes

widespread molecular changes in fat cells. Dysfunctional adipocytes

release more pro-inflammatory factors such as tumor necrosis

factor-a (TNF-a), interleukin 6 (IL-6) and interleukin 1 (IL-1)

(23). Among them, TNF-a and IL-6 are potent agonists of collagen

synthesis. Overexpression of TNF-a induced macrophage

infiltration and subsequent fibrosis in adipose tissues under the

HFD regimen (24). Furthermore, TNF-a promoted the

differentiation of mesenchymal stem cells into fibroblasts by

activating NF-kB signaling (25). In a model of renal fibrosis,

specific blockade of IL-6 signaling reduced the number of

phosphorylated signal transducers and activators of transcription

(p-STAT3)-activated fibroblasts and the deposition of extracellular

matrix proteins (26). As for changes in inflammatory fatty acid

metabolism, they indirectly modulate fibrosis by increasing

lipotoxicity or altering cell fate (27).

2.2.3 Hypoxia-inducible factor
WAT is one of the most vascularized tissues in the body.

Angiogenesis is the physiological process of forming new blood

vessels based on existing blood vessels, which is essential for the

maintenance of normal tissue physiological function and tissue

remodeling. With further lipid accumulation, the density and
FIGURE 1

Mechanisms of adipocytes in adipose tissue fibrosis. Dysfunctional adipocytes secrete proinflammatory cytokines and free fatty acids, which activate
immune inflammatory cells and amplify the inflammatory cascade. In addition, imbalanced adipokines and hypoxia-inducible factors further promote
the development of adipose tissue fibrosis. In this condition, mature adipocytes and adipose stem cells transdifferentiate into myofibroblasts.
Activated myofibroblasts aggregate and a large amount of extracellular matrix is deposited in adipose tissue.
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function of intrinsic capillaries cannot support the massive

expansion of adipose tissue and hypoxia ensues (28). On the one

hand, hypoxia indirectly promotes fibrosis by activating the

inflammatory response. The necrosis of fat cells caused by

hypoxia is conducive to the infiltration of pro-inflammatory

leukocytes. Studies have also shown that hypoxia can alter the

adipose-derived mesenchymal stem cells (ADSCs) secretion profile

of (METS) patients to release more pro-inflammatory factors and

trigger a specific inflammatory state (29). On the other hand, both

the stability and transcriptional activity of the hypoxia-inducible

factor(HIF-1) were increased in adipocytes and further activated the

pro-fibrotic transcriptional program under hypoxia (30). AT of

transgenic ob/ob mice expressing HIF-1 exhibit increased fibrosis

and upregulation of several ECM genes (31). HIF-1 promoted the

accumulation of type I collagen in response to transforming growth

factor-b (TGF-b) signaling by forming a transcriptional complex

with small mothers against decapentaplegic 3 (Smad3) (32). At the

same time, studies have also shown that activation of HIF-1

signaling can promote epithelial-mesenchymal transition (EMT),

thereby exacerbating fibrotic damage (33). Moreover, selective

inhibition of HIF-1 reduces adipose tissue inflammatory

infiltration and tissue fibrosis in high-fat diet mice (34).

2.2.4 Visfatin
Visfatin is highly enriched in visceral adipose tissue, and its

expression level in plasma increases with the development of

obesity (35). Treatment of 3T3-L1 preadipocytes with visfatin

resulted in up-regulation of adipose tissue fibrosis markers such

as collagen type VI (Col6) (36). In addition, visfatin accelerated the

development of liver fibrosis by increasing the expression of a-
SMA, fibronectin, vimentin, and CTGF as well as inflammatory

chemokines (37).

2.2.5 HMGB1
The novel adipokine high mobility group box 1 (HMGB1) is a

30 kDa DNA-binding protein, which is an important regulator of

extracellular matrix remodeling. HMGB1 was present in a variety of

cells but mainly secreted by adipocytes in visceral adipose tissue in

obese patients (38). As an autocrine medium, HMGB1 in the

extracellular environment has a certain pro-inflammatory effect

on human adipocytes, which increased the expression of toll-like

receptor 4 (TLR4) and toll-like receptor 2 (TLR2) as well as

promoted the infiltration of M1-type macrophages in adipose

tissue through the NF-kB signaling pathway (39). In addition,

HMGB1 increased the release of active TGF-b1 in macrophages

and fibroblasts to accelerate the transformation of fibroblasts into

myofibroblasts (40). However, no direct link between HMGB1 and

adipose tissue fibrosis has been reported, and further research is

needed in the future.

2.2.6 Leptin
Leptin is a small peptide derived from adipose tissue. During

normal physiology, leptin crossed the blood-brain barrier and

inhibited the secretion of neuropeptide Y and agoutin to reduce

hunger and increase energy expenditure. Leptin also bonds directly
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to leptin receptors and inhibited lipid synthesis in adipocytes (41).

Obesity-related hyperleptinemia may be another cause of fibrosis.

Leptin has been shown to induce proadipogenic and

proinflammatory Signaling in adipocytes and ASCs by activating

the mTOR pathway (42). The propelling role of leptin in adipose

tissue fibrosis has been further confirmed. Leptin activated TGF-b
and CTGF through the phosphatidylinositol 3 kinase (PI3K)-

protein kinase B (AKT) signaling pathway to induce collagen

deposition and promote fibrosis (43, 44). In addition, leptin-

mediated aldosterone production may be a new mechanism for

obesity-related fibrosis (45).

