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Abstract: Type 2 diabetes (T2D) and cardiovascular diseases (CVDs) are major public health
challenges worldwide. Metabolomics, the exhaustive assessment of metabolites in biologi-
cal systems, offers important insights regarding the metabolic disturbances related to these
disorders. Recent advances toward the integration of metabolomics into clinical practice to
facilitate the discovery of novel biomarkers that can improve the diagnosis, prognosis, and
treatment of T2D and CVDs are discussed in this review. Metabolomics offers the potential
to characterize the key metabolic alterations associated with disease pathophysiology and
treatment. T2D is a heterogeneous disease that develops through diverse pathophysio-
logical processes and molecular mechanisms; therefore, the disease-causing pathways of
T2D are not completely understood. Recent studies have identified several robust clusters
of T2D variants representing biologically meaningful, distinct pathways, such as the beta
cell and proinsulin cluster related to pancreatic insulin secretion, obesity, lipodystrophy,
the liver/lipid cluster, glycemia, and blood pressure, and metabolic syndrome clusters
representing different pathways causing insulin resistance. Regarding CVDs, recent studies
have allowed the metabolomic profile to delineate pathways that contribute to atheroscle-
rosis and heart failure, as well as to the development of targeted therapy. This review also
covers the role of metabolomics in integrated metabolic genomics and other omics plat-
forms to better understand disease mechanisms, along with the transition toward precision
medicine. This review further investigates the use of metabolomics in multi-metabolite
modeling to enhance risk prediction models for predicting the first occurrence of major
adverse cardiovascular events among individuals with T2D, highlighting the value of such
approaches in optimizing the preventive and therapeutic models used in clinical practice.

Keywords: type 2 diabetes; cardiovascular disease; coronary artery disease; metabolomics;
metabolites

1. Introduction
Type 2 diabetes (T2D) and its comorbidities have increased rapidly throughout the

world. The International Diabetes Federation reported that 10.5% of the adult population
(20–79 years) had diabetes in 2021 (https://www.idf.org (accessed on 1 March 2025)). By
2045, approximately 783 million people will have diabetes, and over 90% of people with
diabetes will have T2D. Therefore, the identification of individuals with a high risk of T2D
is of great importance.

Metabolomics, a comprehensive study of biological metabolites, is becoming increas-
ingly important for understanding the mechanisms of metabolic diseases, including T2D
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and comorbidities, and especially cardiovascular diseases (CVDs) [1,2]. Biomarker discov-
ery by metabolomics facilitates identification of the underlying metabolic perturbations
associated with these complex multifactorial diseases and can provide valuable insights
into their pathogenesis, progression, and therapeutic target [3,4].

The integration of metabolomics into clinical practice has been increasingly acknowl-
edged as critical in clinical practice to improve diagnosis, prognosis, and therapy in patients
manifesting such diseases [5,6]. The evolution of metabolomics in the context of T2D and
CVDs highlights its role in biomarker discovery and risk prediction. The integration
of metabolomic profiles into risk stratification models enhances the prediction of major
adverse CVD events in patients with T2D. This shift toward personalized medicine under-
scores the need for understanding individual metabolic responses, allowing for further
tailoring of prevention strategies and therapeutic approaches to these patients [7].

Although T2D and CVDs share several metabolic disturbances, the causal mechanisms
involved in each of them are substantially different. The main characteristics of T2D are
insulin resistance and impaired insulin secretion, leading to hyperglycemia, whereas CVDs
are linked with chronic inflammation and oxidative stress, leading to atherosclerosis [8,9].
These differences require specific treatments that address the metabolic pathways involved
in each of these diseases. The role of diet in ameliorating metabolic profiles has emerged as
a promising area of therapeutic interest, with specific diets demonstrating potential benefits
for both T2D and CVD risk factors [10–12].

Metabolomics studies alone are unable to obtain all the information needed. There-
fore, metabolomics is often combined with genomics, proteomics, transcriptomics, and
microbiome analysis. This comprehensive approach aims to understand the interactions be-
tween complex biological pathways and holds the potential for novel diagnostic techniques
and therapies [13,14]. Among the omics techniques, metabolomics is considered the field
most directly related to phenotypes, as metabolites act as direct regulators of biological
processes [15]. As the global burden of T2D and CVDs continues to rise, particularly in
developing countries, the ongoing exploration of metabolomics holds significant potential
for improving health outcomes and informing precision medicine initiatives [3,7,16]. To
support this review, a comprehensive literature search was conducted using the PubMed,
Web of Science, and Scopus databases. Keywords such as “metabolomics”, “type 2 dia-
betes”, and “cardiovascular diseases” were used to identify relevant articles published
up to March 2025, focusing on metabolic profiling, biomarker discovery, and precision
medicine approaches.

2. Metabolomics
The metabolic state of an organism depends on the genome, transcriptome, proteome,

epigenome, microbiome, and exposome (environment). Metabolomics, the analysis of
small molecules (<1500 Da) within organisms, has a high potential to accurately describe
the organism’s physiological state [17]. It allows the identification of diagnostic biomarkers,
therapeutic targets, and personalized medical strategies, and is of great importance in the
development of clinical research. Nuclear magnetic resonance (NMR) spectroscopy and
mass spectrometry (MS) are the two major techniques applied in metabolomics, each with
their strengths and weaknesses (Figure 1).
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in the process of ionization [18]. Along with its advantages, NMR also has disadvantages, 
such as lower sensitivity compared to MS, making it less suitable for detecting low-
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instrument costs, preventing wide-scale accessibility [21]. 

