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Abstract. Diabetic cardiomyopathy (DCM), a significant 
complication of diabetes mellitus, is marked by myocar-
dial structural and functional alterations due to chronic 
hyperglycemia. Despite its clinical significance, optimal 
treatment strategies are still elusive. Bariatric surgery via 
sleeve gastrectomy and Roux-en-Y gastric bypass have shown 
promise in treating morbid obesity and associated metabolic 
disorders including improvements in diabetes mellitus and 
DCM. The present study reviews the molecular mechanisms 
by which bariatric surgery improves DCM, offering insights 
into potential therapeutic targets. Future research should 
further investigate the mechanistic links between bariatric 
surgery and DCM, to evaluate the benefits and limitations of 
these surgical interventions for DCM treatment. The present 
study aims to provide a foundation for more effective DCM 
therapies, contributing to the advancement of patient care.
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1. Introduction

Diabetes mellitus, an age-related metabolic disorder of esca-
lating global prevalence, is a formidable clinical challenge to 
public health, with the number of affected individuals expected 
to reach 783 million by 2045 (1). The chronic nature of diabetes, 
with the associated insulin resistance and hyperinsulinemia, can 
precipitate a distinct form of cardiomyopathy, diabetic cardio-
myopathy (DCM), that develops independently of traditional 
risk factors such as coronary artery disease and hypertension (2). 
As a serious and under-recognized complication of diabetes, the 
pathogenesis of DCM is complex and multifactorial (3,4). DCM 
is characterized by an initial phase of myocardial fibrosis and 
diastolic dysfunction, which may evolve into progressive systolic 
impairment and, ultimately, heart failure (5,6). Advanced cardiac 
dysfunction in DCM is a principal determinant of mortality 
among diabetic patients (7-9).

Bariatric surgery, a transformative metabolic intervention, is 
a pivotal treatment for severe obesity, which is uniquely capable 
of inducing sustained weight loss and significantly amelio-
rating complications  (10). This surgical approach surpasses 
conventional pharmacotherapy in its ability to enhance insulin 
sensitivity, stabilize blood glucose and lipid levels, and ameliorate 
diabetes-related complications (2). Mingrone et al (11) found that 
Roux-en-Y gastric bypass (RYGB) and biliopancreatic diversion 
could effectively alleviate DCM. English and Williams (12) found 
that numerous patients with type 2 diabetes mellitus complicated 
with other cardiovascular diseases can reduce or completely stop 
cardiovascular medications after undergoing bariatric surgery. 
Improvement in left ventricular structure and function, visceral 
fat and reverse myocardial remodeling after bariatric surgery 
may be beneficial for the recovery of DCM (13,14). The present 
review will discuss recent research advances in bariatric surgery 
to improve DCM (Fig. 1), with the aim to aid the understanding 
of the pathogenesis of DCM, explore new therapeutic targets and 
develop more targeted drugs.

2. Bariatric surgery-a procedure originally developed to 
treat obesity

Bariatric surgery was initially referred termed weight-loss 
surgery  (15). Obesity became increasingly prominent in 
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the mid-20th century, but strategies to curb this worldwide 
epidemic were limited (16). At that time, oral medications 
(such as ephedrine and amphetamine) were often prescribed 
to help obese patients lose weight, but were usually inad-
equate to achieve meaningful and sustainable results. By 
contrast, metabolic and weight-loss surgery is performed 
only on a small number of eligible patients but has been 
shown to be the most effective intervention to ensure 
significant weight loss and amelioration of associated 
comorbidities (such as diabetes, hypertension, dyslipidemia 
and cancer) (17-20).

