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Adipose tissue is a rich source of diverse cell populations, including

immune cells, adipocytes and stromal cells. Interactions between these dif-

ferent cell types are now appreciated to be critical for maintaining tissue

structure and function, by governing processes such as adipogenesis, lipoly-

sis and differentiation of white to beige adipocytes. Interactions between

these cells also drive inflammation in obesity, leading to an expansion of

adipose tissue immune cells, and the secretion of proinflammatory cyto-

kines from immune cells and from adipocytes themselves. However, in evo-

lutionary terms, obesity is a recent phenomenon, raising the question of

why adipocytes evolved to express factors that influence the immune

response. Studies of various pathogens indicate that adipocytes are highly

responsive to infection, altering their metabolic profiles in a way that can

be used to release nutrients and fuel the immune response. In the case of

infection with the extracellular parasite Trypanosoma brucei, attenuating

the ability of adipocytes to sense the cytokine IL-17 results in a loss of

control of the local immune response and an increased pathogen load.

Intriguingly, comparisons of the adipocyte response to infection suggest

that the immune responses of these cells occur in a pathogen-dependent

manner, further confirming their complexity. Here, with a focus on murine

adipose tissue, we discuss the emerging concept that, in addition to their

canonical function, adipocytes are immune signalling hubs that integrate
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and disseminate signals from the immune system to generate a local envi-

ronment conducive to pathogen clearance.

Introduction

The adipose tissue, which was once thought of as an

inert energy storage facility, is now understood to

exert profound effects on energy balance, through both

endocrine signalling and regulation of organismal

behaviour. Whilst it is made up of a number of cell

types, including stromal (e.g. fibroblasts and preadipo-

cytes) and immune cells (e.g. macrophages), the major

cell of the adipose tissue is the adipocyte, which, under

physiological conditions, stores fuel, mainly in the

form of triglycerides, which can be hydrolyzed through

lipolysis and then released to fuel distal tissues.

Advances in single-cell transcriptomic studies have also

revealed that there is heterogeneity within the adipo-

cyte populations, with variation in these cell types

across different white adipose tissue (WAT) depots

[1–3]. Spatial transcriptomic analyses of human subcu-

taneous WAT (scWAT) also demonstrated that only a

subset of adipocytes respond to insulin stimulation,

and that there is a correlation between the size of this

subset and whole-body insulin sensitivity. Moreover,

this study used neighbourhood analyses to reveal

homotypic clustering of a separate adipocyte subset,

with putative pro-inflammatory properties [4]. These

studies clearly highlight the previously unappreciated

complexity and organisation of this tissue, and the

need to understand the function of different subpopu-

lations of adipocytes.

Beyond their energy storage function, adipocytes

also secrete bioactive proteins called adipokines, which

regulate a range of physiological functions, including

food intake [5], fat distribution [6,7], energy expendi-

ture [8] and body temperature [9]. In addition to their

physiological roles, adipokines such as leptin play a

role in the immune response, by stimulating immune

cell activation and promoting inflammation [10]. The

term adipokine also encompasses molecules that are

canonical players within the immune system, including

cytokines like interleukin (IL)-6 and tumour necrosis

factor alpha (TNFa), which are elevated during obe-

sity, and contribute to inflammation [11]. In addition

to these pro-inflammatory cytokines, white adipocytes

also express anti-inflammatory IL-10 [12,13] suggesting

that they can contribute to playing a role in regulating

the immune response, as well as activating it (Fig. 1A).

Based on emerging evidence discussed throughout this

Viewpoint, we propose that adipocytes are immune

hubs that integrate innate immune signals, using them

to coordinate local and systemic responses to

infection.