2.2.7 DPT
Dermatopontin (DPT), also known as tyrosine-rich acidic

mechanism prote in (TRAMP), can promote col lagen

accumulation to some extent. However, the secretion of DPT

from visceral adipose tissue was greatly increased in the obese

state, which exacerbated the remodeling of the extracellular matrix

and the occurrence of chronic inflammation in adipose tissue (46).

2.2.8 Endotrophin
A novel adipocyte-derived factor endotrophic is the C-terminal

cleavage product involving this C5 domain of recombinant collagen

type-VIa3 (COL6a3). The expression of endotrophic is mainly

derived from fully differentiated adipocytes and is hardly in ADSCs.

Its levels are upregulated in obese individuals (47). Endorphins can

act as powerful co-stimulators of existing pathological processes in

“unhealthy” adipose tissue, triggering further enhancement of

fibrosis and inflammation when challenged with a high-fat diet

(HFD). Profibrotic and proinflammatory genes were significantly

upregulated in the fat pad of Endotrophin-overexpressing

transgenic mice. Furthermore, in a diet-induced obesity (DIO)

model , transgenic mice efficiently induced a fibrotic

microenvironment in adipose tissue by upregulating collagens,

collagen cross-linking enzymes lipoxygenase (LOX), and

additional ECM constituents. Besides, some of these fibrotic

actions may be exerted through upregulation of the TGF-b
pathway (48).
2.3 Adipocytes promote fibrosis by
extracellular vesicle delivery

Extracellular vesicles (EVs) have been identified as a novel

mode of communication between different cells and tissues.

Intracellular signaling depends on the functional molecular

composition of EVs, reflecting the physiological state of

producing cells and tissues (49). Mature adipocytes secrete more

EVs under the challenge of metabolic stress, elevating the level of

circulating EVs (50, 51). Recently, an emerging role of adipocyte-

derived EVs in obesity-related fibrotic comorbidities has been

recognized. Obesity altered the secretion profile of functional

miRNAs in adipocyte-derived EVs. MiRNAs involved in pro-

inflammatory signaling and programmed cell death were up-

regulated, and those involved in anti-fibrotic and angiogenic
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pathways were excluded (52, 53). Not only that, EVs released from

adipocytes derived from obese patients are enriched in different

proteins involved in ECM remodeling to promote adipose tissue

fibrosis during obesity, including collagens, metalloproteinases, and

ECM receptors (54).
2.4 Adipose cells promote fibrosis by
activating immune cells

Adipose tissue is recognized as a natural reservoir of

inflammatory cells, including macrophages, natural killer cells,

mast cells, eosinophils, and lymphocytes (55). Inflammatory cells

are mainly responsible for maintaining immune homeostasis under

physiological conditions. However, in the obese adipose tissue

microenvironment, adipocytes secrete inflammatory factors to

recruit and activate surrounding inflammatory cells. Crosstalk

between adipocytes and inflammatory cells further promotes the

process of fibrosis. For example, the levels of Adipocyte-secreted

exosomal microRNA-34a (miR-34a) were elevated in obesity

compared to normal, which favored the infiltration of M1

macrophages (56). A unique structure called a crown-like

structure (CLS) is formed by macrophages to clear necrotic fat

cells. Macrophage-inducible C-type lectin (Mincle) is localized in

CLS and promotes the expression of fibrosis-related genes, thereby

leading to myofibroblast formation possibly through intercellular

communication between macrophages and fibroblasts (57).

Furthermore, Adipocytes induced with macrophage-derived

medium from obese adipose tissue significantly reduced the

expression of adipogenic genes such as peroxisome proliferator-

activated receptor-g (PPAR-g), while overexpression of

inflammatory and extracellular matrix synthesis genes (58).

Similarly, white adipose tissue (WAT) from obese humans and

mice contains more mast cells than from lean individuals (59). Mast

cells adhere and activate fibroblasts in a PAI1-dependent manner,

culminating in a cascade of events leading to fibrogenesis (60). At

the same time, it has also been shown that the amount of Group 1

innate lymphoid cells (ILC1s) is increased in obese T2D patients

and induces adipose fibrosis by releasing IFN-g (61).
2.5 Adipocytes promote fibrosis by
downregulating adipogenic differentiation
of adipose precursor cells

In addition to differentiated mature adipocytes, adipose tissue

also contains various other cell types. Among them, the most

extensively discussed are the adipose precursor cells located in the

stromal vascular fractions (SVFs) of adipose tissue. Adipose

precursor cells from different reservoirs exhibit significant

phylogenetic differences and heterogeneity, as well as varying

differentiation potential (62). Under normal physiological

conditions, these adipose precursor cells maintain a high degree

of self-renewal and proliferation to support the homeostasis and

expansion of adipose tissue (63). However, obesity impairs the

immunoregulation and survival efficacy of ADSCs. ADSCs derived
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from obese individuals demonstrate impaired anti-inflammatory

phenotypes (64). When exposed to an excessive accumulation of

inflammatory cytokines in their microenvironment, stem cell

transformation and proliferation abilities become compromised,

leading to premature cellular decline (65). Additionally, aging

ADSCs not only exhibit down-regulated ability for adipogenic

differentiation but also show significant enrichment in genes

related to collagen production and inflammatory function (66).