In addition to treating obesity, bariatric surgery is more 
advantageous than pharmacological treatment alone in terms 
of glycemic control and reduction of cardiovascular risk 
factors (21). Moreover, its mechanism is not only limited to the 
simple reduction of body mass but also includes the improve-
ment of enteric insulin levels, insulin secretion and insulin 
sensitivity  (22,23). Kopp  et al  (24) found that C-reactive 
protein and interleukin-6 circulating levels decrease almost 
immediately after RYGB or sleeve gastrectomy (SG), while 
insulin sensitivity improves. Changes in cardiac structure 
and function also occur in the months and years after 
surgery, including mainly a reduction in left ventricular 
mass. However, this may be unrelated to a decrease in blood 
pressure (25-30). Rider et al (26) performed MRI examina-
tions on 30 obese individuals without cardiac risk factors at 
baseline and one year after weight loss (bariatric surgery or 
dieting). Among them, 13 obese patients with left ventricular 
ejection fraction (LVEF) exceeding 40% showed regression 
of subclinical abnormalities of myocardial deformability 
within 6-24 months after bariatric surgery (31). At present, 
the mechanisms by which bariatric surgery regulates metab-
olism to improve metabolic diseases is a topic of significant 
research interest.

3. DCM-the leading cause of heart failure among diabetic 
patients

In 1972, Rubler et al (32) identified a new cardiomyopathy 
termed DCM in diabetic patients with a history of heart 
failure in the absence of coronary artery disease, hyperten-
sion or heart valve disease. Current diagnostic criteria for 
DCM include left ventricular diastolic dysfunction and/or 
reduced LVEF, pathologic left ventricular hypertrophy and 
interstitial fibrosis (33). DCM is considered one of the major 
complications of diabetes mellitus and is associated with 
numerous pathophysiological alterations, such as impaired 
signaling of cardiac insulin metabolism, mitochondrial 
dysfunction, increased oxidative stress, impaired calcium 
handling in the mitochondria and cardiomyocytes, inflam-
mation, endoplasmic reticulum (ER) stress, microvascular 
dysfunction and cardiac metabolic abnormalities (2,5). All of 
these collectively promote interstitial fibrosis of the cardiac 
tissue, cardiac diastolic dysfunction and subsequent systolic 
dysfunction, ultimately leading to clinical heart failure 
syndromes (34). There are no specific and targeted treatments 
for DCM, but some non-specific treatments include lifestyle 
improvement, glycemic control, lipid lowering, treatment of 
heart failure and improvement of cardiovascular disease risk 
factors (35,36).

4. Mechanisms of bariatric surgery to improve DCM

Altered myocardial glucose uptake. Insulin resistance is 
one of the major pathogenic factors in DCM, and diabetes 
results in impaired insulin-mediated myocardial glucose 
uptake (MGU) and glucose utilization, and promotes a shift 
in substrate toward non-esterified fatty acid oxidation, which 
can lead to cardiac damage (2,37-39). PI3K/AKT is the central 
hub of signal transduction in the myocardial insulin signaling 
pathway (40,41), which receives upstream signals from the 
insulin substrate receptor family and plays a central role in 
promoting glucose transporter 4 (GLUT-4) translocation (42). 
There is still a gap between upstream insulin signaling and 
downstream GLUT-4 translocation  (43,44). However, two 
novel AKT substrates, glucose metabolism regulator protein 
160 and TBC1 domain family member 1 (TBC1D1), are 
prime candidates for potentially bridging this gap (45). These 
substrates essentially act as brakes on the cytosolic action of 
GLUT-4 vesicles and are phosphorylated by AKT in response 
to insulin, leading to the conversion of some downstream 
Rab proteins to active GTP-bound forms, thereby triggering 
GLUT-4 translocation to the cell membrane (45,46). However, 
studies on the roles of glucose metabolism regulatory proteins 
160 and TBC1D1 in DCM are more limited. In a study 
addressing GLUT-4 translocation, Huang et al (37) found that 
after duodenal-jejunal bypass (DJB), MGU recovered and was 
involved in the remission of DCM after DJB by promoting 
GLUT-4 translocation. Furthermore, by assessing the uptake 
of myocardial energy substrates after bariatric surgery, 
DJB was found to restore MGU by promoting myocardial 
GLUT-4 translocation in diabetic rats, and phosphorylation 
and activation of glucose metabolism-regulating protein 160 
was restored after DJB (37). This suggests that DJB alters 
the activity of the PI3K/AKT pathway by modulating the 
expression of glucose metabolism-regulating protein 160, 
thereby playing a key role in the recovery of MGUs (37). The 
study by Huang et al demonstrated that the improvement of 
MGU defects in diabetic rats by DJB was associated with 
the promotion of myocardial insulin signaling and GLUT-4 
translocation. In addition, Xu et al (47) similarly found an 
improvement in MGU after SG surgery in Wistar rats in which 
DCM had been induced. This alteration was associated with a 
significant down-regulation of three MAPKs (phosphorylated 
p38, phosphorylated c-Jun N-terminal kinase and phos-
phorylated extracellular signal-regulated kinase 1/2) in the 
myocardial tissues of Wistar rats (Fig. 2). Although restoration 
of MGU and improvement of cardiac metabolic homeostasis 
were shown to be effective in reversing DCM (48), a gap 
still exists between increased myocardial GLUT-4 at the cell 
membrane and eventual improvement in cardiac function, and 
more studies are required to explore the association between 
the two.