The immune system and adipose
tissue physiology

Under homeostasis, the adipose tissue is enriched with

a multitude of immune cells, including monocytes,

macrophages, dendritic cells, mast cells, eosinophils, B

cells, CD4+ T cells, regulatory T cells (Tregs), CD8+

T cells, innate lymphoid cells (ILCs) and gamma delta

(cd) T cells [14–21] (Fig. 1B). It is likely that under

homeostasis and varying nutritional states, inflamma-

tory and immunoregulatory signals from adipose tissue

immune populations form a critical role in WAT

remodelling. Beyond the adipose tissue, these resident

immune populations can influence systemic metabo-

lism. For example, IL-33 signalling through

adipose-resident Tregs improves systemic glucose toler-

ance during obesity [22]. Further to this, IL-17A+ cd
T cells drive IL-33 expression from adipose stromal

cells (including preadipocytes), which is critical for the

maintenance of body temperature [23]. IL-17A was

defined as a key factor for maintaining body tempera-

ture, promoting thermogenic responses and driving

adipose tissue expression of adipocyte genes associated

with thermogenesis, including Ucp1. Indeed, the effect

of IL-17A on body temperature was profound, with

cold exposure proving lethal for IL-17A knockout

mice. An independent study confirmed that IL-17-

expressing cd T cells are critical for thermogenesis and

also identified that the effects are mediated through

the adipocyte IL-17 receptor C (IL-17RC) [24]. IL-17F

signalling through IL-17RC upregulated transforming

growth factor b1 (TGF-b1), which in turn supported

adipose tissue innervation and thermogenesis. Numer-

ous studies have explored the effects of other immune

factors on adipose tissue thermogenesis, revealing that

a range of different immune cells, including anti-

inflammatory macrophages [25] and type 2 innate lym-

phoid cells (ILC2s) [26,27], contribute to this process.

The WAT has also been extensively studied in the

context of obesity, where it has been shown that pro-
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Fig. 1. Immune composition of adipose tissue. (A) Schematic view of adipocyte subsets and precursors, and common cytokines that they

express. (B) Schematic view of the multitude of immune cells within the white adipose tissue, and common cytokines that they express.

The adipose tissue comprises ~ 30% adipocytes, with the remaining cells composed of stromal and immune cells. The adipocytes and their

precursors (mesenchymal stem cells and preadipocytes) secrete cytokines under homeostatic conditions, which can play a role in controlling

adipose tissue structure and function. There is also a classical view that the majority of immune cells within the adipose tissue are

macrophages, but we now understand that the diversity of immune cells within this tissue is vast, and complex, as illustrated here.
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inflammatory cytokines such as TNFa signal directly

to adipocytes, leading to adipocyte insulin resistance

[28,29]. This, in turn, elevates adipocyte lipolysis and

export of free fatty acids (FFAs) into the circulation

[30] and contributes to ectopic lipid deposition. TNFa
was also found to be expressed by adipocytes

themselves, acting in both an autocrine and paracrine

manner [31,32]. Numerous other cytokines (e.g. IL-1b,
IL-6, IL-17) have also been demonstrated to drive

lipolysis in cultured adipocytes [33–36], which is puz-

zling, as these cytokines are all elevated during obesity.

In response to obesity, adipocytes also alter their tran-

scriptional program to express immune-related factors,

including the chemokines Ccl6, Ccl8, Ccl9 and Cxcl12

[2,37]. In the context of obesity in both humans and

mice, the expression of adipocyte chemotactic net-

works promotes the recruitment of inflammatory mye-

loid cells, such as macrophages, further contributing to

adipose tissue inflammation [38,39]. Altogether, these

studies demonstrate that the WAT is a rich immuno-

logical niche, and that adipocytes themselves are capa-

ble of producing factors that contribute to the

maintenance of tissue homeostasis.

Adipocyte lipolysis: responses to
infection

Many studies of the adipose tissue have focused on

understanding how it functions under homeostasis or

how it is affected by obesity. These studies have pro-

vided essential insights into how adipocytes function

and also respond/contribute to inflammation, but there

is increasing interest in the response of the WAT to

infection, and how it contributes to the ensuing

immune response (Table 1). This is important from the

point of view of understanding how the host fuels its

immune response, but also for understanding whether

adipocytes themselves contribute to that response.

