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Highlights 
The adipose tissue is the principal organ 
for energy storage and metabolic regula-
tion, making it a promising target for obe-
sity pharmacotherapy. 

Adipose tissue-targeting nanomedicine 
holds promise in overcoming limitations 
arising from traditional obesity pharma-
cotherapy. 

The distinct receptor profiles and physi-
cochemical properties of the adipose tis-
sue allow nanomedicines to target it 
through  both  active  and  passive  strate  -
The increasing global prevalence of obesity presents a substantial challenge to 
public health. Current nutrient-stimulated hormone (NuSH)-based therapeutics 
are hindered by receptor desensitization, muscle loss, and weight regain. The 
adipose tissue, the primary organ responsible for energy storage and metabolic 
management, is a promising target for obesity treatment. Nanomedicine holds 
promise to precisely deliver medication to the adipose tissue to maximize therapeu-
tic efficacy and minimize off-target effects; indeed, various adipose tissue-targeting 
nanomedicines have shown impressive anti-obesity effects by optimizing drug 
pharmacokinetic profiles and reducing nonspecific distribution in preclinical stud-
ies. Here we examine the current state of the art of adipose tissue-targeting nano-
medicines, offering insights into recent advances, future possibilities, and the 
remaining challenges associated with their application in obesity treatment. 
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gies.

The principal approaches for adipose 
tissue-specific nanomedicine involve 
targeting adipocytes for energy balance, 
macrophages to reduce inflammation, 
and multiple cell types simultaneously to 
achieve synergistic effects.
Adipose tissue-targeting nanomedicine is a promising alternative for obesity 
treatment 
Obesity has become a global issue, with projections indicating that 1.02 billion adults will be 
obese by 2030 [1,2]. It also raises the risk of comorbidities such as type 2 diabetes, cardiovascu-
lar diseases, and metabolic dysfunction-associated steatotic liver disease, potentially shortening 
life expectancy by 5–20 years [3]. Therefore, obesity is a substantial health challenge that neces-
sitates urgent intervention. 

Bariatric surgery and pharmacotherapy are the primary treatments for obesity. While bariatric surgery 
is highly effective for weight loss and reducing obesity-associated complications, it is costly and can 
lead to weight regain in about one in six patients [4]. Pharmacotherapy, by contrast, is more acces-
sible and has become increasingly popular over the past decade. NuSH-based pharmacotherapies, 
represented by glucagon-like peptide 1 receptor agonists, have shown remarkable anti-obesity 
efficacy and more tolerable side effects, positioning them as a promising advance in obesity pharma-
cotherapy [5]. However, a critical issue with NuSH therapies is receptor desensitization following 
continuous stimulation, which hampers long-term management. Furthermore, there are concerns 
regarding their side effects, such as an increased risk of gastrointestinal disorders, syncope, arthritic 
disorders, drug-induced pancreatitis, and thyroid cancer [6,7]. Additionally, there is widespread 
agreement that weight regain is commonly observed on discontinuation of NuSH treatment [8]. 
Thus, additional, novel pharmacotherapy strategies are still needed to combat obesity. 

Tissue-targeting nanomedicine offers a promising strategy to address the limitations of current 
treatments. This approach can improve drug bioavailability and minimize systemic toxicity by im-
proving drug solubility, optimizing drug release patterns, precisely delivering the drug to target 
sites, and reducing non-target distribution [9]. The adipose tissue, the principal organ responsible 
for energy storage and metabolic regulation, plays an essential role in obesity and related comor-
bidities. Adipose tissue depots undergo pathological changes during obesity, providing a
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rationale for tissue-specific pharmacotherapy and adipose tissue-targeting nanomedicines 
(Figure 1). 