Studies have further revealed that with increasing BMI levels, there

is upregulation of IL-1R-like 1 expression in mature adipocytes

which can inhibit the differentiation of adipose precursor cells

thereby reducing adaptive expansion capacity within the adipose

tissue (67).
2.6 Adipocytes promote fibrosis by
transdifferentiation into myofibroblasts

Fibroblasts and myofibroblasts are the major producers of

adipose tissue fibrosis (Figure 2). Myofibroblasts possess both the

ECM synthesis capacity of fibroblasts and the cytoskeletal

contractility of smooth muscle cells. This enables myofibroblasts

to exert pressure on the ECM, thereby activating and releasing

latent TGF-b within it, exacerbating the tissue fibrosis process (68).

The traditional view of cell differentiation holds that cells follow a

defined differentiation trajectory during development, starting with

stem cells and ending in a terminally differentiated state. However,

in addition to classical fibroblasts and myofibroblasts be able to be

derived from adipocytes with high plasticity. This process of

interconversion of adipocyte and myofibroblast fates has been

described as adipocyte mesenchymal transition (AMT), marked

by the downregulation of adipogenic markers and the acquisition of

a mesenchymal phenotype (69). AMT is involved in various

pathophysiological processes such as wound healing, scleroderma,

and cancer (70, 71). Moreover, the ability of adipocytes to

transdifferentiate into a fibroblast-like phenotype was greatly

enhanced under the challenge of HFD. The presence of AMT in

the pathological microenvironment of adipose tissue in obesity

exacerbates fiber remodeling in the extracellular matrix.

2.6.1 ADSCs to myofibroblasts
ADSCs can be transformed into myofibroblasts under the

regulation of specific cytokines. ADSCs mainly exist in the

stromal vascular part of adipose tissue, and their surface

expressions are CD34+, CD45-, CD31- and Scal+, which have the

potential for multidirectional differentiation similar to bone

marrow mesenchymal stem cells (72). Its biological behavior is

largely determined by the surrounding microenvironment (73).

Under the challenge of the high-fat diet, the expression of cell

proliferation marker cyclin D1 in ADSCs was up-regulated, which

greatly enhanced their proliferation ability and promoted many

aggregations in its fibrous region (74). At the same time, it has been

shown that ADSCs isolated from obese mice are significantly

enhanced in their ability to secrete extracellular matrix

components and acquire a myofibroblast-like phenotype (75).

Even, fibroblasts derived from ADSCs produced more
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extracellular matrix and migrated faster than primary skin

fibroblasts (76). This may be due to the abundant TGF-b in the

adipose tissue of obese mice. TGF-b is generally considered to be a

master regulator of tissue fibrosis. By binding to type I and type II

receptors, it promotes phosphorylation of Smad2/3 and enhances

ECM deposition (77). Increased TGF-b in adipose tissue promotes

the expression of recombinant integrin alpha 5 (ITGA5) and

myocardin-related transcription factor (MRTFA). Among them,

MRTFA is an important pathogenic factor of AMT

transformation (78).

The platelet-derived growth factor receptor alpha (PDGFRa)
gene in ADSCs is a major regulator of AMT transformation in

obesity. Marcelin et al. defined two sub-populations under the cell

population based on the level of the cluster of differentiation 9

(CD9) expression. Among them, the low expression of

PDGFRa+CD9 cells was rich in adipogenesis and lipid

metabolism-related genes, like the well-known ADSCs. In

PDGFRa+CD9 high cells, the expression of transcription factors

promoting adipogenesis was low, while the expression of TGF-b
signaling mediating pro-fibrosis and genes involved in ECM

synthesis were highly expressed. In the mediation of PDGF

signaling, the two cell subpopulations were out of balance.

PDGFRa+CD9 low cells transformed into PDGFRa+CD9 high

fibrophilic phenotype, and the expression of fibrosis markers

increased hundreds of times. In addition, there was an increased

frequency of CD9-high relative to low-expressing CD9 progenitors

and more severe omental adipose tissue fibrosis in severely obese

subjects (79–81). This evidence suggests that PDGFRa is an

important regulator of cell differentiation direction in the early

fibroblast-adipocyte lineage, promoting myofibroblast proliferation

and differentiation at the expense of adipocyte production.

Other genes related to AMT in ADSCs have also been reported.

LY6C+ PDGFRb+ ADSCs, also known as fibro-inflammatory

progenitors (FIPs), are potential contributors to fibrosis. mRNAs

for proinflammatory cytokines and extracellular matrix

components were more abundant in FIPs compared to normal

ADSCs. In addition, FIPs exhibit some anti-lipogenic ability. It is

not only insensitive to adipogenic stimulation itself but also can

release secreted factors to inhibit the differentiation of adipocytes
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from ASDCs (82). Further studies showed that fine-tuning

mitochondrial function was a key regulator of progenitor fate and

function in white adipose tissue (83). This reminds us that ADSCs

are heterogeneous cell populations with different adipogenic

potentials, and it is expected that more characteristic molecular

markers can be identified in the future to predict potential

differentiation trajectories.