2.2. Mass Spectrometry 
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detection of metabolites at trace levels [19,22]. MS also provides versatility, offering 
different ionization and separation techniques, and is a suitable tool for analyzing 
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2.1. NMR Spectroscopy

NMR spectroscopy detects the magnetic properties of atomic nuclei to identify and
quantify metabolites. It is a highly reproducible and non-destructive method with simple
sample preparation. As a case in point, a 600 MHz NMR system can identify ∼400 metabo-
lites per spectrum, offering a comprehensive window into the global metabolic fingerprint.
Platforms like AXINON® simplify system application [17], requiring minimal operator
training compared to the complexity of MS workflows [18].

The reproducibility of NMR, with respect to laboratories and platforms, is one of its
principal advantages. In addition, its non-destructive nature enables the preservation of
samples for later use, a significant benefit compared to MS, where samples are destroyed in
the process of ionization [18]. Along with its advantages, NMR also has disadvantages, such
as lower sensitivity compared to MS, making it less suitable for detecting low-abundance
metabolites [19,20]. It also requires large sample volumes and incurs high instrument costs,
preventing wide-scale accessibility [21].

2.2. Mass Spectrometry

The ionization of metabolites is performed in MS to determine their mass-to-charge ratio.
MS is widely known for its high sensitivity and specificity, which allows the detection of
metabolites at trace levels [19,22]. MS also provides versatility, offering different ionization
and separation techniques, and is a suitable tool for analyzing complex biological samples [23].
It is particularly beneficial for large-scale analyses due to its high-throughput abilities [21].

Along with its strengths, MS also has its challenges. Sample preparation can require
many complex and time-consuming steps involving the use of specialized workflows that
could elevate costs [21]. MS data are sometimes very complex to interpret because of their
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fragmentation patterns, requiring high-level training [19,20]. Additionally, matrix effects in
biological samples can interfere with metabolite quantification, limiting the use of MS in
less specialized environments [20].

2.3. Selection of the Method

Both approaches are widely used in clinical and biomarker research. For example, un-
targeted metabolomics approaches have employed MS to identify differential metabolites in
patients with T2D [24]. In lipidomics, MS has also shown its power, a typical example being the
establishment of high-coverage lipidomics protocols based on ultra-high-performance liquid
chromatography coupled with MS [25]. NMR, while less sensitive, has been used for harmoniz-
ing metabolomics data through inter-laboratory comparisons, highlighting its strength during
standardization [26]. In addition, NMR can analyze samples without preparative steps and in
their native state, making it an important tool for assessing metabolic profiles [26].

The selection of NMR or MS is often tied to the research goals and the properties of
the sample. NMR has the advantage of reproducibility and the additional feature of non-
destructive analysis, whereas MS provides superior sensitivity and the availability of assays
for a much wider range of metabolites [27]. In summary, these approaches are synergistic
and make metabolomics a powerful tool to assess the human phenome. Empowered by
these strengths, researchers may gain new insights into disease mechanisms and develop
targeted, precision medical interventions [18–22,26].

3. Applications and Methodological Approaches of Metabolomics in
Type 2 Diabetes
3.1. Biomarker Discovery and Risk Prediction in T2D

Recent studies demonstrate that metabolomics significantly enhances existing models for
predicting major adverse cardiovascular events in patients with T2D. The SCORE2-Diabetes
model predicts the 10-year risk of CVD when augmented with seven specific metabolites and
substantially improves cardiovascular risk stratification, which is critical for developing per-
sonalized prevention measures in this high-risk population [5]. This shift toward personalized
medicine highlights the importance of integrating metabolomics into clinical assessments.

In support of these efforts, recent studies employing high-throughput metabolomics
have revealed metabolic signatures that may be predictive of T2D and its complications,
including CVD. A wide range of plasma and serum metabolites, such as branched-chain and
aromatic amino acids, acylcarnitines, ceramides, and carbohydrates, have been associated
with an increased risk of T2D, while other metabolites, including glycine, glutamine, and
indolepropionate, were associated with a reduced risk of T2D [28–33]. These signatures may
emerge years before the clinical onset of disease, positioning metabolomics as a promising
tool for early screening and risk stratification. In addition, metabolite profiles have been
shown to differ, not only across stages of T2D development but also among diabetes subtypes
and complications, as well as in response to pharmacological treatments. The integration
of metabolomics with genomics and proteomics in multi-omics frameworks has further
elucidated disease mechanisms and reinforced the potential for personalized therapeutic
approaches. These findings collectively highlight the growing utility of metabolomics in
advancing precision medicine for T2D and associated cardiovascular outcomes [28–33].

A study by Xie et al. [34] evaluated the added predictive value of metabolomic biomarkers
for assessing the 10-year risk of T2D when combined with the clinical Cambridge Diabetes
Risk Score. Using data from 86,232 UK Biobank participants and external validation in
4383 individuals from the German ESTHER cohort, 11 NMR-derived metabolites, including
glycolysis-related metabolites, ketone bodies, amino acids, and lipids were identified. Adding
these metabolites to the Cambridge Diabetes Risk Score significantly improved prediction
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accuracy, increasing the C-index from 0.815 to 0.834 in the UK Biobank cohort, and from 0.770
to 0.798 in the ESTHER cohort. The prediction accuracy of the continuous net reclassification
index improved by 39.8% and 33.8%, respectively. A concise model with only four metabolites
showed similar predictive performance. The UK Biobank Diabetes Risk Score demonstrated
significant improvement over the clinical Cambridge Diabetes Risk Score and is well-suited
for routine clinical use. Its reliance on minimal clinical information and low-cost NMR
metabolomics highlights its potential for widespread application in diabetes risk assessment.

Despite these advances, developing robust prediction models using metabolomics data
requires appropriate multivariate statistical methods. Techniques such as principal component
analysis, cluster analysis, and machine learning are essential for handling high-dimensional
data and extracting clinically relevant patterns. Incorporating these tools is crucial to improve
the predictive utility of metabolomics with T2D-related cardiovascular outcomes [35].