Recently, adipose tissue-targeting nanomedicines have shown considerable advances in preclin-
ical studies [10]. Lipid-based, polymeric, biomimetic, and photothermal nanocarriers are currently 
being developed for this purpose (Figure 2, Key figure). These nanocarriers, either independently 
or modified with targeting ligands, enable the precise delivery of therapeutic agents to the adipose 
tissue. Specifically, lipid-based nanocarriers, such as liposomes and nanoemulsions, possess 
the capability to deliver both hydrophilic and hydrophobic drugs to the adipose tissue [11,12], 
demonstrating excellent biocompatibility and inherent membrane affinity [13]. Polymeric nanocar-
riers, including self-assembled polymeric micelles and both natural and synthetic polymeric nano-
particles, are mainly used to deliver hydrophobic drugs to the adipose tissue for obesity therapy 
[14]. Moreover, polymeric nanocarriers containing cationic motifs can form stable complexes with 
anionic gene therapy products through electrostatic interactions, thereby increasing their stability 
and transmembrane delivery to the adipose tissue [15,16]. Biomimetic nanocarriers, such as cell 
membrane-camouflaged and virus-like nanosystems, mimic biological processes or intrinsic 
characteristics of living systems, resulting in reduced immunogenicity, prolonged half-life, and en-
hanced safety [17,18]. Photothermal nanocarriers, like polydopamine nanoparticles [19] and gold 
nanoparticles [10], have been tested in mice to induce thermogenesis and lipolysis in the subcu-
taneous adipose tissue, effectively preventing the progression of obesity without adverse effects. 
Remarkably, an adipose tissue-targeting nanoparticle co-delivering TGF-β1 siRNA and COX-2 
siRNA has recently advanced to clinical trials (NCT05422378) [20], highlighting the translational 
potential of this strategy for obesity treatment. Building on this breakthrough, we review recent
TrendsTrends inin EndocrinologyEndocrinology & MetabolismMetabolism

Figure 1. Pathological changes in adipose tissues during obesity. The adipose tissue is classified into white, brown
and activated beige adipose tissue. In obesity, beige adipose tissue displays reduced brown-like adipocytes, increased
proinflammatory macrophages, and inflammation. Brown fat undergoes capillary rarefaction, whitening, and thermogenesis
impairment. The white fat becomes highly remodeled, suffering increased inflammation, oxidative stress and fibrosis
decreased vascularization, and poor oxygenation. Figure created using BioRender (http://biorender.com/).
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Key figure 

Nanocarriers used to target the adipose tissue 
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Figure 2. Biomimetic nanocarriers, lipid-based nanocarriers, polymeric nanocarriers, and photothermal nanocarriers are 
used for adipose tissue-targeting nanomedicines. They can improve drug bioavailability, avoid off-target effects, and 
improve the efficacy of gene medicine. Figure created using BioRender (http://biorender.com/). 
advances in preclinical research on adipose tissue-targeting nanomedicines, aiming to provide 
valuable insights for future developments in the field. 

Active targeting strategies 
During obesity, distinct alterations in receptor expression profiles occur in various cell types in 
both white and brown adipose tissue depots, potentially facilitating the design of nanomedicines 
targeting these tissues through ligand–receptor recognition (Figure 3 and Table 1).

Endothelial cell-based targeting 
The adipose tissue is highly vascularized [21]; thus, vascular endothelial cells may be promising 
targets for obesity treatment. Prohibitin has been identified as a vascular marker of adipose
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Figure 3. Delivery strategies to target the adipose tissue. Adipose tissue-targeting strategies include active and passive 
targeting. Active targeting strategies include adipocyte-based targeting (indicated in green), macrophage-based targeting 
(indicated in purple), endothelial cell-based targeting (indicated in blue), and adipose stromal cell-based targeting (indicated in 
red). Passive targeting strategies are indicated in orange. Figure created using BioRender (http://biorender.com/).
tissue, and the cyclic peptide CKGGRAKDC, a ligand for prohibitin, demonstrates selective accu-
mulation in subcutaneous fat 150-fold over the peptide-free control [22,23]. Since then, 
CKGGRAKDC-based nanomedicines have been developed for obesity treatment, showing se-
lective accumulation in adipose tissue depots through increased cellular uptake by endothelial 
cells [18,24],  and  used  to  successfully  deliver  gene  silencing products to the adipose tissue
[25–28]. Additionally, the introduction of an additional functional motif, the cell-penetrating 
octaarginine (R8) peptide, to GKGGRAKDGGC-modified liposomes further increased cellular up-
take [29], and a dual-targeting nanosystem mediated by CKGGRAKDC and hyaluronic acid 
showed a greater distribution in adipose tissue than single-targeted nanomedicines [30]. Since 
prohibitin facilitates delivery to both mature adipocytes [27] and adipose tissue macrophages 
(ATMs) [25], this approach could target multiple cell types in adipose tissue depots. 

Besides prohibitin, integrin αv on angiogenic endothelial cells has also been tested for adipose tis-
sue targeting. iRGD (CRGDK/RGPD/EC), a ligand for integrin αv, is noted to have potential com-
parable with that of CKGGRAKDC in targeting adipose tissue [31]. Notably, integrin αv is widely 
distributed throughout the body, while prohibitin is exclusively expressed on the vasculature of 
white adipose tissue, making it more suitable for selective white fat targeting. Additionally, the 
truncated endothelial tropomyosin receptor kinase A is selectively expressed in brown and 
beige adipose tissues [32], highlighting the potential of its endogenous ligand-mimicking peptide 
CPATAERPC to target these depots [33]. Although several approaches targeting adipose tissue 
endothelial cells have been developed, their efficacy may decline with obesity progression due to 
ongoing vascular rarefaction in adipose tissue [34]. Specifically, the proportion of endothelial cells 
in adipose tissue is reduced by 50% in individuals with body mass index (BMI) > 40 [35]. Thus, 
further research is warranted to investigate the clinical potential of these findings. 

