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Abstract
Obesity is a major global concern and is generally attributed to a combination of genetic and environmental factors. Several hypotheses have been 
proposed to explain the evolutionary origins of obesity epidemic, including thrifty and drifty genotypes, and changes in thermogenesis. Here, we 
put forward the hypothesis of metaflammation, which proposes that due to intense selection pressures exerted by environmental pathogens, 
specific genes that help develop a robust defense mechanism against infectious diseases have had evolutionary advantages and that this 
may contribute to obesity in modern times due to connections between the immune and energy storage systems. Indeed, incorporating the 
genetic variations of gut microbiota into the complex genetic framework of obesity makes it more polygenic than previously believed. Thus, 
uncovering the evolutionary origins of obesity requires a multifaceted approach that considers the complexity of human history, the unique 
genetic makeup of different populations, and the influence of gut microbiome on host genetics.
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ESSENTIAL POINTS
• Various hypotheses have been suggested for the evo-

lutionary origins of obesity
• Metaflammation suggests that pathogen defense

genes could lead to modern obesity
• Immune genes may influence obesity via immune and

energy storage system interactions
• Gut microbiota genetics add to obesity’s polygenic

complexity
• Obesity’s origins require considering history, genet-

ics, and the gut microbiota

Over the past 4 decades, the obesity epidemic has rapidly esca-
lated in Western societies. While obesity clearly has many en-
vironmental drivers including the changing nature of diets, it 
also has a substantial genetic component; tracing the evolu-
tionary origins of this genetic history remains an important 
challenge (1-3).

Charles Darwin and Alfred Wallace revolutionized the 
understanding of how different environmental exposures in 
previous generations shaped biological diversity in today’s 
generation. Their theory of natural selection proposed that 
species evolve, giving rise to new species, while sharing a com-
mon ancestry (4), and that this evolution is driven by natural 
selection, which favors traits that enhance the fitness of the 
species (5-7). However, it was not until the late 19th century 
that modern genetics emerged with the rediscovery of 
Mendel’s work, laying the foundation for modern evolution-
ary synthesis.

Throughout history, humans have faced ever-changing en-
vironmental and social conditions, both before and after their 
migration out of Africa. Factors such as predation, famine, in-
fectious diseases, and climate adaptation have shaped human 
evolution. However, with the rapid changes in lifestyle in re-
cent years, the levels of daily activity and type/quality of 
food intake have become maladaptive. Applying these evolu-
tionary concepts to explain the modern epidemics of obesity 
and type 2 diabetes have traditionally focused on genetic 
traits. With the completion of the Human Genome Project, 
our understanding of the genetic traits has advanced consider-
ably (8). Indeed, over the last 15 years, researchers investigat-
ing the genetics of obesity using large populations and the 
genome-wide association studies (GWAS) approach have 
identified more than 1000 genetic loci linked to obesity (9). 
Despite such advancements, the exact driver genes of the 
most common types of obesity and their mechanism of action 
are not yet fully understood (9). It is possible that integrating 
these modern genetic studies with the hypothesis of the evolu-
tionary origins of obesity can be one path to shed light on the 
role of genetics in obesity.

In this review, we revisit the existing hypotheses that, to 
some extent, explain the evolutionary basis of recent obesity 
epidemics, including the thrifty and drifty genotypes (1, 2) 
and the thermogenic hypothesis (3). Due to the intense selec-
tion pressures caused by environmental pathogens, we have 
put forward an additional metaflammation hypothesis in 
which modern-day obesity may also be driven in part from 
natural selection to favor specific genes that promote strong 
immune defense against epidemics and/or infectious diseases 

in our ancestors. Considering the close connection between 
the immune and energy storage systems (10), these genes 
might allow for efficient fat storage during food-abundance 
periods, allowing more resilience in times of stress. In today’s 
constant food availability environment, however, this inflam-
matory genotype or metaflammation promotes excessive fat 
storage and obesity. However, it is essential to emphasize 
that the origins of obesity are complex and cannot be ex-
plained by a single theory.