3.2. Amino Acids and Metabolite Profiles in T2D

A well-known characteristic of T2D that was revealed by metabolomics is disturbed
amino acid pathways. In patients with T2D, higher levels of branched-chain amino acids
such as valine, leucine, and isoleucine, and of aromatic amino acids, including pheny-
lalanine and tyrosine, are consistently observed [36]. However, there is no evidence that
branched-chain amino acids are causally associated with insulin resistance and T2D [37].
In addition, proline, glutamate, and lysine levels were found to be elevated and glycine
decreased in patients with T2D compared to healthy controls [7].

Other metabolomics studies identified specific signatures associated with T2D progres-
sion, including a metabolomic signature of increased α-hydroxybutyrate and inflammatory
markers like interleukin that correlated with insulin resistance, independently of body mass
index or age [7]. Chronic low-grade inflammation contributes to T2D pathogenesis by repro-
gramming macrophage metabolism, increasing glycolysis, and producing reactive oxygen
species (ROS), which exacerbate insulin resistance [15,38]. Oxidative stress, which is caused
by disrupted oxidative phosphorylation and the augmented generation of ROS, contributes
to mitochondrial dysfunction, further damaging beta-cells in T2D. Moreover, hyperglycemia
and hyperlipidemia are linked to epigenetic changes, including DNA hypermethylation, pro-
moting a pro-inflammatory state [15]. For example, elevated levels of 25-hydroxycholesterol
activate DNA methyltransferase-1, which causes epigenetic alterations and the dysregulation
of carbohydrate and lipid metabolism, increasing the risk of T2D [6].

3.3. Applications of Metabolomics Risk Assessment in T2D

The identification of biomarkers, both genetic and non-genetic, through population-based
studies has advanced our understanding of T2D heterogeneity, enabling improved disease clas-
sification and tailored interventions [38]. Biomarkers including mannose, alanine transaminase,
uric acid, and genetic risk scores have been investigated for the identification of high-risk individ-
uals and subgroups among patients with T2D, enhancing the application of precision medicine
approaches. However, the limitations of genetic risk scores due to non-genetic influences
highlight the need for comprehensive metabolic profiling and refined treatment strategies [39].

A systematic review and meta-analysis highlighted the association of 123 metabolites with the
risk of T2D, based on data from over 71,000 participants [40]. Associations with increased risk were
found for branched-chain amino acids (BCAAs), aromatic amino acids, carbohydrates, and lipids,
including acylcarnitines and glycerolipids, while glycine, glutamine, and lysophosphatidylcholines
were associated with reduced risk [40]. The dysregulation of the metabolic pathways highlighted
in these findings suggests that metabolomics may be a new tool to identify clinically relevant
biomarkers for T2D risk assessment. However, the observational nature of the studies and their
inherent heterogeneity highlight the need for further validation [40].
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A study on young adults in Finnish cohorts identified 113 metabolic measures predic-
tive of T2D, with BCAAs, linoleic n-6 fatty acids, and lipoprotein measures emerging as
strong indicators [40]. These observations provided evidence that the metabolic changes
associated with T2D could be identified several years in advance of the clinical outcome and
also illustrated the potential use of metabolomics for early treatment. A multi-metabolite
score was created to demonstrate the power of aggregating metabolic biomarkers for
accurate risk stratification [40].

An untargeted metabolomics study explored serum metabolomic fingerprints in obe-
sity, insulin resistance, and T2D, identifying numerous metabolites, including the amino
acids, lipids, fatty acids, and glycerol [41] associated with the development of T2D. These
findings highlighted metabolic dysregulation in glucose metabolism, amino acid pathways,
and lipid metabolism, offering insights into potential diagnostic and therapeutic targets for
T2D. This study reinforced the role of metabolomics in advancing precision medicine for
metabolic disorders [42].

A Korean cohort study including 1939 participants reported serum metabolites as-
sociated with the incidence of T2D in an 8-year follow-up. Alanine, arginine, isoleucine,
proline, tyrosine, valine, hexose, and five phosphatidylcholine diacyls were identified as
increasing the risk of T2D. Lyso-phosphatidylcholine acyl C17:0 and C18:2, along with
other glycerophospholipids, decreased the risk of T2D, as well as a healthy diet. This study
demonstrated the association between metabolic profiles and lifestyle factors, emphasizing
the importance of dietary quality on the risk of T2D [43].

In summary, by integrating genetic and metabolic biomarkers and lifestyle factors,
these studies collectively provide a deeper understanding of the mechanisms leading to an
increasing risk of T2D, contributing to improved disease classification, risk prediction, and
personalized treatment strategies. Biomarker identification through metabolomics offers a
foundation for early diagnosis, prevention, and targeted interventions, paving the way for
advancements in T2D management [7,38–43].

3.4. Mendelian Randomization Studies in T2D

Studies applying metabolomics have reported multiple associations of metabolites
with several diseases, including T2D and CVD. The most reliable studies are those with a
large number of participants being included and metabolites being measured. However,
association studies do not prove causality. Mendelian randomization (MR) is a method
that can strengthen causality by using genetic variants as instrumental variables [44].
Instrumental variables need to be associated with exposures, do not share a common cause
with the outcome, and are only related to the outcome through exposure [5].

Yuan and Larsson applied a Mendelian randomization approach [45] to investigate
risk factors for T2D. They found evidence for the causal associations of 19 risk factors
previously published by the Diabetes Genetics and Meta-analysis Consortium (74,124 cases
and 824,006 controls). Causal associations were found with insomnia, depression, systolic
blood pressure, smoking initiation, lifetime smoking, coffee consumption, the metabolites
isoleucine, valine, and leucine, liver alanine aminotransferase, childhood and adulthood
obesity, visceral fat mass, resting heart rate, and four fatty acids.