Adipocyte-based targeting 
As obesity progresses, adipocyte membrane receptors change significantly, making adipocytes 
another potential target for nanomedicines. Scavenger receptor class B type I (SR-BI) is notably
4 Trends in Endocrinology & Metabolism, Month 2025, Vol. xx, No. xx

http://biorender.com/


(continued on next page)

Trends in Endocrinology &Metabolism
OPEN ACCESS

Table 1. Strategies for adipose tissue-targeting nanomedicinea 

Target Ligand Type of 
nanomedicine 

Experimental model Targeting efficiency (in vitro/in vivo) Refs 

Endothelial cells – 
prohibitin 

CKGGRAKDC Virus-like particles Adipose microvascular 
endothelial cell 

Increases cellular uptake by around 
twofold 

[18] 

ob/ob mice 
(i.v. injection) 

Preferentially distributes in abdominal 
fat, especially mesenteric depot 

Endothelial cells – integrin 
αv 

CRGDK/RGPD/EC Polymeric 
nanoparticles 

HFD-induced obese 
mice (i.v. injection) 

Preferentially distributes in visceral fat [31] 

Adipocytes – prohibitin CKGGRAKDC PLGA nanoparticles 3T3-L1 adipocytes Increases cellular uptake by around 
tenfold 

[14] 

HFD-induced obese 
mice (i.v. injection) 

Preferentially distributes in visceral fat 

Liposome Mouse primary 
adipocytes 

Increases cellular uptake by around 
tenfold (5% peptide modification ratio) 

[11] 

C57BL/6N mice 
(i.v. injection) 

Preferentially distributes in white fat 
depots 

Polymeric 
nanoparticles 

C57BL/6J mice 
(i.v. injection) 

Preferentially distributes in 
subcutaneous fat 

[65] 

Polymeric 
nanoparticles 

3T3-L1 adipocytes Increases cellular uptake by around 
fivefold (100% feed ratio) 

[68] 

HFD-induced obese 
mice (local injection) 

Maintains in injection site 
(subcutaneous fat) after 72 h 

CKGGRAKDC-9R Nanocomplex HFD-induced obese 
mice (i.v. injection) 

Preferentially distributes in visceral fat [28] 

Nanocomplex HFD-induced obese 
mice (i.p. injection) 

Preferentially distributes in visceral fat [81] 

Nanocomplex HFD-induced obese 
mice (s.c. injection) 

Preferentially distributes in both visceral 
and subcutaneous fat 

[26] 

GKGGRAKDGGC + R8 Liposome 3T3-L1 adipocytes Increases cellular uptake by around 
tenfold 

[29] 

CKGGRAKDC + 
macrophage membrane 

Liposome 3T3-L1 adipocytes Increases cellular uptake by around 
twofold 

[17] 

HFD-induced obese 
mice model 
(i.v. injection) 

Preferentially distributes in 
subcutaneous fat 

Adipocytes – VCAM1 Anti-VCAM-1 antibody Polydopamine 3T3-L1 adipocytes Increases cellular uptake by 3.8 times [41] 

HFD-induced obese 
mice (local injection) 

Increases distribution in subcutaneous 
depots by 1.9 times 

Adipocytes – SR-BI rHDL rHDL nanoparticle C57BL/6J mice 
(p.o.) 

Preferentially distributes in intestine, 
visceral fat, and liver 

[38] 

Adipocytes – APMAP Aptamer adipo-8 Liposome C57BL/6J nude mice 
(i.p. injection) 

Preferentially distributes in liver [43] 

Polymeric 
nanoparticles 

3T3-L1 adipocytes Increases cellular uptake by 2.7 times [82] 

DNA 
micro-nanoflowers 

C57BL/6J mice 
(i.p. injection) 

Preferentially distributes in liver and 
visceral fat 

[83] 

Macrophages CKGGRAKDC-9R Nanocomplex ATMs Increases cellular uptake by fourfold [25] 

HFD-induced obese 
mice (i.p. injection) 

Preferentially distributes in visceral fat 

Macrophages – SR Dextran Polysaccharide 
nanocarrier 

HFD-induced obese 
mice (i.p. injection) 

Preferentially distributes in visceral fat [45]
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Target Ligand Type of
nanomedicine

Experimental model Targeting efficiency (in vitro/in vivo) Refs

Macrophages – CD44 Chondroitin sulfate Micelle db/db mice 
(i.v. injection) 

Preferentially distributes in 
subcutaneous fat 

[46] 

Macrophages – Dectin-1 Laminarin Self-assembled 
nanoparticle 

RAW 264.7 cell line Increases cellular uptake by around 
ninefold (at 2 h) 

[48] 

HFD-induced obese 
mice (p.o.) 