Thus far, the effect of the interplay between host and micro-
bial genetic variation on host evolution has received little at-
tention in the study of obesity. Most of the research on 
obesity has largely neglected the microbiome’s influence on 
the genetic basis and evolution of the host. Here we propose 
investigating how genetic variations in the microbiome can in-
crease the genetic diversity of the host genome, affect the her-
itability of host traits, and ultimately influence the evolution 
of obesity in humans. Integrating data from the GWAS and 
the microbiome into these previous hypotheses, we explore 
the need to consider the changing nature of microbiota 
in the critical process of evolution that converges to our mod-
ern epidemic of obesity.

Evolutionary Hypothesis of Obesity
Thrifty Genotype
The oldest hypothesis, proposed by Neel in 1962, suggests 
that diabetes and obesity may have originated from natural se-
lection to favor a “thrifty genotype” in our ancestors (1). This 
genotype would allow for efficient fat storage during 
food-abundance periods, which was advantageous when sur-
viving food shortages. However, in today’s constant food 
availability environment, this thrifty genotype would promote 
excessive fat storage and obesity (11-22).

One of the many criticisms of the hypothesis is that the 
causes of mortality are complex during times of famine, 
with significant factors being infectious disease and diarrhea 
(23), suggesting that mechanisms of immune defense against 
infection need to be included in the search for genotypes 
with evolutionary advantages associated with the thrifty geno-
type. Further weakening the thrifty genotype is the dearth of 
genetic studies supporting this hypothesis (24-26). 
Moreover, Wang and Speakman (27), who searched for gen-
etic evidence of the thrifty genotype in the positive selection 
signatures at 115 single-nucleotide polymorphisms (SNPs) 
linked to obesity found no selection evidence, and thereby 
no support for the thrifty genotype as a major evolutionary 
driver for obesity.

Drifty Hypothesis
The drifty hypothesis, proposed by Speakman, challenges the 
concept of the thrifty genotype to explain obesity (2). Based on 
this hypothesis, it is suggested that early hominids underwent 
a process of stabilizing selection favoring body fatness, while 
obesity was selected against due to the increased risk of preda-
tion. However, around 2 million years ago, the risk of preda-
tion diminished substantially with the development of social 
behavior, weapons, and fire control. As a result, the popula-
tion distribution of body fatness began to alter due to random 
mutations and genetic drift (2, 28, 29).

In essence, the drifty hypothesis suggests that once our an-
cestors became skilled hunters and discovered fire, the risk 
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of predation reduced and was nearly nonexistent. This re-
moval of predation as a selection pressure meant that the 
upper limit or “point of intervention” for body weight status 
was no longer beneficial. Thus, the genes that promote adipos-
ity and increased body weight were no longer being removed 
by natural selection, as they had been when predation posed 
a severe threat to survival. This hypothesis differs notably 
from the previous one by suggesting that the genetic predis-
position to obesity has never been advantageous to humans 
(11, 16, 20, 28-32).

The hypothesis also explains why most individuals in soci-
ety are not obese. Potential genetic alterations that cause 
upper body weight limits to be exceeded are presumed to 
have randomly occurred rather than being selected for. 
Therefore, individuals who have not experienced this genetic 
drift remain nonobese (2). Critics of this hypothesis argue 
that it fails to consider factors such as population size, gene- 
gene and gene-environment interactions, population bottle-
necks and expansions, migration and founder effects, and 
population subdivision (33). Additionally, the hypothesis 
does not address certain genetic traits, such as type 2 diabetes 
and polycystic ovary syndrome, which are highly detrimental 
in our environment and cannot be solely explained by random 
mutations (34).