Reduced myocardial fatty acid utilization. In the healthy 
heart, 50-70% of ATP is produced from fatty acids, however 
this percentage is higher in patients with obesity or diabetes, 
reaching 80-90% (49). Although the availability of fatty acids 
is essential for maintaining cardiac function, this greater reli-
ance on fatty acids may also lead to myocardial lipotoxicity 
that can eventually result in myocardial dysfunction (49-51). 



Molecular Medicine REPORTS  30:  199,  2024 3

Studies on animal models have shown that obesity increases 
myocardial fatty acid metabolism and oxygen consumption, 
leading to increased oxidative stress, cardiac dysfunction 
and increased apoptosis  (52-55). Owing to disturbed lipid 
metabolism, excessive fat deposition in the heart creates a 
lipotoxic environment and induces insulin resistance, which 
not only impairs pancreatic β-cell function, but also increases 
myocardial uptake and utilization of fatty acids  (56,57). 
Lin et al (58) measured a decrease in myocardial total fatty 
acid utilization in individuals with a body mass index of 
>30 kg/m2 who underwent RYGB and decreased post-surgical 
left ventricular mass and relatively decreased myocardial total 
fatty acid oxidation. In addition, reduction in the left ventric-
ular mass was an independent predictor of improvement in 
myocardial diastolic function, with a significant reduction in 
left ventricular end-diastolic volume and significant improve-
ment in cardiac function in patients with reduced body mass. 
Carreau et al (59) found that bariatric surgery reduced cardiac 
fatty acid utilization and enhanced left ventricular function. 
Existing studies have reported both increases and decreases 

in fatty acid utilization after bariatric surgery (60,61), with a 
trend toward decreased fatty acid utilization in the short-term 
postoperative period (62). In addition, the effect of bariatric 
surgery on cardiac fatty acid partitioning in patients with type 
2 diabetes has also been demonstrated (59), which provides 
strong evidence for improvement in postoperative DCM. 
However, more studies are needed to determine the effects of 
altered fatty acid utilization on cardiac structure and function 
after bariatric surgery and to determine whether these changes 
persist over time.

Reducing ER stress. The ER controls the proper folding of 
polypeptides and proteins through various chaperones and 
enzymes within the ER organelles (63). The ER folding process 
is disturbed when the overburdened protein folding exceeds 
the ER processing capacity, resulting in the accumulation of 
misfolded/unfolded proteins in the lumen of the ER, a state 
known as ER stress (63). ER stress plays an important role in 
the pathogenesis of DCM; furthermore, in diabetic patients, 
hyperglycemia and insulin resistance lead to an increase in 