Preferentially distributes in subcutaneous 
fat 

Macrophages Yeast Microcapsule NA NA [47] 

ASCs – ΔDCN receptor CSWKYWFGEC Lipid nanoparticle ΔDCN-transduced 
3T3-L1 cell 

Increases cellular uptake by around 4.7 
times 

[51] 

ASC from mice 
inguinal fat 

Increases cellular uptake by 3.4 times 

C57BL/6 J mice 
(i.v. injection) 

Preferentially distributes in white fat 
depots 

Gold nanobipyramid NA NA [10] 

Passive targeting – 
electrostatic interaction 

Cationic polymer Polymeric 
nanoparticles 

HFD-induced obese 
mice (i.p. injection) 

Preferentially distributes in visceral fat [54] 

Passive targeting – 
hydrophobic interaction 

Phosphatidylcholine, 
medium-chain 
triglyceride, and 
α-tocopherol 

Nanoemulsion HFD-induced obese 
mice (i.v. injection) 

Preferentially distributes in liver [12] 

HFD-induced obese 
mice (i.p. injection) 

Preferentially distributes in liver 

HFD-induced obese 
mice (local injection) 

Preferentially distributes in 
subcutaneous fat 

a Abbreviations: HFD, high-fat diet; i.p., intraperitoneal; i.v., intravenous; NA, not available; p.o., oral; s.c., subcutaneous.
more expressed in white fat than other tissues, and its expression rises with obesity [36]. 
Biomimetic discoidal recombinant high-density lipoprotein (rHDL) with high specificity for SR-
BI was constructed for delivery to adipocytes [37–39]. After oral administration in mice, rHDL 
highly accumulated in adipose tissue and liver, indicating that SR-BI-targeting nanomedicines 
do not exclusively accumulate in the fat but show potential to simultaneously improve hepatic 
steatosis and target the adipose environment. Obese adipose tissue overexpress vascular cell 
adhesion molecule-1 (VCAM-1) [40] and polydopamine nanoparticles conjugated with anti-
VCAM-1 antibody selectively accumulated in adipocytes both in vitro and in vivo [41]. However, 
adipose tissue distribution of VCAM-1-targeting nanomedicine increased only by 1.5 times, 
probably indicating the low expression of VCAM-1 in adipocytes despite its relative upregula-
tion during obesity. Adipo-8, an aptamer with high affinity for adipocyte plasma membrane-
associated protein (APMAP) in vitro [42], failed to facilitate the accumulation of conjugated 
nanoparticles in adipose tissues in vivo [43], perhaps due to its instability under physiological 
conditions, as it comprises 87 nucleotides. Therefore, monitoring the stability of ligands dur-
ing preparation and under physiological conditions is important. Notably, since APMAP plays 
a key role in adipogenesis, adipo-8 acts as both a targeting motif and an antagonist to reduce fat 
accumulation. Given that APMAP is more highly expressed in white adipose tissue than in other tis-
sues [44], exploring more stable APMAP-targeting ligands may advance adipose tissue-targeting 
nanomedicines. 

Macrophage-based targeting 
ATMs constitute about 40–50% of total cells in the obese adipose tissue and shift to a proinflam-
matory state, being therefore a potential target for nanomedicine. For instance, proinflammatory
6 Trends in Endocrinology & Metabolism, Month 2025, Vol. xx, No. xx
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ATMs overexpress dextran-binding C-type lectins and scavenger receptors (SR), allowing pref-
erential accumulation of dextran conjugates, particularly those of 500 kDa molecular weight, in 
the visceral fat of obese mice [45]. CD44, also overexpressed in obese adipose tissue, serves 
as a target to deliver nanomedicines to ATMs [46]; compared with bare counterparts, nanopar-
ticles coated with hyaluronic acid, a ligand for CD44, demonstrated a twofold increase in cel-
lular uptake by macrophages and an eightfold enhancement in distribution within the visceral 
adipose tissue. Other approaches have explored using migrating macrophages to deliver 
nanomedicines to the adipose tissue during inflammation; since intestinal macrophages can 
migrate from the gut to other inflammatory sites, nanomedicines have been developed to target 
these macrophages via nonpathogenic yeast–macrophage [47] and laminarin–Dectin-1 [48] 
recognition following oral administration. Notably, macrophages play a pivotal role in immune 
defense and surveillance [49]; therefore, macrophage-targeting nanomedicines for obesity 
treatment could offer therapeutic benefits but may also trigger immune-related side effects. 
Identifying specific ATM populations involved in obesity could enhance the precision of this 
approach. 