Thermogenic Capacity Hypothesis
Compelling evidence now suggests that modern humans em-
barked on a remarkable journey out of Africa approximately 
70 000 years ago (35-45). As our ancestors ventured into cold-
er regions (Europe and Northeast Asia), they faced unique en-
vironmental challenges that shaped their genetic makeup. 
Over time, natural selection favored genes that facilitated 
cold adaptation over heat adaptation (3, 46).

It is worth noting that modern humans reached Europe 
around 45 000 years ago and inhabited it at a time of the 
last glacial period when vast stretches of Europe were engulfed 
by ice. Around 40 000 years ago, Europe experienced a climat-
ic deterioration that reduced mammalian species diversity. 
Ethnographic data and observations on mammalian species 
and fluctuating resources indicate a subsequent decline in hu-
man population densities, and suggest that population bottle-
necks, genetic drift, and gene flow have more prominent roles 
in human evolution during this period than population 
replacement.

As a result, populations that remained in Africa were well 
adapted to hot climates and local savannah environments— 
features found even in modern times in individuals of 
African descent, including a larger surface area to body 
mass ratio, longer limbs, increased skin pigmentation, reduced 
body hair, more sweat glands, lower body temperature, and 
decreased metabolic rate, all of which would have helped pro-
tect individuals against solar radiation and overheating 
(47, 48). In contrast, indigenous populations with ancestors 
from China and Japan successfully settled in Arctic and sub-
arctic regions, showcasing their evolutionary adaptation to 
cold climates (49-51). It is believed that natural selection has 
played a role in favoring cold-adaptation genes in these popu-
lations, influencing energy expenditure in these individuals 
with diverse ancestries (3). These studies have found that basal 
metabolic rates are highest in Arctic individuals, intermediate 
in White Europeans, and lowest in African Americans 
(52-54). These findings underpin a thermogenic capacity 

hypothesis (55-61), which suggests that the lineages of early 
humans who remained in Africa and those who migrated to 
other tropical environments retained heat-adaptation genes 
(3). As a result, modern African Americans, whose ancestors 
did not require such efficient energy expenditure, showed low-
er aerobic capacity and energy expenditure, which, when 
combined with sedentary Western lifestyles, increased obesity 
rates (52, 62). Indeed, total daily energy expenditure is lower 
in African American compared with White individuals, most 
of which is due to a lower resting metabolic rate (52, 62). 
Conversely, the lineages of those who migrated to colder 
regions acquired genes for cold adaptation (3, 63). Despite 
sedentary lifestyles and ultraprocessed foods, populations 
adapted to cold temperatures and with a propensity to effi-
cient energy expenditure have less chance of developing obes-
ity when compared with populations in hot climates.

Thus, the thermogenic capacity hypothesis highlights the 
profound influence of historical human migration on the mod-
ern obesity pandemic. The journey of our ancestors out of 
Africa, coupled with unique climatic challenges, has shaped 
distinct genetic adaptations in different populations. In ac-
cordance with this hypothesis, there are some gene variants as-
sociated with latitude, obesity, and brown adipose tissue 
thermogenesis, such as UCP1, PRDM16, THADA, ADRB3, 
TBX15/Wars2, and TRIB2 (58). While the hypothesis pro-
vides valuable insights into human evolution and its effect 
on metabolic rates and obesity, as noted later, further research 
is needed to determine how differences and changes in gut 
microbiota might contribute to these differences and reinforce 
the hypothesis.