2.6.2 Adipocytes to myofibroblasts
At first, mature adipocytes were thought to be terminally

differentiated cells that could not proliferate. In 1986, When

Sugihara et al. cultured adipocytes using the ceiling culture

method, they found that adipocytes took on a fibroblast-like

appearance and named this cell morphology dedifferentiated

adipocytes (84). With further studies of adipocyte plasticity, it

was found that dedifferentiated adipocytes (DFAT) not only

resembled fibroblasts morphologically but also had altered gene

expression during dedifferentiation (85). Genes related to

adipogenesis and mitochondrial activity were downregulated

while lipid droplets were rapidly secreted. Dedifferentiated

adipocytes have up-regulated expression of genes associated with

cell renewal and reprogramming, exhibiting stem cell-like

properties such as certain proliferative capacity and the ability to

re-differentiate into different cell lineages. In vitro differentiation

experiments show that adipocytes were driven by transforming

growth factor b to preferentially undergo fibrogenic differentiation

(86). Through pulse-chase lineage tracing of mouse mature

adipocytes. Zhang et al. confirmed in vivo that dedifferentiated

mature adipocytes possess cer ta in prol i ferat ion and

redifferentiation potential and can transdifferentiate in response

to b l eomyc in s t imu l a t i on fo r myofib rob l a s t s . The

transdifferentiation of dermal adipocytes into myofibroblasts is

essential for the repair of skin wounds. Furthermore, using single-

cell RNA sequencing (scRNA-seq), they found that adipocytes first

dedifferentiate into PDGFRa+ preadipocytes. Thus, the

transdifferentiation of mature adipocytes into myofibroblasts may

occur through a two-step process of dedifferentiation back to

ADSCs and then differentiation into myofibroblasts (69, 70).

However, there is evidence that the transformation between
FIGURE 2

Schematic diagram illustrating the cellular mechanism of adipocyte-mesenchymal transition (AMT) in adipose tissue remodeling under the challenge
of obesity. In response to a high-fat diet, alongside the classical fibroblast activation pathway, highly plastic adipocytes can also undergo
transdifferentiation into myofibroblasts. By downregulating key adipogenic gene markers including PPAR-g, both mature adipocytes and adipose
stem cells initiate the fibrosis pathway as the predominant mechanism, leading to morphological alterations and gene reprogramming that drive
their differentiation towards a myofibroblast phenotype.
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fibroblasts and adipocytes is reciprocal (87–89). In other words,

AMT is a double-edged sword in the process of tissue fibrosis. It is

not only an additional pathogenic source of myofibroblasts but also

a key part of reversing fibrosis.
3 The influence of adipose tissue
fibrosis on other diseases

Adipose tissue is widely distributed throughout the human

body and exhibits close interactions with various tissues and

organs, rendering it a crucial biosensor for metabolic health

(Figure 3). Different adipose tissue reservoirs possess distinct

morphologies and functions, enabling them to perceive and

respond to external signals from the systemic circulation and

local microenvironment of other organs. In cases of obesity,

adipocytes release fibrophilic adipokines, proinflammatory factors,

and undergo transdifferentiation into myofibroblasts within the fat

pad itself, significantly impeding the adaptability necessary for

adipocyte growth and proliferation. Consequently, damaged

fibrofatty tissue can directly infiltrate neighboring tissues such as

the heart, bones, and joints leading to detrimental effects. Moreover,

it can also transmit information to metabolically active organs

through paracrine effects, interference in intercellular

communication pathways, as well as abnormal accumulation of

lipid components thereby elevating the risk of fibrosis development.

Extensive literature has documented lipotoxicity observed in diverse

human diseases along with experimental animal models.
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Lipotoxicity is the abnormal accumulation of toxic lipids in cells

primarily caused by FFA. The mechanisms of lipotoxicity involve

various cellular processes, including organelle damage and

activation of intracellular signaling pathways. Damaged cells are

prone to apoptosis or necrotic cell death, which releases many

inflammatory cytokines and fibrotic mediators to further aggravate

tissue fibrosis (90). In addition, in scleroderma and cancer, the loss

of large amounts of intradermal fat is often associated with an

adverse outcome. Therefore, fibrotic adipose tissue is not just

localized damage to adipose tissue. It can also participate in the

occurrence and development of a variety of diseases through strong

cell-autonomous and paracrine effects, and ultimately produce

systemic effects.
3.1 Osteoarthritis

Osteoarthritis (OA) is a complex disease with multiple

contributing factors, characterized by pain, joint dysfunction, and

chronic disability. The pathogenesis of this condition involves the

interplay between increased biomechanical joint load due to obesity

or systemic inflammation and metabolic dysfunction (91, 92).

Notably, obesity induces fibrosis in the subchondral fat pad,

significantly elevating the susceptibility to osteoarthritis (93).

Moreover, fibrosis of the fatty pad beneath the patella seems to be

a common feature of most osteoarthritis. During total knee

replacement, Harasymowicz et al. biopsied the synovial and

subpatellar fat pad of the knee in patients with end-stage
FIGURE 3

Crosstalk between adipose tissue and other organs. In the state of obesity, adipocytes undergo transdifferentiation into myofibroblasts via the
release of various fibrophilic cytokines, thereby promoting local fibrosis of the adipose tissue. The presence of fibrotic adipose tissue not only
significantly restricts the hypertrophy and proliferative adaptability of adipocytes themselves but also exerts a detrimental influence on neighboring
tissues and organs through direct infiltration. Consequently, there is an increased risk and severity associated with non-alcoholic liver cirrhosis,
cardiovascular disease, osteoarthritis, cancer, and scleroderma.
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osteoarthritis: adiponectin expression in synovial adipose tissue was

significantly reduced in obese patients, showing marked fibrosis and

macrophage infiltration, which may affect the nutrient supply to the

articular cartilage (94). In addition, the fat pad under the patella, as

an endocrine organ, in combination with other pathogenic factors

such as mechanical loading, releases inflammatory mediators and

adipokines such as IL-1, interleukin-13 (IL-13) and leptin into the

knee joint, exacerbating the pathological damage of osteoarthritis

(95–97). In contrast, transgenic mice with lipodystrophy exhibited

diminished spontaneous knee injury and pain-related behaviors,

along with resistance to high-fat diet-induced proinflammatory

tendencies. Conversely, their susceptibility to osteoarthritis could

be reinstated through adipose tissue transplantation (92).
3.2 Nonalcoholic cirrhosis