Adipose stromal cell (ASC)-based targeting 
ASCs constitute 15–30% of adipose cells and function as mesenchymal progenitors in the white 
adipose tissue. The peptide CSWKYWFGEC was demonstrated to specifically targets ASCs by 
binding to the non-glycanated decorin isoform (ngDCN) on their surface in both rodents and 
humans [50]. Compared with non-targeted nanoparticles, CSWKYWFGEC peptide-conjugated 
nanoparticles accumulated 3.4 times more in ASCs of inguinal adipose tissue while overall accu-
mulation in inguinal fat increased only 1.8 times [51], suggesting that targeting of other cell types 
like adipocytes and macrophages might be more effective. Notably, a different study suggested 
that the CSWKYWGFEC peptide can also be recognized by mature adipocytes [10]. 

Hydrophobic interaction- and electrostatic interaction-mediated passive targeting 
The unique physicochemical properties of the obese adipose tissue offer opportunities to reach 
this organ via passive targeting mechanisms. As obesity advances, lipid droplets and excess ex-
tracellular matrix endow the adipose tissue with a lipophilic and anionic character, aiding in 
targeting through hydrophobic and electrostatic interactions. Recently, a nanoemulsion compris-
ing phosphatidylcholine, medium-chain triglyceride, and α-tocopherol was developed to target 
adipose tissues. Following subcutaneous injection in obese mice, 87.28% of the nanoemulsion 
accumulated in the subcutaneous fat, likely due to the natural affinity of adipocytes for lipid-like 
nanoemulsions [12]. Another study found that esterified 2,4-dinitrophenol, due to its higher 
lipophilicity, exhibited increased permeability and affinity in various adipose tissue depots [52]. 
Similarly, lipid-coated mesoporous silica nanoparticles showed strong retention in subcutaneous 
fat even 48 h post-injection [53]. On the other hand, the cationic dendrimer polyamidoamine’s 
third generation (P-G3) and branched polyethyleneimine were preferentially distributed in the vis-
ceral fat of obese mice via electrostatic interactions following intraperitoneal injection. Lipophilic 
nanoparticles comprising P-G3 derivative showed increased distribution to the adipose tissue 
and reduced liver distribution, highlighting the benefits of combining cationic and lipophilic prop-
erties [54]. Notably, linear polyethyleneimine with weak cationic charges showed a reduced yet 
present visceral fat preference, indicating that the targeting efficiency depends on the charge 
density and molecular structure of cationic carriers [54]. However, electrostatic targeting poses 
a higher safety risk than hydrophobic targeting, as strong cationic charges can harm biological 
membranes. Thus, the balance between efficacy and toxicity needs careful future assessment. 
Alternatively, modifying nanoparticle surface properties, such as electrical charge and hydrophi-
licity/lipophilicity, may offer promising potential for the development of optimal nanocarriers for 
adipose tissue-targeting obesity treatment.
Trends in Endocrinology & Metabolism, Month 2025, Vol. xx, No. xx 7
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Anti-obesity efficacy and potential mechanisms of adipose tissue-targeting 
nanomedicines 
Activating thermogenesis 
Traditional anti-obesity drugs aim to restore energy balance by targeting the intestines or central 
nervous system to reduce energy absorption and intake, often causing serious side effects [55]. 
Several drugs, like AMPK and PPARγ agonists, and endogenous hormones, promote beige fat 
browning to boost energy expenditure [56], but their clinical use is limited by poor effectiveness 
and systemic toxicity. As a therapeutic alternative, adipose tissue-targeting lipid nanoparticles 
can address the challenges of the low aqueous solubility and limited bioavailability of resveratrol, 
resulting in an approximately twofold enhancement in thermogenesis induction via the AMPK/ 
SIRT1 signaling pathway (Figure 4)  [51]. Similarly, CKGGRAKDC-decorated liposomes loaded 
with rosiglitazone effectively facilitated browning by activating PPARγ, achieving an efficacy more 
than three times greater than that of free rosiglitazone [29]. Furthermore, adipose tissue delivery 
of triiodothyronine is more effective in promoting white adipose tissue browning, reducing adipos-
ity, and nearly completely mitigating systemic side effects, including cardiac toxicity, bone loss, and
TrendsTrends inin EndocrinologyEndocrinology & MetabolismMetabolism