A New Hypothesis: The Metaflammation Hypothesis
Due to intense selection pressures exerted by pathogens, the 
immune system has become our primary interface with the en-
vironment (64-66). Devastating historical epidemics, such as 
the Black Death in Europe, viruses that decimated Native 
Americans in Peru and Mexico, and the influenza pandemic 
of 1919, have had a significant effect on population sizes 
and genetic selection (66). Disparities in obesity rates exist 
among different populations, with African Americans, 
Hispanic Americans, and Pacific Islanders having higher rates 
when compared to European Americans (67). Together, these 
observations lead us to propose a metaflammation hypothesis, 
which proposes that obesity rate differences between popula-
tions reside, at least in part, in the differences in the immune 
system (which is linked to the energy storage system) and 
are the consequences of genetic selection induced by infectious 
diseases or epidemics. Thus, populations that stayed in Africa 
and lived a more primal lifestyle, hunting in tropical rainfor-
ests where they were exposed to various parasites and patho-
gens carried by insects, birds, and animals, have developed a 
robust immune system (68, 69). By contrast, populations 
that migrated out of Africa were exposed to lower pathogen 
levels, thereby reducing the need for strong and energy-costly 
proinflammatory signals (70, 71).

In favor of this hypothesis, it has been shown that individ-
uals of African descent, including African Americans, express 
more genes linked to strong inflammation, increased cytokine 
secretion, and bactericidal activities when compared to other 
populations (65, 72). There are more than 250 such genes 
with evidence of recent natural selection, for example, var-
iants of the IL1A and IL1B genes (65, 72). Macrophages 
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are required to fight infections and in individuals of African 
ancestry, macrophages respond more strongly to infections, 
as assessed by expression of genes related to inflammatory re-
sponses (65). These findings suggest that Africans and African 
Americans have more efficient inflammatory responses and 
may better control bacterial infections.

Recent studies have shown that Hispanic Americans, who 
have a high prevalence of obesity, have inherited stronger im-
mune systems from their Native American ancestors, possibly 
because the latter had survived epidemics of infectious disease. 
Research has also shown that African American and Hispanic 
American women have higher circulating C-reactive protein 
levels when compared to European American women. This 
phenomenon is linked to a specific protein variant (TREM2) 
which is expressed in myeloid cells (73).

Another population with a high obesity prevalence, which 
likely experienced selective pathogen pressure, are the Pima 
Indians. GWAS studies conducted in this population have 
identified multiple SNPs associated with body mass index 
(BMI), including SNPs in A2BP1, TMEM18, TCF7L2, 
MAP2K3, and LPGAT1 (74-77). Although these genes had 
many different cellular functions, most of these are expressed 
in macrophages and/or code for proteins that can modulate 
the immune responses or are related to endoplasmic reticulum 
stress (76, 78-80). Thus, these genes could have roles in sub-
clinical inflammation in obesity and also serve as connections 
between inflammatory genotypes and weight gain.

In the 19th century, infectious diseases such as measles, 
whooping cough, and influenza caused approximately 75% 
mortality in some East Polynesian populations (81), and po-
tentially exerted a considerable effect on genetic diversity in 
modern populations. In GWAS of obese populations from 
the Pacific Islands, strong associations were observed with 
Insig2 and CREBRF genes (82, 83), which, while not uniquely 
related to the immune system, have relevant roles in inflamma-
tion or endoplasmic reticulum stress directly linked to inflam-
matory responses (84, 85).

Although less prevalent than in African Americans and 
Hispanic Americans, Europeans and European Americans 
also have a high prevalence of obesity. While most GWAS in 
obese populations of European ancestry have not reported 
correlations between BMI and immune system genes, a more 
careful search can identify possible links. For example, two 
of the most significant GWAS-identified and widely replicated 
obesity loci are the FTO (9, 86) and MC4R genes (9, 87, 88). 
Although several mechanisms have been proposed to explain 
why these loci modulate body weight, including the central 
nervous system–mediated control of food intake (9), it is im-
portant to note that both FTO (89-98) and MC4R (99-102) 
have important roles in macrophage activation and inflamma-
tory responses, suggesting some effect on immune response 
modulation. Moreover, reexamination of a study examining 
the genetic factors contributing to BMI variations in 339  
000 individuals (103) (predominantly of European descent) 
using GWAS and metabochip meta-analysis to successfully 
identify 97 BMI-associated loci, which accounted for approxi-
mately 2.7% of the variance in BMI, revealed many expected 
pathways, including substantial central nervous system in-
volvement, but also revealed 56 novel loci associated with 
BMI in a European meta-analysis, of which at least 90% 
had roles in macrophage/inflammatory processes, indicating 
potential connections between BMI and immune genotype 
composition (104-137).