Figure 1. Possible mechanisms by which bariatric surgery improves DCM. Bariatric surgery may improve DCM by maintaining calcium homeostasis, regu-
lating the gut-heart axis, reducing myocardial fatty acid formation, reducing myocardial mitochondrial autophagy, improving myocardial glucose uptake, 
inhibiting inflammasome activation and reducing endoplasmic reticulum stress. DCM, diabetic cardiomyopathy; RYGB, Roux-en-Y gastric bypass; SG, sleeve 
gastrectomy.

https://www.spandidos-publications.com/10.3892/mmr.2024.13323
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intracellular ER stress (64). Lakshmanan et al (65) found that 
ER stress can be induced by a variety of pathological conditions 
such as ischemia, oxidative stress, hypoxia, hyperglycemia and 
hyperlipidemia. Hyperglycemia-induced ER stress has been 
shown to play a major role in the pathology of cardiac dysfunc-
tion  (66). ER stress-induced C/EBP homologous protein 
(CHOP) plays an important role in the apoptosis-promoting 
executive pathway, which is the most described and charac-
terized pathway in ER stress-induced cell death, as well as 
the downstream signaling pathway of protein kinase R-like 

endoplasmic reticulum kinase (PERK)  (67). The PERK 
downstream signaling pathway, which produces phosphory-
lated PERK when phosphorylated, triggers CHOP-induced 
apoptosis  (68). In addition, caspase-12, another apoptotic 
signaling pathway in the cystatinase cascade reaction, is also 
closely associated to CHOP (69,70). Zhang et al (71) found 
that, compared with the sham surgery group, the expres-
sion of GRP78, PERK, phosphorylated PERK, CHOP and 
caspase-12 was positively expressed in the bariatric surgery 
group, indicating that bariatric surgery could alleviate ER 

Figure 2. Possible mechanisms of DJB and SG in improving DCM. DJB promotes GLUT-4 translocation and restores MGU by activating the PI3K/AKT 
signaling pathway and downstream substrates. SG improves diabetes-induced myocardial hypertrophy by inhibiting the MAPK signaling pathway. DJB, 
duodenal-jejunal bypass; SG, sleeve gastrectomy; DCM, diabetic cardiomyopathy; GLUT-4, glucose transporter 4; PI3K, phosphatidylinositol 3-kinase; Akt, 
protein kinase B; MGU, myocardial glucose uptake; P, phosphorylated; JNK, c-Jun N-terminal kinase; ERK1/2, extracellular signal-regulated kinase 1/2; 
TBC1D1, TBC1 domain family member 1.
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stress by significantly inhibiting CHOP and caspase-12 apop-
totic signaling pathways (Fig. 3). ER protein homeostasis is 
controlled by the unfolded protein response (UPR), which is 
a signaling pathway that regulates the protein-folding ability 
of cells to maintain cellular secretory function (72,73). When 
the adaptive UPR fails to maintain ER homeostasis, maladap-
tive or terminal UPR is engaged, leading to disruption of the 
ER integrity and apoptosis (74). Glucose-regulated protein 
78  kD (GRP78) is a protective molecular chaperone that 
binds to the UPR during initial ER stress, and GRP78 is a 
negative regulator of the UPR in a variety of models (75,76). 
Zhang et al (71) found that compared with the sham surgery 
group, the expression of GRP78 in the bariatric surgery group 
was significantly decreased, confirming that bariatric surgery 
could reduce ER stress in cardiomyocytes.