Figure 4. Therapeutic mechanisms of adipose tissue-targeting nanomedicines. Nanomedicines regulate energy
homeostasis by targeting adipocytes to influence thermogenesis, lipolysis, adipocytolysis, and lipogenesis through the
regulation of multiple signaling pathways. Moreover, relieving inflammation by targeting macrophages to promote an anti-
inflammatory phenotype or inhibit inflammation could efficiently inhibit obesity. Abbreviations: AMPK, AMP-activated protein
kinase; HIF-1α, hypoxia-inducible factor 1-alpha; HO-1, heme oxygenase-1; HSF1, heat shock transcription factor 1; IKKε,
kappa-B kinase epsilon; mTOR, mammalian target of rapamycin; PPARγ, peroxisome proliferator-activated receptor gamma
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neuroendocrine circuit disruption [11]. Beyond pharmaceutical approaches, triggering thermogen-
esis through local hyperthermia (41°C) in beige fat may also pose a therapeutic approach [19]. Like-
wise, photothermal agents in the near-infrared region (NIR-I) like polydopamine nanoparticles [57]  and  
IR780-loaded nanoparticles [58,59] have been locally used to raise the temperature of inguinal white 
fat to 41–45°C to induce browning. However, NIR-I light has limited tissue penetration [60]; using cop-
per sulfide nanodots with high NIR-II photothermal efficiency has been shown to induce browning of 
subcutaneous adipose tissue up to 6 mm deep [61]. Similarly, magnetic induction hyperthermia in-
duced by gold nanoclusters with high penetration significantly increased Ucp1 and Prdm16 mRNA 
expression in adipocytes [62]. Remarkably, applying local hyperthermia to the supraclavicular fat 
depot in human volunteers also enhanced thermogenesis, highlighting its clinical translation potential 
[19]. Future research should focus on creating nanomedicines with precise temperature control and/ 
or adipocyte-specific targeting to minimize side effects on other organs and cells.

While gene regulation for thermogenesis may be another option to induce browning, gene editing 
in mature adipocytes is difficult due to their high lipid content and limited ability to proliferate. To 
overcome this challenge, a lipid-tolerant fluoropolypeptide was synthesized to condense TLE3 
siRNA, effectively knocking down the TLE3 gene and boosting thermogenic gene expression in 
mature adipocytes [16]. Unlike nucleic acid-based gene editing, hydrophobic small molecules 
with gene-regulating abilities are more stable and tend to remain in the adipose tissue for sus-
tained stimulation. For instance, iron and cobalt protoporphyrin IX, strong inducers of heme 
oxygenase-1 (HO-1), were delivered to adipose depots via CKGGRAKDC-modified PLGA nano-
particles, significantly boosting HO-1 expression and the downstream thermogenic transcrip-
tional cascades, doubling browning effects compared with free drugs. [14]. Adipose tissue-
targeting amlexanox also showed promise in increasing UCP1 expression by modulating the I 
kappa-B kinase epsilon (IKKε) and TANK-binding kinase 1 (TBK1) pathways. Additionally, new 
browning strategies, like using menthol to activate cold sensors on white adipocytes [63]  and
nitric oxide injections to stimulate brown fat [64], are gaining interest. 