While it is commonly believed that subclinical inflammation 
is caused by obesity in response to cytokines secreted from 
macrophage/adipose tissue, epidemiological studies have 
shown that inflammation can precede and promote weight 
gain (138-141). At molecular levels, precise control mecha-
nisms exist between insulin signaling/resistance and pathways 
in immune cells that may contribute to weight gain. In primary 
infections or excess nutrient conditions, innate immune sys-
tem activation (toll-like receptor [TLR], inducible nitric oxide 
synthase, JNK, and nuclear factor κB) causes posttranscrip-
tional protein modifications in insulin signaling. This causes 
insulin resistance, which is specific to the liver, muscle, and 
hypothalamus, while adipose tissue remains insulin sensitive 
or less resistant thereby favoring weight gain (141-144). 
Inflammation may also contribute to increased weight gain 
via reduced energy expenditure, secondary to M1 macrophage 
infiltration in brown adipose tissue, thereby increasing deg-
radation or impairing sympathetic neuron-mediated norepin-
ephrine signaling in this tissue (145, 146).

In summary, our metaflammation hypothesis suggesting that 
genes that promote a strong defense against infectious diseases 
could also be responsible for the increasing prevalence of obes-
ity in modern society. This hypothesis could also shed light on 
the evolutionary origins of the obesity epidemic, but further 
studies of the connections between genes linked to obesity 
and the immune system and inflammation must be explored.

Microbiota, Obesity, and Evolution
Environment Factors and Microbiota
The environment is a determinant factor in the establishment of 
the obesity pandemic observed in recent years. Nevertheless, the 
increase in obesity cannot be entirely ascribed to individual 
choices for high-calorie diets or decreased energy expenditure re-
sulting from contemporary sedentary lifestyles. This viewpoint 
overemphasizes personal responsibility for obesity, failing to ac-
knowledge the broader systemic factors that contribute to the cre-
ation of inequitable obesogenic environments. For instance, the 
unique characteristics of Latin American countries render their 
populations particularly susceptible to these factors, which may 
elucidate the substantial increase in obesity rates observed in the 
region (147-149). These factors include the physical environment, 
food exposure, economic and political interests, social inequity, 
limited access to scientific knowledge, cultural influences, context-
ual behavior, and genetics (147, 150-153). While some factors are 
related to individual behavior, most are systemic, significantly af-
fecting obesity trends by limiting individual freedom of choice. 
Additionally, the reduced selective pressure resulting from medic-
al advancements and food abundance may allow individuals with 
a genetic predisposition to obesity to survive and reproduce, po-
tentially increasing obesity prevalence in future generations (154).

Also in this field of evolutionary biology, recent evidence 
suggests that the study of human evolution is incomplete with-
out due consideration of the human microbiota (155-159). 
The gut microbiota is a complex ecosystem of gastrointestinal 
microorganisms, including bacteria, viruses, fungi, protozoa, 
and archaea. More than a trillion microorganisms, including 
normal commensal bacteria in various compartment of 
the body, influence the functioning of the human body (160- 
162). Of these, gut bacteria have been studied the most. In 
addition to maintaining normal intestinal function, intestinal 
microbiota also influences the overall health of the host 
(160-169). Bacterial cells from the gut microbiota possess an 
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astounding number of genes that surpasses the entire human 
genome (160, 162, 170-172). As a result, they have gained 
the moniker “second genome” or “extended genotype.” 
This secondary genetic system can account for an overwhelm-
ing 99% of the genetic information in our bodies, providing us 
with augmented genetic diversity compared to our genome 
(Fig. 1). Moreover, it facilitates accelerated evolutionary proc-
esses and grants us the remarkable capability of exchanging 
microorganisms with our surroundings, along with their genes 
and associated functionalities (173, 174). These attributes 
hold immense potential in contributing to the adaptability 
of the host organism, making the second genome an appealing 
target for natural selection.