Non-alcoholic cirrhosis (NAFLD) is the most common chronic

liver disease worldwide, mainly affecting people with obesity and

type 2 diabetes. The reduction of central obesity in patients,

particularly the longitudinal decrease in subcutaneous adipose

tissue (SAT) and VAT volume, contributes to the histological

amelioration of NAFLD (98). The study of Leven et al. showed

that collagen deposition in visceral white adipose tissue (vWAT) of

NAFLD patients was significantly increased (99). This indicates that

there is a certain relationship between the fibrosis of adipose tissue

and the occurrence and development of NAFLD, which may be

related to the increase of lipid components. During obesity, the

release of adipose tissue into circulation surpasses the liver’s

inherent capacity to buffer lipids. Furthermore, obesity diminishes

the production of Neuregulin 4, an adipokine that enhances hepatic

lipid metabolism (100). Many types of lipid components have been

shown to cause liver damage, including FFA, triglyceride (TG), free

cholesterol (FC), etc. Injured hepatocytes released numerous

inflammatory cytokines and fibrotic mediators, further

aggravating liver pathology (101). Recently, Yu et al. showed that

lipid accumulation-induced hepatocyte senescence activates hepatic

stellate cells through the nuclear factor erythroid 2-related factor 2

(Nrf2)-antioxidant response element pathway. Under FFA-treated

conditions, hepatocytes significantly increased the activation of co-

cultured primary hepatic stellate cells (HSCs) and the expression of

pro-fibrotic molecules while senescent (102). Dysregulation of

adipokines further exacerbates liver injury in obesity. Cysteine-

like protein 1 secreted by white adipose tissue (WAT) aggravates

liver injury and inflammation in a mouse model of nonalcoholic

steatohepatitis (NASH) under high-fat diet conditions by activating

Toll-like receptor 4 (103). Moreover, hypolipinemia associated with

obesity also contributes to the development of hepatic steatosis,

fibrosis, and hepatocellular carcinoma (104).
3.3 Cancer and cachexia

Epidemiological evidence strongly indicates a significant

correlation between excess weight or obesity and the development

of numerous types of cancer (105). Gene expression associated with
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cancer progression is profoundly affected by obesity, and adipocytes

from obese individuals create more favorable conditions for tumor

formation. Data suggest that breast cancer incidence and metastatic

risk are significantly higher in populations with higher BMI (106). It

may be that factors secreted by adipose tissue, particularly in obese

individuals, alter the transcriptome profile of breast cancer cells and

promote reprogramming of cancer cell metabolism to produce a

more aggressive phenotype (107, 108). Obesity induces

upregulation of aromatase expression and downregulation of sex

hormone binding globulin levels in adipose tissue, resulting in

elevated free estrogen content. Consequently, this stimulates

endometrial hyperplasia and augments the risk of cancer (109,

110). Leptin facilitates the proliferation and functional activation of

endometrial cancer cells by modulating JAK2/STAT3, MAPK/ERK,

and PI3K/AKT signaling pathways (111). Furthermore, obesity-

generated fibrotic fat microenvironment also contributes to

increased overall tumor or cancer fibrosis levels. Incio et al. found

that pancreatic ductal adenocarcinoma (PDAC) in obese patients

presented with hypertrophic adipocytes and more pronounced

ECM deposition (112). Dense connective tissue hyperplasia

compromises blood perfusion and poses a huge obstacle to the

delivery and efficacy of chemotherapeutic drugs, leading to poorer

treatment outcomes.

Obesity is not only a risk factor for cancer development but is

also directly associated with poor prognosis in multiple tumor

types. About 80% of cancer patients in advanced stages develop

cachexia, characterized by continued uncontrolled weight loss,

which directly leads to death in 22-40% of patients with end-stage

cancer (113). Reduction in fat cell size, rupture of the capsule, and

excessive deposition of extracellular matrix were observed in both

patients and mouse models of cachexia. Even more interesting,

Myofibroblasts in fibrotic regions often surround fat cells (114).

Compared with normal fibroblasts, CAF has heterogeneity and high

plasticity (115). ADSCs are an important cell source of CAF, and

this process is closely related to the activation of the Wnt signaling

pathway (116). In addition, it was noted that overweight or obese

patients had higher levels of ADSCs circulating in their blood

compared to cancer patients with lower body weight (117). Taken

together, it is reasonable to assume that increased stromal stiffness

in adipose tissue is an important mediator of cancer onset and

progression. And inhibiting the excessive deposition of stroma by

blocking the transformation of ADSCs to CAF may be a very

promising treatment for fibrosis-related cancers.
3.4 Arrhythmias and heart failure

The smooth transmission of cardiomyocyte potential depends

on the special electrophysiological and structural characteristics of

heart tissue, abnormal cardiac excitation will lead to arrhythmia.