A recent study [46] summarized those MR studies reporting causal associations re-
vealing an increasing risk of T2D. These associations included increased systolic blood
pressure [47], increased concentrations of liver function as measured by aspartate trans-
ferase and alanine transaminase [48], increased liver volume [49], increased obesity [50],
increased visceral fat mass [51], and smoking [52]. Additionally, MR studies have also
reported that increased concentrations of IGF-1 and circular protein biomarkers have causal
associations with T2D [53].
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3.5. Microbiome-Related Metabolites and the Risk of T2D

The gut microbiota plays a critical role in maintaining human health [54]. Gut
microbiota-derived metabolites include bile acids, lipopolysaccharides, trimethylamine-
N-oxide, tryptophan and indole derivatives, and short-chain fatty acids [55]. Short-chain
fatty acids contribute to the metabolic regulation and energy homeostasis of the host, not
only by serving as energy substrates but also by entering the systemic circulation as sig-
naling molecules, affecting the gut–brain axis and neuroendocrine-immune network [56].
Additionally, short-chain fatty acids play an important role in the development of insulin
resistance and T2D [57].

The gut microbial composition is significantly different between those patients with T2D
and healthy subjects [58]. Gut microbes affect the host glucose metabolism through microbial
metabolites, which are involved in diverse metabolic pathways. Changes in the metabolites
produced by gut microbiota have been implicated in several diseases, including T2D, as
well as metabolic syndrome [59,60]. Additionally, a recent study showed that the genetic
associations between gut microbiota and T2D were mediated by plasma metabolites [61].

Follow-up studies are important to identify the microbiome metabolites associated
with T2D. Our METSIM study included 5181 men [62]. In total, 4851 of them eventually
participated in a 7.4-year follow-up visit, and 522 of them had developed T2D [63]. We
identified several novel gut microbial metabolites that were significantly associated with
an increased risk of developing T2D, including creatine, 1-palmitoleoylglycerol (16:1),
urate, 2-hydroxybutyrate/2-hydroxyisobutyrate, xanthine, xanthurenate, kynurenate,
3-(4-hydroxyphenyl) lactate, 1-oleoylglycerol (18:1), 1-myristoylglycerol (14:0), dimethyl-
glycine, and 2-hydroxyhippurate. These metabolites were associated with decreased insulin
secretion or insulin sensitivity or both, suggesting mechanisms for the conversion of healthy
sugar metabolism to T2D.

In our study, nine AAs (phenylalanine, tryptophan, tyrosine, alanine, isoleucine,
leucine, valine, aspartate, and glutamate) were significantly (p < 5.8 × 10−5) associated with
decreases in insulin secretion and the elevation of fasting or 2-h glucose levels. Tyrosine,
alanine, isoleucine, aspartate, and glutamate were also significantly associated with the
incidence of T2D after an adjustment for the known risk factors for T2D. Our study is the
first with a population-based large cohort to report that AAs are associated not only with
insulin resistance but also with decreased insulin secretion. Our study shows that microbial
metabolites are important biomarkers for the risk of developing T2D.

Our results agree with previous findings showing a significant association of the
BCAAs isoleucine, valine, and leucine with insulin resistance [64]. However, BCAAs
were also associated with reduced insulin secretion in our study, suggesting that elevated
concentrations of BCAAs may, over time, result in a decrease in insulin secretion. Impaired
BCAA catabolism has been suggested to result in the accumulation of potentially toxic
intermediates that contribute to β-cell mitochondrial dysfunction and eventually to the
apoptosis of β-cells, which may lead to a decrease in insulin secretion [65].

3.6. Heterogeneity of T2D

T2D is a heterogeneous disease that develops through diverse pathophysiological
processes and molecular mechanisms; therefore, the disease-causing pathways of T2D are
incompletely understood [66]. Udler and collaborators were the first to investigate the
genetic variants from genome-wide association studies to identify causal mechanisms for
T2D [67]. They identified five robust clusters of T2D variants representing biologically
meaningful distinct pathways, with the beta cell and proinsulin cluster related to pancreatic
insulin secretion and the obesity, lipodystrophy, and liver/lipid cluster representing the
different pathways causing insulin resistance.
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A recent study by Suzuki et al. [68] included 2,535,601 individuals and 428,452 cases
of T2D, aiming to understand the heterogeneity of T2D. They identified 1289 independent
association signals at the genome-wide significance level that map to 611 loci [68]. They
identified eight non-overlapping clusters of T2D signals that are characterized by distinct
profiles of cardiometabolic trait associations. Among the clusters, five overlapped with the
clusters identified by a previous study [68] and three were new, namely, the glycemia cluster
(increased fasting glucose or hamoglobin), blood pressure cluster, and metabolic syndrome
cluster. Clustering provides a framework to better understand the diverse physiological
processes through which T2D develops.

Suzuki et al. [68] did not test the significance of the metabolites as biomarkers to un-
derstand those pathways crucial to the process of conversion to T2D. However, lipids and
lipoproteins were important for building a cardiometabolic profile for metabolic syndrome:
the obesity and lipodystrophy clusters (increased triglycerides and decreased high-density
lipoprotein cholesterol) and the liver and lipid metabolism cluster (decreased triglyc-
erides and high-density lipoprotein cholesterol). Elevated blood pressure was identified in
metabolic syndrome and lipodystrophy clusters. Studying the etiological heterogeneity
that drives the development and progression of T2D improves our understanding of the
pathophysiological processes that link T2D to vascular outcomes.