Diet and lifestyle choices substantially influence the gut micro-
biota (175-183) and have profound implications on the evolu-
tionary journey toward obesity. Vertebrates, including 
humans, modulate their intestinal microbiota in response to 
acute and chronic dietary changes (175, 177, 178, 184, 185). 
This adaptation enables greater flexibility and efficiency in di-
gesting a wide range of nutrients, promoting survival even under 
extreme dietary conditions. Evidence indicates the existence of 
diurnal oscillations in the gut microbiota of mice and humans, 
corresponding to feeding rhythms (185-187), as well as long- 
term adaptations that provide a mechanism for responding to 
changing environments and providing evolutionary influence 
on the host. This is exemplified by comparison of gut microbiota 
between populations from the United States, Malawi, and the 
Amazon and their adaptation to differing dietary components 
(188). People in America have adapted to a high-protein and 
high-fat diet, whereas individuals from Malawi and the 
Amazon have adapted to digest complex carbohydrates.

Horizontal gene transfer represents another adaptation of 
the human microbiota with substantial implications in evolu-
tion (see Fig. 1). This transfer involves changes in the compos-
ition of bacteria within the gut and subsequent alterations in 
gene content (189). Furthermore, it has been demonstrated 
that human-associated bacteria have a substantially higher 
rate of gene transfer than bacteria in other environments, be-
cause horizontal gene transfer occurs frequently within an in-
dividual’s gut microbiome, with higher frequencies of transfer 
in industrialized populations (190).

In addition to diet, various environmental factors, including 
early-life antibiotic use, treatment with antipsychotic medica-
tions, smoking cessation, reduced physical activity, and nu-
merous other conditions, have been shown to affect the 
composition of gut microbiota, potentially favoring weight 
gain (191-207). Host genetic variation also contributes to 
shape the microbial ecosystem (208-214). This interaction be-
tween host genetics and the gut microbiome can potentially af-
fect the host’s phenotype. Understanding the complex 
interplay between human genetics, environment, and gut 
microbiota provides valuable insights into the evolutionary 
origins of obesity and its underlying mechanisms.

Gut Microbiota and Obesity
Extensive research has shed light on the critical role of 
intestinal microbiota in the development of obesity (162, 
215-219). In a now classic study, it was found that germ-free
mice were comparatively protected against diet-induced
obesity and exhibited reduced adiposity, improved glucose
tolerance, and enhanced insulin sensitivity, all linking the
microbiome to obesity and metabolic syndrome (217).

Transplantation of the microbiota from ob/ob mice to lean 
mice increased adiposity in the recipients, even though 
they did not carry the obesity genes (219). Indeed, multiple 
studies in different mice models suggest the causal role of 
microbiota as an important variable in the induction of 
weight gain (220, 221), and indicate that intestinal micro-
biota may overcome genetic protection against insulin re-
sistance, inducing weight gain and metabolic syndrome 
(222).

In humans, the composition and biodiversity of gut bacteria 
substantially differ between obese and healthy individuals 
(196, 223-241). Compared to lean individuals, obese individu-
als show reduced bacterial diversity. A systematic review 
showed that the most consistent phylum associated with obesity 
is Proteobacteria, and the association between the Bacteroidetes/ 
Firmicutes ratio is dubious (241). In obesity, various genera, 
such as Lactobacillus and Fusobacterium, are also enriched. 
On the other hand, Faecalibacterium, Akkermansia, and 
Alistipes are considered to be lean-associated genera 
(242-244). In a metagenome-wide association study, researchers 
have found 1358 significant associations between bacterial 
SNPs and host body mass index (BMI) using gut metagenomic 
samples from a cohort of more than 7000 healthy individuals 
(245). The researchers also identified BMI associations in 
SNPs related to inflammatory pathways in Bilophila wadswor-
thia and energy metabolism functions in the Faecalibacterium 
prausnitzii genome, highlighting the significance of nucleotide- 
level diversity in microbiome studies.