Atrial fibrillation is the most common type in clinical practice and

has a high risk of death due to the risk of hemodynamic

abnormalities and thromboembolism (118). Over the years, a

variety of risk factors for arrhythmias have been identified,

among which an increase in the number of non-excitable cells

due to abnormalities in cardiac tissue remodeling has been
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extensively studied. Obesity generally leads to more frequent and

persistent atrial fibrillation, which may indicate that fiber

remodeling of extra-cardiac adipose tissue may play a role in

promoting myocardial fibrosis (119, 120).

Extracardial adipose tissue (EAT) is in direct contact with the

atria and shares a common blood supply with the myocardium. To

mitigate lipotoxicity, epicardial adipose tissue (EAT) demonstrates

enhanced rates of FFA uptake compared to subcutaneous adipose

tissue (SAT), and exhibits heightened sensitivity towards variations

in dietary lipid content. While the heart predominantly relies on

lipids as metabolic substrates, excessive lipid accumulation can give

rise to detrimental consequences. Excessive deposition of lipids may

lead to severe arrhythmogenic complications (121). Simultaneously,

recent experiments have shown that there is a close relationship

between fibrofatty infiltration and arrhythmia caused by myocardial

fibrosis (122, 123). The infiltration of fat cells itself interferes with

the normal conduction of cardiomyocyte potential (124).

Extracardiac adipose tissue has been proven to secrete fibrophilic

mediators, such as connective tissue growth factor CTGF, TGF-b,
and Activin A to promote myocardial fibrosis (125, 126). Moreover,

epicardial adipose tissue serves as a localized indicator of systemic

inflammation in individuals with obesity and has the capability to

secrete diverse inflammatory mediators, including IL-6 and TNFa
(127). Under the combined drive of these factors, the pericardial

mesenchymal stem cells can migrate to the ventricular muscle and

transform into fibroblasts, promoting the fibrotic remodeling of the

myocardium (128). Infiltrated adipocytes, fibroblasts, and

myofibroblasts can form gap junctions with adjacent

cardiomyocytes through connexin , a f fec t ing normal

electrophysiological conduction of cardiomyocytes.

At the same time, it has been thought that the effect of obesity

on heart failure is achieved by increasing the load of the heart

through hemodynamics. However, most obese patients have only a

slight increase in heart volume, most of which is ejection fraction

reserved heart failure (HFpEF), which is characterized by fibrotic

failure of the cardiac microvascular supply and limited expansion of

the heart (129, 130). Most significantly, bariatric surgery effectively

mitigates ventricular repolarization heterogeneity in obese

patients (131).
3.5 Scleroderma

Scleroderma (SSc) is marked by excessive deposition of ECM

proteins caused by abnormal activation of myofibroblasts, which

mainly affects the skin and blood vessel walls, not only causing

inconvenience to patients’ daily life but also potentially causing fatal

organ dysfunction (132). Dysfunctions of adipocytes and abnormal

secretion of adipokines are key events in the progression of

scleroderma fibrosis. First, skin fibrosis in SSc is often

accompanied by significant loss of intradermal fat. Moreover,

myofibroblasts in scleroderma have been shown to originate at

least in part from subdermal fat cells (133). More importantly, in

chronological terms, atrophy of intradermal adipose tissue usually

precedes myofibroblast accumulation and subsequent skin
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thickening (86). Further studies showed that ADSCs produced

AMT in bleomycin-induced fibrotic skin, exhibiting the

characteristics of myofibroblasts (134). This may be caused by the

significantly up-regulated nuclear receptor corepressor (NcoR)

signal in SSc. NCoR is a negative regulator of gene expression. It

recruits histone deacetylation (transcriptional inhibition) enzymes

to the DNA promoter region, and its main function in adipose

tissue is to inhibit PPAR-g transcriptional activity (135). Injection of
normal ADSCs or fat transplantation into scleroderma patients has

achieved good results in softening skin and alleviating fibrosis in

animal models and clinics (136, 137). This evidence conveys a

valuable message that the loss of adipose tissue in scleroderma is not

merely a pathological phenomenon, but a direct contribution to

skin fibrosis.
4 Anti-fibrotic strategies targeting
adipose tissue fibrosis

Imbalance in energy homeostasis causes adipose tissue fibrosis,

which exacerbates the progression of obesity-related fibrotic

disease. Therefore, focusing on maintaining the healthy expansion

of adipocytes and preventing excessive deposition of extracellular

matrix components is an attractive proposition against pathological

fibrotic remodeling. Current major strategies focus on altering the

function of white adipose tissue, targeted therapy, and

dietary therapy.
4.1 Dietary therapy

Factors that predispose to obesity in modern lifestyles include

longer periods of food intake and shorter periods of fasting.

However, it is unrealistic to expect overweight patients to strictly

adhere to daily calorie restrictions (DR). Comparatively,

intermittent eating (IF) is widely adopted as a more operational

dietary regimen involving repeated and regular energy restriction,

resulting in multiple health benefits. Meanwhile, it was found that

IF mediates adaptive tissue remodeling of WAT to prevent HFD-

induced adipose tissue inflammation and fibrosis (138). In addition

to reducing energy intake, supplementing some nutrients with

special functions is also an effective means to resist WAT fibrosis.