3.7. Integrative Profiling and Future Directions in T2D

Figure 2 shows how the integrated profiling of metabolic biomarkers helps provide
a broad and more complete view of the intricate signaling pathways involved in T2D,
moving beyond isolated biomarker analysis. This methodology not only improves the
identification of novel biomarkers but also enhances our understanding of the metabolic
dysregulation associated with pre-diabetes and T2D. As the incidence of T2D continues to
rise globally, particularly in developing regions like China and India, there is a pressing
need for further research to establish metabolite profiles that can facilitate its early diagnosis
and intervention strategies [7].
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4. Metabolomics of Cardiovascular Diseases
CVDs, including coronary artery disease (CAD), myocardial infarction, heart failure,

stroke, and hypertension, are the leading cause of death worldwide and impose a sub-
stantial socio-economic burden on healthcare. CAD is the most common manifestation of
atherosclerosis; therefore, we focus mainly on CAD in this review. High concentrations of
low-density cholesterol (LDL), elevated blood pressure, smoking, and T2D are the major
risk factors for CAD. Our previous study suggested that patients with T2D without pre-
vious myocardial infarction are at as high a risk for myocardial infarction as nondiabetic
individuals with previous myocardial infarction [69]. Therefore, T2D and the metabolic
changes associated with this disease are major risk factors for CAD.

The initiation of atherosclerosis involves three processes: atherogenic lipid deposition,
pro-inflammatory conditions, and endothelial dysfunction [70]. Improving risk stratifica-
tion in clinical practice helps to combat this burden. Metabolites associated with CAD,
heart failure, myocardial infarction, and stroke have emerged as crucial elements in un-
derstanding the pathophysiology of CVD. Metabolites have been linked to progression,
outcomes, and risk stratification, and they can serve as powerful biomarkers, providing
insights into disease mechanisms and potential therapeutic targets. Compounds such as
trimethylamine N-oxide (TMAO) and phenylacetylglutamine [71] have received attention
for their roles in exacerbating cardiovascular risk factors, highlighting the significance of
metabolic disturbances in CAD. TMAO has been shown to promote platelet hyperreactiv-
ity and vascular inflammation, while phenylacetylglutamine impacts cardiac remodeling
and left ventricular function. Both metabolites have been associated with increased risks
of major adverse cardiovascular events and mortality, underscoring their relevance in
clinical settings [72,73]. Plasma metabolomics reveals the shared and distinct metabolic
disturbances associated with cardiovascular events.

Lv J. et al. [74] conducted an untargeted metabolomics for 333 participants with incident
cardiovascular events and 333 matched controls. The CVD events were cardiovascular death,
myocardial infarction, stroke, and heart failure. Metabolic pathway analysis unveiled 19
dysregulated metabolic pathways related to the composite of cardiovascular events, including
tyrosine metabolism, cysteine and methionine metabolism, pentose and glucuronate intercon-
versions, lysine degradation, and fatty acid biosynthesis. A total of 23 out of 333 participants
shared different metabolites, mainly acylcarnitines, which were associated with the variable
CVD events, suggesting heterogenous mechanisms across the different events.

The identification of metabolic signatures through advanced techniques, including
metabolomics, has opened new avenues for predicting clinical outcomes, with studies
demonstrating that metabolite-based models can outperform traditional clinical predictors
in assessing the risks of mortality and morbidity [75]. The ongoing exploration of metabo-
lites in the context of CVD highlights their role in understanding the metabolic remodeling
that occurs during ischemic events. Metabolomics studies have linked specific compounds
to adverse left ventricular remodeling and poor outcomes following a heart attack, paving
the way for personalized approaches when managing cardiovascular diseases [72].

Despite advancements in the field, challenges remain, including the need for larger
cohort studies and more sophisticated analytical methods to validate these findings and
enhance their applicability in clinical practice [76]. One of the new approaches is from a recent
study where the investigators developed a CAD-predictive machine learning model to build
a risk score, based on the metabolite data from 93,642 individuals in the UK Biobank [77].

4.1. Metabolites Associated with CAD

Large population-based studies are needed to reveal potential biomarkers for CAD [78].
Lipids and their metabolites, particularly those involved in glycerophospholipid metabolism,
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have emerged as significant contributors to CAD [79]. Studies have shown that multiple lipid
species are associated with inflammatory markers, including various phosphatidylcholines
and lysophosphatidylcholines. The balance between saturated and unsaturated fatty acids
in lipid composition influences their functional properties, with polyunsaturated species
generally providing protective effects against inflammation and atherosclerosis [80].

Two modified nucleosides have been identified as significant metabolites in the context
of CAD, namely, 2-dimethylguanosine and pseudouridine [80]. Both metabolites have
correlated positively with the neutrophil-lymphocyte ratio and systemic immune inflam-
mation index, indicating their potential role in atherosclerosis progression. This study is
the first to report the contribution of pseudouridine to coronary atherosclerosis.

We found in the 12-year follow-up study of the METSIM cohort that nine amino acids,
namely, alanine, glutamine, glycine, histidine, isoleucine, leucine, phenylalanine, tyrosine,
and valine, were significantly associated with cardiovascular diseases [81]. Amino acids
have also been reported to be associated with CVDs in other studies [82,83]. The amino
acid derivative N6-acetyl-L-lysine has also been associated with the systemic immune in-
flammation index and the neutrophil-to-lymphocyte ratio, contributing to increased carotid
atherosclerosis. This compound plays a crucial role in post-translational modification,
influencing the function of key immune regulators like the NF-κB family. The enzymes
responsible for regulating lysine acetylation, lysine acetyltransferase and deacetylases,
present potential therapeutic targets in cardiovascular diseases [80].