Ayari et al. [40] identified that during influenza A

infection (IAV), the WAT downregulates genes associ-

ated with lipolysis and lipogenesis, which appears to

be counterintuitive, since lipolysis could potentially lib-

erate nutrients that immune cells can use to function.

For example, the induction of lipolysis and release of

FFAs through pharmacological intervention or over-

night fasting leads to an increase in adipose tissue

macrophages [41,42]. Additionally, cells such as T cells

[43], germinal centre B cells [44] and anti-inflammatory

macrophages [45] all utilise free fatty acids to function.

Despite this dichotomy, many studies have reported

downregulation of lipolysis in the adipose tissue during

different infection models, including during viral

(SARS-CoV-2 [46]) and parasitic (Trypanosoma brucei

[47]) infections, which was coupled with downregula-

tion of adipose triglyceride lipase (ATGL) and

hormone-sensitive lipase (HSL), two enzymes that are

critical for lipolysis (Table 1). Furthermore, whilst sep-

sis and endotoxemia are typically associated with ele-

vation of lipolysis, in aged mice this effect is reversed,

with B cell accumulation inhibiting lipolysis in the adi-

pose tissue [48]. On the one hand, it is possible that

the release of FFAs could be beneficial for resolving

infection by promoting a more robust immune

response. Conversely, it is possible to have too much

of a good thing, and the release of FFAs may be low-

ered during infection to prevent inappropriate levels of

immune cell activation and exacerbation of inflamma-

tion. In the case of SARS-CoV-2, it was demonstrated

that stimulating lipolysis increased viral replication,

leading to the hypothesis that anti-lipolytic responses

to infection represent part of an anti-viral immune

response. This is supported from studies of both IAV

and SARS-CoV-2, where pharmacological inhibition

of lipid droplet-associated lipases conferred protection

from severe infection and mortality [49]. The lipolytic

response to T. brucei infection is interesting as lipolysis

increases during the early stages of infection but

decreases as the infection progresses to the chronic

phase. Early activation of lipolysis may be important

for supporting the innate immune response, including

the recruitment of cells such as neutrophils [50,51].

Moreover, lipolysis is also important for the function

of adaptive immune cells, such as B cells, which use

FFAs to support the production of cytokines such as

IL-10 [52], which is highly upregulated during T. bru-

cei infection [53,54]. Decreases in lipolysis that occur

during chronic T. brucei infection may also represent a

mechanism to slow replication of the parasite, as it has

been shown that this parasite can take advantage of

the lipid-rich WAT environment, and upon colonisa-

tion of the tissue upregulates fatty acid oxidation to

utilise the products of host lipolysis [55]. However, the

impact of decreased lipolysis on the immune response

to chronic infection remains unexplored.

Conversely, several studies have demonstrated the

opposite effect, whereby infections can increase rates

of adipocyte lipolysis, including viral (e.g. HIV [56]),

bacterial (e.g. sepsis [57]) and parasitic (e.g. Chagas

disease [58]) (Table 1). In the case of sepsis, early stud-

ies described that adipocytes sense bacterial endotoxins

(LPS) via toll-like receptor 4 (TLR4), which in turn

stimulates lipolysis [59]. This raises the possibility that

bacteria are able to stimulate lipolysis, driving the

release of nutrients that they can use for their own sur-

vival and proliferation. However, more recent studies

suggest that TLR4 is involved in mediating
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adipocyte-immune crosstalk during bacterial infection,

but that it does not necessarily drive lipolysis directly

[60]. This may indicate that increased lipolysis during

sepsis is driven by the immune response rather than

the pathogen and supports the work from Wang et al.

[61], demonstrating that fasting, which elevates lipoly-

sis and release of FFAs, is protective during sepsis.