Berberine, present in a variety of Chinese herbal plants, has been

shown to have therapeutic potential in the treatment of diabetes and

dyslipidemia. As a natural anti-inflammatory compound, berberine

reverses signaling and controls HFD-induced macrophage

infiltration and polarization. Beyond that, berberine alleviates

adipose tissue fibrosis by inducing AMP-activated kinase

signaling in high-fat diet-induced obese mice (139). Recently, in a

randomized controlled trial, Lontchi-Yimagou et al. found that

increasing vitamin D supplementation within the normal range had

a beneficial effect on suppressing adipose tissue inflammation and

fibrosis in obese subjects. This phenomenon was also confirmed in

adipocyte-specific vitamin D receptor knockout (Ad-VDR KO)

mice (140). Similarly, oral administration of the antioxidant
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vitamin E has also been reported to increase oxidative stress and

reduce collagen deposition in vWAT in obese mice, thereby

increasing the lipid storage capacity of adipocytes and reducing

obesity-related lipotoxicity (141). Unfortunately, it is unclear how

long the effects of oral nutritional supplementation treatments can

be sustained.
4.2 Medical treatment

4.2.1 Promotes WAT browning
Unlike WAT, which is primarily used for energy storage, BAT

converts energy into heat by decoupling-protein uncoupling protein

1 (UCP-1) (142). Meanwhile, WAT deposits contain polyocular

cells that express UCP-1, called beige cells, which are stimulated by

the browning process when exposed to cold or other stimuli. In

recent years, more and more studies have shown that the browning

and fibrotic remodeling of adipose tissue are two opposing

processes. MRTFA-deficient mice are resistant to HFD-induced

adipocyte overexpansion and have increased numbers of beige

adipocytes in their WAT (143). Further studies revealed that

positive regulatory domain 16 (PRDM16) that controls BAT

development could promote b-hydroxybutyrate (BHB) secretion

by driving fatty acid oxidative metabolism, which rescued adipose

expressing HIF1a or TGFb-treated PDGFRa+ ADSCs cell

differentiation potential (144). Interestingly, the anti-fibrotic

capacity of BAT may also act in a UCP-1-independent manner.

Activation of the PRDM16 transcriptional complex effectively

suppressed adipose tissue fibrosis through direct interaction with

GTF2IRD1 (145). And it is worth noting that many browning-

inducing drugs have been shown to have potent anti-fibrotic effects

at the same time (Table 1). Therefore, induction of browning of

white fat is a potential therapeutic strategy against HFD-induced

adipose tissue fibrosis and related dysfunction.
Frontiers in Endocrinology 10
4.2.2 Enhance lipid metabolism
Dysfunction of adipocytes begins with excessive lipid

accumulation, so accelerating the metabolic function of adipose

tissue and improving its lipid buffering capacity can prevent the

occurrence of obesity-related fibrotic comorbidities. As a key site of

oxidative phosphorylation, mitochondria play a complex and

important role in maintaining the metabolic homeostasis of

adipocytes. Serine/thionine kinase 25 (Skt25) protects against

diet-induced adipose tissue fibrosis by regulating mitochondrial

activity in adipose tissue (160). At the same time, there is evidence

that the impaired metabolic function of adipocytes in the obese state

is closely related to the down-regulation of miR-30a.

Overexpression of miR-30a in adipose tissue allows smooth

expansion of adipose tissue in a manner that preserves insulin

sensitivity (161). Furthermore, proteomic analysis revealed that

miR-30a restores WAT homeostasis by targeting plasminogen

activator inhibitor 1 (PAI-1) to limit the pro-fibrotic program.
4.3 Targeted therapy

CD248 (endothelin/tumor endothelial marker 1) is a type I

transmembrane glycoprotein that is most abundantly expressed in

human mature white adipocytes and significantly correlated with

body mass index (BMI). Petrus et al. suggest that CD248 acts as an

adipocyte sensor in the microenvironment and may mediate the

abnormal biological behavior of adipocytes. Transcriptome analysis

of human WAT revealed that CD248 expression was positively

correlated with inflammation, hypoxia, and ECM remodeling.

CD248 deficiency protects against high-fat diet-induced WAT

dysfunction. Besides, adipocyte-specific knockout exhibited a

greater therapeutic effect than systemic knockout. Notably, these

improvements were also achieved in mice following the onset of

obesity. Therefore, the rescue of WAT fibrosis by selectively
TABLE 1 Antifibrotic drugs or factors associated with browning.

Drug or cytokines Pathway Function Reference

PPAR-g agonists PPAR-g↑→FGF-21↑
PPAR-g↑→TGF-b1↓

1. Differentiation of bone marrow mesenchymal stem cells into fibroblasts↓
2. Lipid metabolism and browning of WAT↑

(146–148)

NOTUM NOTUM→Wnt3a↓→TGF-b↓ 1. Expression of fibrosis-related genes↓
2. Expression of thermogenesis-related genes in WAT and BAT↑
3. Differentiation of BAT↑

(149)

Metformin AMPK↑, PPAR-g↑
ROS/NF-KB↓→IL-6, TNF-a, TGF-b↓
HIF1a↓, HMGB1↓

1. Expression of various collagen genes↓
2. Excessive ECM deposition↓
3. Browning of WAT↑

(150–153)

Thiazolidinedione PPAR-g↑→a-SMA↓ 1. Expression of a-SMA in fibroblasts↓
2. Browning of WAT↑

(154, 155)

SRT1720 Sirt1↑→TGF-b1/CTGF↓
Sirt1↑→HIF1a/GLUT1↓

1. EMT and collagen deposition↑
2. Oxidative stress levels↓
3. Fatty acid oxidation and glucose metabolism↑

(156, 157)

Roscovitine TGF-b↓→P38 MAPK↓→a-SMA↓ 1. EMT and TGF-b signaling pathways↓
2. Browning of WAT↑

(158)

Resveratrol AMPK↑→Sirt1↑→HIF-1↓ 1. Activation of HIF-1a↓
2. Browning of WAT↑

(159)
↑ indicates the up-regulation of the signaling pathway or histological changes, while ↓ indicates the down-regulation of the signaling pathway or histological changes.
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reducing CD248 expression in adipocytes is an attractive target for

future drug development (162). However, the specific molecular

mechanism by which CD248 acts has not been fully described.