Comprehensive metabolomic profiling has revealed several metabolites uniquely as-
sociated with inflammatory states in CAD including specific lipid species and derivatives
such as ceramides, triglycerides, and various forms of phosphatidylcholines. These metabo-
lites demonstrate varying relationships with inflammatory markers, highlighting their
potential as biomarkers for disease progression and targets for therapeutic intervention [81].
By integrating the findings on these metabolites, it becomes evident that a complex in-
terplay of nucleosides, amino acid derivatives, and lipid metabolites contributes to the
pathophysiology of CAD, underscoring the importance of metabolomic and lipidomic
studies for understanding cardiovascular health.

Omori et al. [84] identified seven metabolites associated with an increased risk of CAD
incidence in diabetic patients. These metabolites were pelargonic acid, glucosamine, galac-
tosamine, thymine, 3-hydroxybutyric acid, creatine, 2-aminoisobutyric acid, and hypoxanthine,
which were all significantly decreased in patients with CAD. Their study included serum
samples from 55 patients, 6 of whom had developed CAD by the time of a follow-up study.
Larger cohorts and experimental validation are needed to confirm the results of the research.

Vernon et al. [85] investigated the association of the metabolites with CAD plaque
phenotypes in 1002 patients from the BioHEART-CT study. Four metabolites showed
significant links to CAD. Dimethylguanidino valeric acid was associated significantly
with calcified plaque and obstructive CAD. Glutamate was associated with non-calcified
plaque and phenylalanine, calcified plaque, and obstructive CAD. In contrast, TMAO was
negatively associated with non-calcified plaque. Additionally, the lipid and nucleotide
metabolic pathways were independently linked to CAD. These findings highlight potential
metabolic biomarkers and pathways.

Deng et al. [86] identified 24 metabolites that are significantly associated with the inci-
dence of CAD. Elevated metabolite concentrations were found for mannonate, imidazole
propionate, acisoga, maleate, cysteine sulfinic acid, gluconate, glucuronide of piperine
metabolite, N2, N2-dimethylguanosine, 3-methyl catechol sulfate, and 1-palmitoyl-2-oleoyl-
GPC. Decreased metabolite concentrations were found for cysteine-glutathione disulfide,
asparagine, 1,5-anhydroglucitol, serotonin, adenosine, homoarginine, S-methylcysteine,
3-bromo-5-chloro-2,6-dihydroxybenzoic acid, and 10-undecenoate.
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Sheng et al. [87] performed a Mendelian randomization study to investigate the
genetic associations between circulating metabolites (n = 24,925) and CAD (n = 86,995),
using publicly available genome-wide association data. The results revealed that several
lipid-related metabolites were positively associated with CAD, indicating an increased
risk of CAD. Free cholesterol in large LDL (low-density lipoprotein), total cholesterol in
medium LDL, and total cholesterol in LDL showed strong associations with CAD. These
findings highlight the critical role of lipid metabolism in CAD risk and suggest potential
metabolic targets for prevention and intervention.

4.2. Mechanisms Linking Metabolites to CAD

Metabolites play a significant role in the pathogenesis of CAD through various mecha-
nisms, including inflammation, vascular dysfunction, and adverse cardiac remodeling [88].
Alterations in the metabolic pathways have been implicated in the progression of CAD,
influencing both clinical outcomes and disease prognosis [72,89].

The relationship between inflammation and metabolism in CAD is especially im-
portant. Immune cells undergo metabolic changes that can influence their function and
contribute to disease development [80]. For example, the metabolites associated with
the urea cycle and oxidative stress have been linked to low-grade inflammation, which
plays a crucial role in the atherosclerotic process [80]. Specific metabolites, such as
2-dimethylguanosine and pseudouridine, may serve as markers for vascular endothe-
lial stress during CAD progression, while metabolites like hydrocinnamic acid exhibit
anti-inflammatory properties that could mitigate cardiovascular risk [80].

4.3. Metabolomic Profiling and Disease Mechanisms in CAD

Metabolomic profiling reveals distinct metabolic signatures related to CAD [80].
Metabolites such as kynurenines, phenylacetyl-L-glutamine, and modified nucleosides
increase the risk of death and major adverse CVD events by impairing cardiac function
and promoting adverse left ventricular remodeling [89]. This underscores the potential of
using metabolite profiles to improve risk stratification and guide therapeutic interventions
in patients with CAD [72].

Several specific metabolites have been identified as playing critical roles in the pro-
gression of CAD. TMAO, a metabolite derived from dietary phosphatidylcholine, enhances
platelet hyperreactivity and increases the risk of thrombosis, thereby promoting vascu-
lar inflammation [72]. Additionally, certain metabolites related to glycerophospholipid
metabolism and amino acid metabolism, such as L-ornithine and L-glutamate, have been
shown to correlate with inflammatory markers and could contribute to atherosclerosis [80].

The mechanisms by which metabolites influence cardiac remodeling in CAD involve the
activation of pro-inflammatory pathways and the modulation of oxidative stress. Metabolites such
as ceramides and triglycerides exhibit differential effects on inflammatory indices and may con-
tribute to atherosclerosis through immune activation and lipid accumulation [80]. The integration
of metabolic signatures with clinical risk factors has the potential to enhance our understanding of
CAD progression and identify novel therapeutic targets for secondary prevention [72,89].