Inducing lipolysis 
Lipolysis is another approach to regulate energy homeostasis through noncytolytic and cytolytic 
methods. Noncytolytic lipolysis mobilizes lipids without harming adipocytes. Vascular noninflam-
matory molecule-1 (Vanin-1), an oxidative stress sensor, is a potential target for its connection to 
lipolysis. Overexpression of Vanin-1 using adipose tissue-targeting polymeric nanoparticles signif-
icantly enhanced lipolysis in mouse abdominal white fat, thereby reducing body weight and fat 
mass [65]. While noncytolytic lipolysis is safe, its fat reduction effect is temporary. Conversely, cy-
tolytic methods permanently destroy fat cells, although they cause severe side effects like edema 
and bruising. Therefore, targeting strategies are essential. Adipose tissue-targeting nanomedicines 
are often used to reduce fat by triggering photothermal and photodynamic damage. For example, 
CKGGRAKDGGC-decorated hollow gold nanospheres were used for transdermal photothermal 
lipolysis to target subcutaneous fat with reduced side effects [66]. CSWKYWFGEC- and phospha-
tidylserine (PS)-decorated gold nanobipyramids induced macrophage-mediated apoptosis 
and NIR laser-mediated thermal damage in adipocytes [10]. Aggregation-induced emission 
luminogens (AIEgens), which naturally bind to lipid droplets, were also used to reduce subcutane-
ous depots via photodynamic therapy [67]. In addition, calcium carbonate-loaded nanoparticles 
with adipocyte-targeting peptide can induce adipocytolysis by generating carbon dioxide in late 
endosomes/lysosomes without significant changes in hematological or serum biochemical param-
eters [68]. However, these cytolytic methods often trigger local inflammation even with targeting 
approaches, necessitating combination use of anti-inflammatory strategies. Thus, noncytolytic 
and cytolytic methods should be carefully selected based on a thorough evaluation to balance 
therapeutic efficacy and safety.
Trends in Endocrinology & Metabolism, Month 2025, Vol. xx, No. xx 9
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Relieving inflammation 
The adipose tissue environment is key to obesity progression and associated disorders, 
making it a promising therapeutic target. Chronic low-grade inflammation on obesity, driven 
by an imbalance between proinflammatory and anti-inflammatory signals, is a known con-
tributor to metabolic disorders. Direct suppression of proinflammatory mediators and stimu-
lation of endogenous pro-resolving pathways is being explored to relieve inflammation [69]. 
To reduce proinflammatory mediators, CKGGRAKDC-conjugated chitosan nanomicelles 
and ATS-9R-based nanocomplex have been developed to selectively deliver TNF-α 
shRNA, MCP-1 shRNA [70], and MCP-1 siRNA [71] to the adipose tissue, significantly re-
ducing inflammatory cytokines, improving glucose intolerance and insulin resistance. Dual 
cytokine-targeting therapies exhibited greater potential than single-target treatments 
[70,72]. Multi-mechanism anti-inflammatory drugs like glucocorticoid have shown limited clin-
ical benefits in obese patients due to side effects like Cushing’s syndrome. Adipose tissue-
specific glucocorticoid delivery via dextran nanocarriers reduced the therapeutic dose 
from 5 mg/kg to 0.7 mg/kg, improving therapeutic outcomes with minimal side effects 
after prolonged treatment. Additionally, inhibition of inflammatory cytokine production and 
their downstream pathways present alternative targets. Nanomedicines loaded with short 
hairpin RNA targeting TNF-α-converting enzyme [25] and antisense oligonucleotides for E3 
ubiquitin ligase tripartite motif-containing 21 [73] were applied to inhibit TNF-α and IL-1β pro-
duction. Anti-VCAM-1 antibody-decorated nanoparticles loaded with amlexanox selectively block 
TNF-α-activated IKKε and TBK1 pathways in adipocytes, restricting the downstream effects of 
TNF-α [41]. Alternatively, supplying anti-inflammatory cytokine by IL-10-conjugated 
liposomes also significantly inhibits inflammation [74]. Notably, the inflammatory microenviron-
ment in the adipose tissue is regulated by multiple biomolecules from various cells, not just 
single cytokines. Thus, targeting cells involved in inflammatory responses may offer a more 
effective treatment. 

To mimic natural pro-resolving pathways, converting proinflammatory macrophage in the obese 
adipose tissue to an anti-inflammatory phenotype may pose a potential strategy. PS-liposomes, 
mimicking apoptotic cells with an ‘eat me’ signal, can be engulfed by macrophages and induce 
this polarization [10], altering the balance between pro- and anti-inflammatory macrophages, 
reducing body weight in obese mice by 24.4% and minimizing weight regain, highlighting the 
importance of immunomodulation in obesity treatment. Furthermore, gene editing can switch 
macrophage phenotypes. Targeted induction of HO-1 or inhibition of IKKε and TBK1 in adipose 
tissue depots significantly shifts the macrophage balance towards anti-inflammatory phenotypes 
[14]. Adipocytes also influence the inflammatory environment via cytokine secretion and interac-
tion with macrophages; thus, future strategies should target both adipocytes and macrophages 
to better manage inflammation. 

Regulating endothelial cells 
Obesity is associated with impaired blood flow, endothelial dysfunction, and reduced vascular 
density, causing hypoxia, inflammation, and fibrosis in adipose tissue [34]. Targeting vascular 
development could treat obesity, but it is unclear whether antiangiogenesis or angiogenesis is 
more effective. Some research focuses on using proapoptotic agents to destroy blood vessels 
of adipose depots and limit fat growth [22,75,76], while others propose increasing capillary 
density to enhance oxygen supply and energy expenditure [17,31]. We believe angiogenesis 
strategies are safe and more efficient for delivery, as they are less prone to off-target effects 
than antiangiogenesis, which may cause hypoxia and inflammation. Additionally, well-vascularized 
adipose tissue resembles a healthy state and offers better opportunities for tissue-targeting 
nanomedicines.
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Outstanding questions 
Since obesity is a chronic condition 
requiring prolonged treatment, can 
adipose tissue-targeting nanomedi-
cines effectively manage obesity on a 
large scale over an extended period in 
a cost-effective and patient-friendly 
manner? 