During Chagas disease, which is caused by the intra-

cellular Trypanosoma cruzi parasite, there is evidence

that lipolysis also increases, and this is associated with

upregulation of TLR2, TLR4 and TLR9 [58,62]. How-

ever, T. cruzi-derived molecules that could stimulate

adipocyte TLR signalling have yet to be described,

meaning that it remains unclear how infection with

this intracellular parasite drives lipolysis. As with sep-

sis, it is possible that lipolysis is driven primarily by

the immune response to the infection. If the modula-

tion of lipolysis observed in different infections is

driven by the immune response, then the question

remains of why some immune responses induce lipoly-

sis and others suppress it, and how does the host

decide whether more or fewer resulting FFAs are

required. Since FFAs are used by a number of immune

cell types to fuel their activation, the answer to this

question is likely to lie in understanding the precise

nature of the immune response to the infection that

the host is experiencing, in terms of the cell types

that are recruited and the immune factors, such as

cytokines and antibodies, that they make.

Adipocytes as immune hubs:
integration and dissemination of
instructions

Both innate and adaptive immune responses to infec-

tion stimulate the release of an extensive range of cyto-

kines and chemokines, the composition of which

depends on the pathogen, the location of the infection,

infection intensity and whether the infection is acute

or chronic. There is a growing appreciation that adipo-

cytes are not only capable of sensing these molecules

but also responding to them and releasing a range of

different factors that can contribute to the immune

response. Probably, the most well-described

immune-adipocyte interaction is between immune

cell-derived TNFa and adipocytes, which has long

been known to drive lipolysis [63–66]. However, it is

now known that TNFa signalling also upregulates

expression of a number of different cytokines and che-

mokines in adipocytes, including IL-1b [67,68], which

is a key player in the antiviral response and is a pyro-

gen, acting on the brain to induce fever [69]. More-

over, white adipocytes secrete prostaglandin E2, aT
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pyrogenic mediator that acts on the preoptic area of

the brain and stimulates sympathetic nerve activity

and brown adipose tissue (BAT) thermogenesis [70,71],

further supporting the role of WAT in mediating the

response to infection.

Intriguingly, IAV drives beiging of scWAT, through

upregulation of the mitochondrial biogenesis program,

conferring a thermogenic phenotype during infection

[40], which is remarkable considering that this infec-

tion is localised to the lungs but drives profound

effects in the distal adipose tissue. This suggests that

WAT beiging and downstream induction of thermo-

genesis form components of the antiviral response to

infection, contributing to fever and disease resolution.

TNFa was also found to stimulate leptin expression in

the gonadal WAT (gWAT) of mice [72], an adipokine

that suppresses hunger over time by signalling through

the leptin receptor in neurons of the lateral hypothala-

mus [73]. In contrast, studies of the scWAT found that

exposure of adipocytes to TNFa in this depot reduced

tissue expression of leptin [74,75], suggesting that there

is heterogeneity in how adipocytes sense and respond

to immune signals. Food intake is commonly sup-

pressed (sickness-induced anorexia) during infection

and forms part of a behavioural program that is con-

served across vertebrates and invertebrates [47,76,77],

termed ‘sickness behaviour’. Therefore, it is likely that

during infection, TNFa contributes to

sickness-induced anorexia by signalling through adipo-

cytes to modulate adipokine expression and alter feed-

ing behaviour. However, recent evidence from

experimental Toxoplasma gondii infections suggests

that this process may, in some scenarios, be driven

independently of TNFa, via growth/differentiation fac-

tor 15 (GDF15) [78]. GDF15 is secreted by a range of

tissues, including the liver, inguinal WAT and BAT

[79], and can contribute to sickness-induced anorexia

independently of TNFa, via direct signalling in the

hindbrain [80]. In T. gondii infection, GDF15 expres-

sion is driven by IFNc and is critical for the

sickness-induced anorexia and weight loss associated

with this disease [78]. Although much research has

focused on the role TNFa as a driver of sickness

behaviour and subsequent weight loss, it is becoming

increasingly clear that a range of cytokines and adipo-

kines, including IL-1b, IL-17, IL-6 and leptin, contrib-

ute to these processes [47,81–83], likely acting in

tandem.