Altered myocardial autophagic flux and inhibition of NLRP3 
inflammasome activation. Autophagy is a tightly regulated 
lysosomal degradation mechanism that plays an important 
role in maintaining intracellular homeostasis as well as coping 

with intracellular stress  (77). During the development of 
diabetes mellitus, intracellular stress (such as ER stress) can 
activate autophagy, and the overactivation of autophagy in 
DCM cardiomyocytes can lead to self-digestion and increased 
reactive oxygen species generation (78). Huang et al (79) used 
chloroquine to determine myocardial autophagic flux through 
the expression of autophagy-related proteins. The results 
showed that autophagosome formation was weakened after SG 
and DJB, and that cardiomyocyte hypertrophy in the rats of the 
SG and DJB groups was also significantly ameliorated, and 
the degree of interstitial and perivascular fibrosis was lower 
than that of the sham-operated group. However, obesity in turn 
inhibits autophagy activation (80), and the effect of reduced 
fat load on autophagy after bariatric surgery should not be 
ignored. It has been reported that RYGB significantly acti-
vates hepatic autophagy and may be associated with altered 
glucagon-like peptide-1 (GLP-1) levels after surgery  (81). 
Similarly, in cardiomyocytes, enhanced autophagy contributes 
to the amelioration of diabetes-induced cardiac injury (82,83) 
(Fig. 4). In summary, autophagy plays a dual role in DCM, and 

Figure 3. Possible mechanisms by which bariatric surgery improves ER stress in cardiomyocytes. SG and DJB improve ER stress in cardiomyocytes 
by decreasing signaling molecules related to apoptosis and ER stress in cardiomyocytes such as GRP78, PERK, P-PERK, CHOP and caspase 12. DJB, 
duodenal-jejunal bypass; SG, sleeve gastrectomy; PERK, protein kinase R-like endoplasmic reticulum kinase; CHOP, C/EBP homologous protein, ER endo-
plasmic reticulum; P, phosphorylated.

https://www.spandidos-publications.com/10.3892/mmr.2024.13323
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both inhibition and over-activation of myocardial autophagy 
can have pathological effects on DCM.

Evidence from several studies supports that the NLRP3 
inflammasome is closely associated with the development 
of DCM (84-88). Bariatric surgery has been found to inhibit 
NLRP3 activation in pancreatic islets, hepatocytes and adipose 
tissue, and consequently exert anti-apoptotic and anti-inflam-
matory effects (89-92). Recently, Li et al (93) observed NLRP3 
inflammatory vesicle-mediated inactivation of cardiomyocyte 
pyroptosis in SG mice. Reactive oxygen species play an impor-
tant role in the pathogenesis of type 2 diabetes mellitus, and 
the overproduction of reactive oxygen species is considered to 
be a mechanism involved in the activation of NLRP3 inflam-
matory vesicles (84). Thus, the use of reactive oxygen species 
scavengers significantly reduced the expression of NLRP3. 
Reactive oxygen species are important regulators of NLRP3 
inflammatory vesicles in cardiomyocytes  (93). It has been 
shown that chloride efflux acts downstream of mitochondrial 
reactive oxygen species production and activates the NLRP3 
inflammatory vesicles in macrophages  (93). In addition, 
inhibition of volume-sensitive chloride currents reduces cell 
death and reverses the contractile dysfunction in cardiomy-
opathy (94). Myocardial NLRP3-mediated pyroptosis restored 
by high glucose stimulation was observed after administra-
tion of chloride channel blockers to SG rats, suggesting that 
chloride efflux may act as a messenger to regulate the NLRP3 
assembly and activation, either directly or indirectly (93). It is 
therefore clear that cardiac remodeling in DCM rats can be 
significantly reversed by reducing reactive oxygen/chlorine 
ion efflux-mediated NLRP3 inflammatory vesicle activation 
after SG. However, Yang  et  al  (95) found that metformin 

could inhibit the expression of the NLRP3 inflammasome by 
activating autophagy in DCM cardiomyocytes, which seemed 
to be in contrast to the results of Huang et al (79) in terms of 
exerting cardioprotective function. It is evident that bariatric 
surgery still has a great potential to be investigated in terms of 
the regulation of myocardial autophagy.