How can these adipose tissue-
targeting nanomedicines optimize the 
use of existing anti-obesity medica-
tions with maximized efficacy and min-
imized side effects? Can they work 
synergistically with current treatments? 

Can organ crosstalk mechanisms be 
harnessed to regulate whole-body en-
ergy homeostasis via adipose tissue-
targeting nanomedicines therapies, 
beyond just aiding weight loss? 

Will adipose tissue-targeting nano-
medicines retain their specificity and 
effectiveness in larger mammals or 
humans? What strategies can address 
the challenges of translating these pre-
clinical therapies into clinical use? 

Can adipose tissue-targeting nano-
medicines be tailored to the patho-
physiology of different obesity stages, 
and can biomarkers like metabolic sig-
natures and genetic profiles guide their 
selection?
Combined treatment strategies 
As obesity progression is associated with various pathological changes at the adipose tissue, 
combined therapeutic strategies targeting multiple dysfunctions may offer better management. 
Nanomedicine approaches with dual functional modules addressing different adipose tissue 
dysfunctions outperform single treatments. Recently, a nanosystem was developed to simulta-
neously alleviate endoplasmic reticulum and oxidative stress in adipocytes, achieving anti-obesity 
efficiency comparable with FDA-approved 10% deoxycholic acid in mice [12]. Likewise, combin-
ing reactive oxygen species (ROS) scavenging with rosiglitazone-induced browning resulted in 
significant weight loss and glucose intolerance improvement [77]. Moreover, combining 
hyperthermia-induced lipolysis with inflammation relief [30] or thermogenesis activation [78] 
also exhibited synergistic anti-obesity effects. Thus, the potential of combining multiple antiobe-
sity strategies with synergistic effects is worth further research. 

Concluding remarks and future perspectives 
The adipose tissue acts as both an energy reservoir and an endocrine organ by releasing 
adipokines, significantly influencing obesity and its associated comorbidities. Recently, nanomed-
icines targeting the adipose tissue to promote browning and reduce inflammation have effectively 
restored metabolic balance with minimal side effects in preclinical studies. However, the targeting 
efficiency and tissue distribution of adipose tissue-targeting nanomedicines are often inconsistent. 
Thus, it is necessary to elucidate the predominant factors that govern their tropism and retention, 
including nanocarrier type, ligand density, and particle size (see Outstanding questions). Further-
more, future studies should also focus on other pathological alterations in the obese adipose 
tissue, such as fibrosis, oxidative stress, and hypoxia. Exploring the interactions between these 
pathological changes can offer insights for the development of synergistic strategies. Furthermore, 
cellular targets like mitochondria and the endoplasmic reticulum, whose disorders underlie patho-
logical changes in the adipose tissue, are also worth exploring for obesity treatment. 

Adipose tissue-targeting nanomedicines currently present several challenges, particularly scalabil-
ity and quality control, which need to be addressed urgently. Simplifying their fabrication or isolating 
natural bioactive vesicles is preferable, and establishing standardization guidelines is essential. 
Furthermore, the full extent of the effects of nanomedicines on the body is unclear due to complex 
immunological and biological factors. Future studies should evaluate the therapeutic effects and 
adverse events of nanomedicines using standardized animal models. Additionally, due to genetic 
diversity and varying obesity etiology among patients, personalized strategies are expected in 
the development of adipose tissue-targeting nanomedicine. Despite numerous challenges, we 
propose that adipose tissue-targeting nanomedicines represent a superior alternative to conven-
tional pharmacotherapy for obesity treatment; for instance, targeting the regulation of adipose 
tissue shows promise in mitigating rebound weight gain, as adipose tissue remodeling is a critical 
factor favoring this process [79]. Notably, ARO-ALK7, an adipose tissue-targeting siRNA delivery 
system, demonstrated dual benefits of reducing body weight while preserving lean mass [80], 
thereby addressing a key limitation associated with NuSH-based therapeutics. Furthermore, we 
anticipate that combining adipose tissue-targeting nanomedicines with pharmacological therapies 
could present a novel therapeutic paradigm, as evidenced by coadministration of ARO-ALK7 with 
tirzepatide inducing synergistic weight loss without compromising lean massi . Expanding adipose 
tissue-targeting nanomedicines options, particularly focusing on gene editing and oral delivery, is 
crucial for broader patient access and improved efficacy. 
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