Beyond sickness-induced anorexia, modulating leptin

levels is critical for the immune response to numerous

infections, as this adipokine signals through multiple

different immune cell types to modulate their function,

including macrophages [84], NK cells [85], neutrophils

[86] and CD4+ T cells (specifically IL-17+ TH17 cells

[87]). However, the role of leptin in the immune

response to infection is not straightforward, and it can

either be beneficial or harmful depending upon the

nature of the infection. For example, during Leish-

mania donovani [88], T. cruzi [89], Mycobacterium

tuberculosis [90,91] and Pneumococcal pneumonia [92]

infections, elevated leptin is beneficial for improving

the immune response, clearing pathogens and resolving

infection. Conversely, in the context of infections like

malaria, sequestration of infected red blood cells in the

WAT drives leptin expression, which drives the devel-

opment of cerebral malaria, increasing the risk of

death [83,93].

As discussed throughout this Viewpoint, many other

cytokines act upon adipocytes and stimulate lipolysis,

or the release of cytokines and adipokines that have

effects on the immune system during infection. In

recent studies, we identified that IL-17 signalling

through adipocytes during infection with T. brucei lim-

ited the characteristic adipocyte atrophy associated

with this disease, which occurred in a sex-dependent

manner [13,47]. During T. brucei infection, in addition

to increased secretion of IL-17A by CD4+ and cd
T cells, adipocytes upregulate the cognate receptor, IL-

17 receptor A (IL-17RA) [13] and IL-17 receptor C

(IL-17RC) [47]. Whilst IL-17 signalling is known to

play a role in modulating adipose tissue structure and

function during obesity [94], as well as modulating

functions such as thermogenesis [23,24], it remains

unclear whether this is due to upregulation of the cog-

nate IL-17 receptors, or increased signalling through

them. Strikingly, when we deleted adipocyte IL-17RA,

limiting the ability of adipocytes to sense IL-17A and

IL-17F, there was a significant increase in the number

of parasites in the scWAT [47] (Fig. 2). This unex-

pected observation suggests that IL-17 signalling

through adipocyte IL-17RA primes the adipocytes to

either directly control local parasite burden, perhaps

through the release of antimicrobial peptides, such as

cathelicidin [95]. In mouse models of T. brucei infec-

tion, cathelicidins were found to decrease parasite via-

bility and delay infection-induced mortality [96], but it

has not yet been demonstrated whether adipocytes

express these trypanolytic compounds during infection.

However, as adipocytes secrete cathelicidins, alongside

other antimicrobial compounds, such as lipocalins [97],

this could potentially represent a direct way in which

adipocytes are able to control local pathogen numbers.

It is also possible that IL-17 signalling, by driving adi-

pose tissue wasting and adipocyte atrophy, induces the

release of specific lipid species, such as sphingolipids,

which have antimicrobial properties [98], or can act as
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signalling molecules to modulate the local immune

response [99]. In this regard, lipids such as fatty acids

have been demonstrated to influence both differentia-

tion and activation of immune cells, including CD8+

T cells [100], and macrophages [101]. Alternatively,

these findings may suggest that IL-17 signalling in adi-

pocytes promotes the expression of different cytokines

and chemokines, to orchestrate the local immune

response and control the pathogen numbers in the

WAT. Adipocytes are also a major source of comple-

ment proteins, including C3, which is capable of killing

African trypanosomes prior to them engaging mecha-

nisms to evade immune attacks, namely antigenic vari-

ation [102]. As IL-17 can promote expression of C3 in

fibroblasts, it is possible that IL-17 signalling through

adipocytes helps to control parasite numbers by modu-

lating the complement system. Whilst the exact mecha-

nism underpinning this effect remains unknown, and

whether this is a direct or indirect effect, it demon-

strates that the adipocytes of the scWAT are able to

sense immune signals, integrate them and then exert a

profound effect on the outcome of infection. Further-

more, it will be important to understand whether sex

plays a role in mediating the effects of IL-17 on adipo-

cytes and their downstream immune effector function.

We observed that IL-17 drives weight loss during

T. brucei infection in males but not in females, and

previous studies of urinary tract infection found that

IL-17 was critical for resolving infection in females but

not males [103]. Together, this demonstrates that there

are many factors influencing the role that IL-17 plays

during infection, and there is still much to be

uncovered.