Restoration of mitochondrial homeostasis. Mitochondrial 
homeostasis is important for maintaining cellular metabo-
lism and function (96). Calcium ions play an important role 
in mitochondrial synthesis (97). In diabetic cardiomyocytes, 
the decline in cardiomyocyte function is partly mediated by 
abnormal mitochondrial calcium handling and decreased 
free matrix calcium levels  (98). The diminished mito-
chondrial capacity for Ca2+ uptake leads to reduced ATP 
production (99-101) and favors reactive oxygen species gener-
ation (102). Therefore, improper mitochondrial Ca2+ handling 
is considered a key factor in DCM cell dysfunction (103). 
Huang et al (79) performed SG, DJB and sham operations 
on male Sprague-Dawley rats that had been induced with 
DCM, and subsequently assessed the ventricular diastolic 
function and Ca2+ homeostasis by echocardiography and 
calcium fluorescent probe, respectively. The results showed 
that both systolic and diastolic functions of the heart were 
improved in the SG and DJB groups of rats after surgery, as 
well as myoplasmic reticulum Ca2+ release and Ca2+ decay. 
In addition, mitochondrial dysfunction was also improved by 
inactivation of nuclear receptor family group 4A member 1 
(NR4A1) (104). NR4A1 causes disruption of mitochondrial 
homeostasis by promoting mitochondrial rupture and 
decreasing the mitochondrial membrane potential (105,106). 

Figure 4. Schematic representation of the formation of autophagy inhibition/activation. Obesity or diabetic cardiomyopathy leads to over inhibition/activation 
of myocardial autophagy, which can be ameliorated by bariatric surgery. SG, sleeve gastrectomy; DJB, duodenal-jejunal bypass; RYGB, Roux-en-Y gastric 
bypass; ROS, reactive oxygen species; DCM, diabetic cardiomyopathy; GLP-1, glucagon-like peptide-1.
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The inactivation of NR4A1 is closely associated with the 
AMPK pathway (107). It has been found that SG activates 
the AMPK signaling pathway, inhibits NR4A1 and corrects 
mitochondrial dysfunction in vivo, thus contributing to the 
improvement of DCM in terms of morphology and cardiac 
function (108). Under the pathological conditions of DCM, 
activation of silent information regulator 1 (SIRT1) and 
phosphorylation of AMPK can promote the clearance of 
dysfunctional mitochondria and peroxisomal enzymes to 
reverse cardiomyopathy development (109).

Regulation of the gut-heart axis. There is a bidirectional 
communication network between the gut and the heart, known 
as the ‘gut-heart axis’ (110). GLP-1 is secreted after meals, 
lowering glucose levels by enhancing insulin secretion and 
inhibiting glucagon release (111). Bariatric surgery not only 
increases postprandial GLP-1 release but also alters the gastro-
intestinal microbiota and bile acid profile cycle with beneficial 
effects (112,113). Bariatric surgery may alter the gut-heart axis 
through one or more mechanisms to obtain benefits in terms 
of improved cardiac function (114). GLP-1 analogs may exert 
cardiovascular protection by reducing inflammation (115), and 
increased levels of GLP-1 after bariatric surgery may reverse 
endothelial dysfunction and restore the endothelial-protective 
properties of high-density lipoproteins (116). Bile acids are 
considered to be important regulators of systemic metabolism, 
producing effects on obesity prevention and improving insulin 
resistance and hyperglycemia (117,118). Thus, alterations in 
bile acid levels and composition after gastric bypass may help 
to improve glucose and lipid metabolism in patients, which in 
turn modulates the gut-heart axis, protects the myocardium 
and improves myocardial fibrosis in terms of decreasing apop-
tosis, increasing glucose uptake, and reversing DCM (119). 
Alterations in gut flora after bariatric surgery have also been 
repeatedly reported in recent years, indicating that changes 
in intestinal flora after bariatric surgery may be related to 
improvements in glucose tolerance and insulin sensitivity, 
and may also regulate non-alcoholic fatty liver disease from 
multiple aspects such as the production of short-chain fatty 
acids and the regulation of one-carbon metabolism (120-125). 
Chaudhari et al  (126) found that changes in the composi-
tion of the intestinal microbial community in mice after 
bariatric surgery may up-regulate the expression of bile 
acid-7-sulphate, thereby regulating the gut-heart axis. As 
the intestinal flora and its metabolites play an important 
regulatory role in cardiovascular disease, imbalance of 
the intestinal flora has been suggested to be an important 
pathological mechanism in the development of cardiovascular 
diseases (127,128). In summary, changes in GLP-1 release, bile 
acid levels and gut flora composition after bariatric surgery 
may facilitate improvements in DCM by exerting an effect on 
the gut-heart axis.