Mendelian randomization analysis indicated that 11 metabolites, namely, kynurenine,
N6-succinyl adenosine, phenyllactate, DL-P-hydroxyphenyllactic acid, 3,3′,5-Triiodo-l-thyronine,
adipic acid, S-(5-Adenosy)-l-homocysteine, TMAO, 4-acetamidobutyric acid, d-sorbitol, and
phenylacetyl-l-glutamine, demonstrated causal associations with the risk of death, suggesting
that these metabolites influence disease progression and outcomes through their role in left ven-
tricle dysfunction [72]. The investigation of these mechanistic pathways is important as it may
reveal potential therapeutic targets for the prevention of CAD-related complications. It has also
been shown that gut microbially produced indole-3-propionic acid inhibits atherosclerosis [90].
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Elevated LDL cholesterol concentration and T2D are associated with CAD. Interest-
ingly, individuals on cholesterol-lowering statin medication have an increased T2D risk,
while individuals with hypercholesterolemia have a reduced T2D risk [91], suggesting that
there is a relationship between lipids and glucose. The STARNECT study investigators
constructed network models from the STARNET study, based on seven cardiometabolic
tissues obtained from CAD patients during coronary artery bypass grafting surgery [92].
They integrated gene expression, genotype, metabolomic, and clinical data to identify
a glucose- and lipid-determining regulatory network that showed inverse relationships
between lipid and glucose traits. The authors obtained similar inverse relationships of
glucose and lipid concentrations in mice models. These results are important because they
prove that the metabolic and cardiovascular pathways interact in human metabolism.

5. Comparative Analysis Between Type 2 Diabetes and
Cardiovascular Diseases

Metabolomics has emerged as a crucial field for understanding the metabolic dysregu-
lation that is associated with complex diseases such as T2D and CVD. By examining the
profile of these metabolites, it is possible to identify specific biomarkers that reflect disease
states, aiding in diagnosis and potential treatment strategies.

Sex differences in metabolomics and proteomics are crucial for understanding the
pathophysiology and clinical outcomes of T2D and atherosclerotic cardiovascular disease.
Studies show that women with diabetes often face a higher cardiovascular risk than men,
partly due to their distinct metabolic and proteomic profiles, which are influenced by
hormonal factors such as estrogen and testosterone [30,93,94]. These differences affect
biomarker expression, disease progression, and treatment response, underscoring the need
to consider sex as a biological variable in risk assessment and therapy [95–99]. Identifying
sex-specific biomarkers may enable more personalized and effective interventions to pre-
vent cardiovascular complications in diabetic patients [100–102]. However, most clinical
trials have disproportionately involved male participants, limiting the generalizability of
these findings. Addressing this gap through inclusive, sex-sensitive research is vital for
advancing precision medicine in T2D and atherosclerotic cardiovascular disease [103–105].

Lu et al. [106] examined the shared and unique associations of metabolites with T2D,
CAD, and stroke. A total of 168 plasma metabolites were measured with high-throughput
NMR among 98,162 participants without T2D, CAD, and stroke at baseline. Over 12.1 years
of follow-up most lipoprotein metabolites were associated with the risk of both T2D
and CAD but not with the risk of stroke. Phospholipids within intermediate-density
lipoprotein or large low-density lipoprotein particles showed positive associations with
CAD and negative associations with T2D. Metabolites indicating very small, very low-
density lipoprotein, histidine, creatinine, albumin, and glycoprotein acetyls were associated
with the risk of developing all three conditions. This large-scale metabolomics study
revealed common and distinct metabolic biomarkers for T2D, CVD, and stroke.

Other studies have reported similar results as Lu et al. [106], suggesting that T2D
and CVDs exhibit alterations in specific metabolites, reflecting underlying metabolic dis-
turbances [107]. For instance, common metabolites such as amino acids and lipids have
been implicated in the pathogenesis of both T2D and CVDs. Low concentrations of glycine
and serine have been associated with T2D, whereas dysregulated lipid profiles are also ob-
served in CVD patients [7,108]. These shared metabolic markers indicate the overlapping of
metabolic pathways and suggest that interventions aimed at correcting these dysregulations
may be of benefit for both conditions (Figure 3).
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Despite their similarities, T2D and CVDs are driven by distinct metabolic mechanisms. T2D
primarily involves insulin resistance and impaired glucose metabolism, leading to alterations
in energy balance and fat storage [10]. In contrast, CVDs are often associated with chronic
inflammation, oxidative stress, and lipid accumulation, resulting in atherosclerosis and other
cardiovascular complications [10,16]. The unique metabolic alterations in each disease highlight
the need for tailored therapeutic approaches. For example, while lifestyle interventions like diet
modification may enhance metabolic profiles in patients with T2D, they may also play a critical
role in reducing cardiovascular risk factors in patients with CVD [7–15].

6. Microbiota and Cardiovascular Diseases
The potential role of infectious microorganisms, including bacteria and viruses, as risk

factors for CVD was discovered in epidemiological studies [108]. A microbiome is a collection
of symbiotic microorganisms and their associated genomes. There are >38 trillion bacterial
cells in each human body, which is far more than the total number of human cells. The majority
of the microbiome, numbering approximately 10–100 trillion microbial cells, is located in the
gastrointestinal tract [109]. The gut microbiome consists of 2172 species within 12 different
phyla, most of which belong to the phyla Proteobacteria, Firmicutes, Actinobacteria, Bacteroidetes,
and Verrucomicrobia. Firmicutes and Bacteroidetes are the two dominating microbes, accounting
for more than 90% of the population [109,110]. Infection and inflammatory processes induce
the onset, progression, and rupture of atherosclerotic plaques [111].

A study by Talmor-Barkan et al. [112] reported that patients with CAD had distinct
metabolome and gut microbial signatures compared with the controls and were depleted
in a previously unknown bacterial species of the Clostridiaceae family. Interestingly, this
bacterial species was associated with concentrations of multiple circulating metabolites
in controls, several of which have previously been linked to an increased risk of CAD.
However, it is not entirely clear whether these bacterial species are causal for CAD.