Therefore, a better understanding of the signaling pathways

downstream of CD248 is critical for adipocyte-specific

targeted therapy.
5 Conclusion

In general, in the state of obesity, fat cells are dysfunctional and

interact with immune cells to produce a fibrogenic cellular

microenvironment, which affects the plasticity of white adipose

tissue and the normal function of surrounding organs and promotes

the occurrence and development of a variety of fibrosis-related

diseases. Specifically, adipocytes promote fibrosis by secreting

inflammatory mediators, and adipokines and changing their fate

to become myofibroblasts. This suggests that when studying many

systemic diseases associated with fibrosis, it is time to focus on the

nearest reservoir of adipose tissue. At present, the use of adipose

tissue to regulate fibrosis has great untapped potential, but due to

the complexity of the dialogue between adipose cells and fibroblasts,

there is still a lot of work to be done to figure out the specific

mechanism of adipose cells involved in regulating the process of

tissue fibrosis.

First, most studies of adipocyte secretory factors promoting

fibrosis have been limited to animals or in vitro. The specific

signaling pathway that promotes fibrosis is still unknown.

Secondly, further studies of the AMT are needed to provide more

solid evidence to confirm whether myofibroblasts produced by fat

cells are a one-step or multi-step process. Besides, it is expected to

decipher the key aggregation points downstream of various

signaling pathways in the adipocyte-myofibroblast transition

process, to realize the controllability of transformation. Finally,

inducing differentiation of myofibroblasts into brown adipocytes is

a feasible strategy for antagonizing fibrosis. However, it should be

noted that most of the anti-fibrosis drugs mentioned in this paper

have a wide range of targets, so the side effects of drugs should not

be underestimated. Therefore, it is urgent to find effective brown

inducers or inducers for specific adipose tissue. At the same time,

another great challenge is how to effectively complete the

transformation of myofibroblasts into brown fat cells under
Frontiers in Endocrinology 11
pathological conditions. Because in an obese state, cells are much

less sensitive to browning agonists. Moreover, there is a lack of

drugs that can effectively increase the expression of brown adipose

tissue in humans. We believe that if these mechanisms can be

elucidated through subsequent experimental studies and brown fat

cells are indeed effective in antagonizing fibrosis, regulating the

biological behavior of fat cells will be a new option for treating many

fibrosis-related diseases.
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Glossary

ECM Extracellular matrix

ADicerKO Adipose tissue-specific knockout of the miRNA-processing
enzyme Dicer

Ad-
VDR KO

Adipocyte-specific vitamin D receptor knockout

AdipoR1 Adiponectin Receptor 1

ADSCs Adipose-derived stem cells

AKT Protein kinase B

AMPK Amp-activated protein kinase

AMT Adipocyte mesenchymal transition

ATF2 Activating transcription factor 2

BAT Brown adipose tissue

BHB b-hydroxybutyric acid

BMI Body mass index

CAF Cancer-related fibroblasts

CD248 Endothelin/tumor endothelial marker 1

CD9 Cluster of differentiation 9

CLS Crown-like structure

COL6-a3 Recombinant Collagen Type VI-Alpha 3

CTGF Connective tissue growth factor

DFAT Dedifferentiated adipocytes

DIO Diet-induced obesity

DPT Dermatopontin

DR Daily calorie restriction

EAT Extracardial adipose tissue

EHMT1 Euchromatic histone-lysine N-methyltransferase 1

EMT Epithelial-mesenchymal transition

ERK Extracellular regulated protein kinases

Evs Extracellular vesicles

FC Free cholesterol

FFA Free fatty acid

FGF-21 Fibroblast growth factor-21

GLUT1 Glucose transporter 1

GPCR G-protein-coupled receptor

HFD High-fat diet

HFpEF Ejection fraction reserved heart failure

HIF-1 Hypoxia-inducible factor-1

HMGB1 High mobility group box 1

HSCs Hepatic stellate cells
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IFN-g Interferon-g

IL-1 Interleukin-1

IL-13 Interleukin-13

IL-6 Interleukin-6

ILC1s Group 1 innate lymphoid cells

ITGA5 Recombinant integrin alpha 5

LOX Lipoxygenase

MCP-1 Macrophage chemoattractant protein-1

METS Metabolic syndrome

Mincle Macrophage-inducible C-type lectin

MRTFA Myocardin-related transcription factor A

NAFLD Non-alcoholic cirrhosis

NASH Nonalcoholic steatohepatitis

NcoR Nuclear receptor corepressor

Nrf2 Nuclear factor erythroid 2-related factor 2

OA Osteoarthritis

PDGF Platelet-derived growth factor

PDGFR-a Platelet-derived growth factor receptor-alpha

PI3K Phosphatidylinositol 3 kinase

PPAR-a Peroxisome proliferator-activated receptor-a

PPAR-g Peroxisome proliferator-activated receptor-g

PRDM16 Positive regulatory domain containing 16
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TGF-b Transforming growth factor-b
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