Conclusions and future perspectives

Whilst there are many questions left to answer about

the response of adipose tissue to infection, there are

also technological challenges that need to be

addressed. Adipose tissue is notoriously challenging to

work with for multiple reasons, including the loose

structure of the tissue, the fragility of the adipocytes

themselves and the abundance of lipids within the tis-

sue. Single-nucleus RNA sequencing (snRNAseq) is

increasingly being used to interrogate the response of

the adipose tissue to different challenges. An issue fac-

ing snRNAseq is that it does not capture cytosolic

mRNA molecules, but recent advances have been

made to enable the capture of the endoplasmic reticu-

lum in addition to the nucleus, maximising mRNA

capture [3,104]. Another issue is that adipocytes are

rich in RNAseq, leading to extensive degradation of

mRNA. So et al. [105] have now demonstrated that

using protease inhibitors, as well as RNAseq inhibi-

tors, overcomes this obstacle and preserves mRNA

integrity during nuclei isolation. In tandem spatial

Fig. 2. Effects of IL-17 receptor A signalling during infection. In the inguinal white adipose tissue (iWAT), there are multiple sources of IL-

17A and IL-17F, including Vc6 and TH17 cells. We previously identified that these cytokines signal through the adipocytes during

Trypanosoma brucei infection to drive adipocyte atrophy. When IL-17 receptor A was deleted from adipocytes, they experienced less

atrophy during infection, demonstrating that IL-17 acts directly on the adipocytes to drive this process. Moreover, we found a higher

number of parasites in the iWAT when adipocytes were unable to sense IL-17, indicating that the adipocytes are able to integrate local

immune signals and either directly affect T. brucei or disseminate these signals to the local immune system, and contributing to an

environment that is more conducive for mounting an effective immune response.
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transcriptomics [4,13,106] and emerging single-cell pro-

teomics [107], snRNAseq will undoubtedly advance

our understanding of how adipose tissue functions and

responds to challenges. These technologies will also

benefit from the range of genetic deletion models that

are now available to the adipocyte biology field,

including mice with constitutive or inducible deletions

of genes in white (Adipoq-Cre, Adipoq-CreERT2

[108,109]) and brown (Ucp1-Cre, Ucp1-CreERT2

[110,111]) adipose tissue. Although these markers are

useful for studying mature adipocytes, a major chal-

lenge in the field is identifying genes that are specific

to adipocyte precursor cells, and overcoming this will

enable deeper studies of adipocyte development and

plasticity. Recent studies have used lineage tracing to

overcome the lack of deletion models, elegantly dem-

onstrating the trajectory of preadipocytes to a white

[112] or beige adipocyte lineage [113]. These technolog-

ical advances have already improved our understand-

ing of adipocyte biology in mice and humans, and as

they continue to develop will allow the field to develop

deeper insights into how adipocytes respond to chal-

lenges such as obesity and infection, and how they

contribute to the immune response.

We have learned a lot about the immune responses

of adipocytes from studies of obesity, but obesity is a

relatively modern disease, and it is likely that adipo-

cytes evolved to express immune factors under differ-

ent evolutionary pressures, such as exposure to injury

and infection. Under these conditions, it is emerging

that adipocytes are key contributors to the immune

response, but we still know little about adipose

depot-specific responses to infection, and whether

these responses are impaired when there is an excess

of adipose tissue, such as during obesity. Further-

more, we do not yet understand how local infections,

such as in the lung, are able to trigger distal

responses in the adipose tissue, or what the benefit of

this is to the host. One possibility is that an infection

in the lung could prompt the adipose tissue to release

FFAs and adipokines into circulation, which can then

be used to mount an appropriate immune response.

Understanding these interactions may be important

for a clinical point of view, where a patient is under-

weight or obese and has an impaired adipose tissue

response.

We propose that during infection the adipocyte

forms a cellular hub that integrates incoming immune

signals and uses them to coordinate the local and sys-

temic immune response, in turn making the adipose

tissue a key, but underappreciated, player in the

immune system.
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