The methods used to sequence the microbiome include amplicon sequencing, shotgun
metagenomics, and RNA sequencing. Key differences between these techniques are the
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amount of genetic material that is sequenced and the resolution and coverage at which they
can differentiate between microbial species. The majority of the first microbiome studies
conducted analyses of the 16S rRNA gene [113]. However, 16S rRNA gene sequencing
techniques are often not able to achieve the necessary resolution; therefore, such analyses
are not able to identify less abundant microbial taxa.

7. Clinical Implications and Future Directions
The identification of metabolomics-based biomarkers in both T2D and CVDs holds

promise for improving the early diagnosis and monitoring of disease progression. However,
the current reliance on single biomarkers may limit the specificity and predictive power of
diagnostic tests [15]. While metabolomics holds significant promise for improving early diag-
nosis, risk prediction, and the individualized treatment of T2D and CVD, its integration into
routine clinical practice remains limited. Key challenges include methodological complexity,
high implementation costs, and the lack of standardized protocols across laboratories and
platforms. These limitations hinder the clinical translation of metabolomic findings and the
development of universally applicable diagnostic tools. Future efforts should prioritize the
creation of cost-effective, reproducible workflows and the validation of biomarker panels in
diverse populations to support broader clinical adoption. Future research should focus on
developing integrated profiles of multiple biomarkers to enhance diagnostic accuracy and
develop more effective preventive strategies. Clinical trials incorporating these metabolomic
insights are essential for validating the role of metabolites in managing T2D and CVDs,
potentially leading to innovative therapeutic targets and interventions [2,7].

The future of metabolomics presents significant opportunities for advancing the un-
derstanding and management of metabolic diseases, particularly T2D and CVDs, through
integrated multi-omics approaches (Figure 4). By combining metabolomics with genetics,
transcriptomics, and proteomics, researchers can construct a more comprehensive picture
of the metabolic pathways, leading to the improved identification of therapeutic targets
and biomarkers for disease prevention and treatment [10,11].
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A critical challenge in metabolomics is advancing data integration. Standardized
protocols for data collection, processing, and analysis should be developed. This includes
addressing sample variability, harmonizing data formats, and refining correlational analysis
across omics datasets. Overcoming these barriers will improve the ability to link metabolites
with disease states and clinical outcomes, ultimately paving the way for more personalized
treatment strategies in T2D and CVDs [10,11].
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Another essential aspect of future research is database development, which involves
creating large-scale repositories that aggregate multi-omics data from diverse popula-
tions. Such databases will provide a foundation for population-based studies, helping
researchers to understand how genetic, environmental, and lifestyle factors interact to in-
fluence metabolic health. Rigorous scientific screening and the integration of these datasets
are essential for deriving meaningful insights [2,10].

Moreover, therapeutic interventions derived from metabolomics research must be
translated into clinical applications. Validating the findings from multi-omics analyses
through targeted molecular biology studies is crucial for identifying novel treatment
strategies and preventive measures for T2D and CVDs [10,15]. The need to address health
disparities in metabolic diseases is also gaining research attention. Understanding the
variations in metabolic responses across different ethnic groups can enhance precision
medicine strategies, ensuring that healthcare solutions are equitable and effective for all
populations. By identifying unique metabolic profiles in diverse ethnic groups, researchers
can develop tailored interventions that better serve specific community needs [2,114].

In summary, metabolomics continues to evolve, offering powerful insights into disease
mechanisms, biomarker discovery, and precision medicine. Future advancements in data
integration, database development, therapeutic applications, and health equity will be key
to transforming metabolomics from a research tool into a clinical cornerstone for managing
metabolic diseases. A summary of the key findings presented in this review regarding
metabolomic profiling in T2D and CVD is provided in Table 1.

Table 1. Summary of the key findings in this review on metabolomics in T2D and CVDs.

Key Findings Implications

Biomarker Discovery and
Risk Prediction

Specific metabolites (e.g., BCAAs,
aromatic AAs, acylcarnitines, and

ceramides) are associated with
increased T2D risk, while glycine,
glutamine, and indolepropionate

are protective.

Enhances the early detection and
risk stratification of T2D. Enables

more accurate, personalized
preventive strategies.

Amino Acid and
Lipid Metabolism

Alterations in the amino acid and
lipid pathways are consistently

observed in T2D patients: BCAAs
and aromatic AAs are elevated, while

glycine is decreased.

Indicates metabolic dysregulation;
there is the potential for

therapeutic targeting and
metabolic pathway modulation.

Metabolomics and CVD Risk

Metabolites such as TMAO,
phenylacetylglutamine, and

acylcarnitines are linked to CAD and
heart failure risk.

Facilitates the identification of
high-risk individuals and

supports targeted interventions
for cardiovascular outcomes in

T2D patients.

Sex Differences

Metabolic and proteomic profiles
differ by sex due to hormonal
influences (e.g., estrogen and

testosterone); women with T2D may
face higher CVD risk.

Highlights the need for
sex-specific risk assessment and

therapeutic approaches.

Microbiota-Related
Metabolites

Gut microbial metabolites (e.g.,
SCFAs and indole derivatives) are
associated with insulin secretion,

resistance, and T2D risk.

Emphasizes the gut–metabolism
axis and its relevance in disease

progression and treatment design.

Genetics and
Precision Medicine

GWAS and polygenic risk scores
identify clusters of T2D risk related to

insulin secretion and resistance.
Integration with metabolomics

improves prediction.

Supports the implementation of
precision medicine through

integrated multi-omics profiling.

Clinical Challenges
Methodological complexity, lack of

standardization, and cost limit
metabolomics’ clinical adoption.

Necessitates development of
standardized, cost-effective
protocols and validation in

diverse cohorts.
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