5. Potential novel therapeutic targets

Researchers have explored the molecular mechanisms under-
lying the improvements in DCM after bariatric surgery, but 
some potential therapeutic targets need further investigation. 
CD36 is a fatty acid transporter that is related to cardiac 
fatty acid uptake (129). Wang et al (130) hypothesized that 

the loss of the Takeda G protein-coupled receptor 5 (TGR5) 
promoted the localization of CD36 on the plasma membrane 
through aspartate-histidine-histidine-cysteine4 (DHHC4)-
mediated CD36 palmitoylation, resulting in enhanced cardiac 
fatty acid uptake and lipid accumulation, indicating that the 
TGR5-DHHC4 pathway regulates cardiac fatty acid uptake 
and may be a potential target for the treatment of DCM. Ion 
channels play an important role in the pathogenesis of DCM, 
including changes in cation channels such as calcium, potas-
sium and sodium, as well as anion channels (131). Studying 
the functional changes of calcium channels, sodium 
channels and potassium channels may provide new strate-
gies for the treatment of DCM. In addition, based on the 
aforementioned effects of NR4A1 on mitochondria, studies 
have found that AMPK can further downregulate NR4A1 
by activating SIRT1, thereby correcting mitochondrial 
dysfunction and enhancing myocardial energy produc-
tion, and improving myocardial remodeling  (132,133). 
Therefore, bariatr ic surgery restores mitochondrial 
homeostasis and alleviates DCM morphologically and func-
tionally by maintaining myocardial Ca2+ homeostasis and 
downregulating NR4A1 expression  (79,108). The decline 
in cardiomyocyte function is partly mediated by abnormal 
mitochondrial calcium handling and decreased free matrix 
calcium levels, which may be a good target for new thera-
peutic interventions (98,99,103).

6. Conclusion

DCM is one of the most serious complications of diabetes 
mellitus, and while its etiology involves the synergistic effect 
of multiple molecular mechanisms, the specific underlying 
pathogenesis is still unclear (101). Hence, the lack of specificity 
in DCM treatment is one of the reasons why a clinical cure 
is challenging. Currently, the mainstream treatment includes 
intensive glucose control, traditional Chinese medicine inter-
vention and corresponding symptomatic treatment, but none of 
these approaches can further improve patient prognosis (134). 
Therefore, it is particularly important to explore new treat-
ment modalities. Relevant basic experiments have proved 
that bariatric surgery can effectively alleviate or even reverse 
DCM-induced cardiomyopathy, but the specific mechanism of 
the therapeutic effect of bariatric surgery has not been fully 
elucidated  (37,47,71). The present review summarized the 
latest advances in the treatment of DCM with bariatric surgery. 
It is critical to study the underlying mechanisms of cardiac 
microstructural changes after bariatric surgery to develop 
more effective therapeutic strategies. Furthermore, research 
should focus on the association between signaling pathways, 
and studies with clear experimental results should be shifted 
to clinical studies to guide the use of future medication, 
research and the development of new drugs. By elucidating the 
molecular and physiological responses to bariatric surgery, the 
present review aimed to enhance the understanding of DCM, 
identify new targets for intervention and advance the develop-
ment of more efficacious and personalized treatment options. 
This research direction is pivotal for the advancement of 
clinical strategies that can effectively address the multifaceted 
challenges posed by DCM, ultimately improving patient care 
and outcomes.
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