Gut Microbiome Expands the Host’s Evolutionary 
Capacity
The microbiome plays an important role in the host’s 
evolutionary potential by expanding its genetic repertoire 
(156-158, 246-248). The interaction of the microbiome with 
the host phenotype is crucial in shaping the distribution of 
host phenotypes. It enhances the host’s response to natural se-
lection and influences its evolutionary trajectory. Microbial 
effects on host evolution depend on how microbes are trans-
ferred to the host species. Previously, only vertically transmit-
ted microbes were recognized as inheritable; however, hosts 
can acquire microbes through different transmission modes 
(249) (see Fig. 1). Recent research has revealed that host gen-
etic variation significantly contributes to the relative abun-
dance of microbes in hosts that acquire microbiome directly
from the environment (209, 250, 251). On the other side, des-
pite the complex inheritance of the microbiome, microbial
variation explains considerable phenotypic variance that can
rival the contribution of host genetic, suggesting that the mi-
crobiome’s fidelity of inheritance may also influence host
phenotypic variance (208, 209).

The microbiome can modulate the host’s evolutionary 
potential in two common scenarios (252). First, microbial 
variation may shift the mean phenotype of the population, fa-
cilitating local adaptation (173, 252, 253). Second, microbial 
diversity has the potential to stabilize and enhance phenotypic 
variability within a host population. These two patterns often 
coexist and significantly influence how hosts navigate their 
adaptive journey (253, 254). By harnessing the abilities of mi-
crobes, hosts can acquire specific adaptive traits tailored to 
their local environment, thereby maximizing their chances 
of survival and reproductive success in rapidly changing eco-
logical landscapes (156).
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The assembly process of intestinal microbiota introduces 
chance and priority effects, resulting in microbial variation 
among hosts within a population. Therefore, it increases 
phenotypic variability and creates new opportunities for host 
exploration within the fitness landscape. This alteration in evo-
lutionary trajectories has important implications for hosts. 
Thus, changes in the distribution of phenotypic traits within 
the microbiome affect the host’s response to natural selection, 
leading to tractable signatures of selection in the host’s genome 
over time. The interplay between microbial variation and host 
phenotypic diversity plays a crucial role in the dynamics of evo-
lutionary processes. These findings highlight the critical role of 
the microbiome in shaping the adaptive potential of host pop-
ulations and provide valuable insights into the intricate inter-
dependencies between microbes and their hosts.

While locally adaptive microbes may help facilitate short- 
term host trait evolution, their long-term evolutionary out-
comes are still unknown. If these microbes prove beneficial, 
hosts may develop mechanisms to maintain locally adaptive 
microbes and their effects on host traits or environmental 
stress mitigation, similar to genetic accommodation or niche 
construction (253). Thus, hosts may increase their frequency 
within the population, improving the host’s ability to adapt 
to the environment.

Specifically looking at the immune system, protective sym-
bionts potentially shape immune system evolution in multiple 
ways. One possibility is that host immune responses, when 
coupled with protective symbionts, reduce the need for redun-
dant immune mechanisms. In contrast, symbionts may also 
help develop host immune responses by providing sufficient 
protection, thereby enabling hosts to persist and adapt. 
Immune system evolution is likely to differ, depending on fac-
tors such as the type of immunity, how symbionts are transmit-
ted, and the cost benefits associated with immune system 
functions. Ultimately, the effect of beneficial symbiosis on im-
munity evolution will rely on the intricate interactions between 
the host immune system and symbionts, with specific interac-
tions potentially alleviating the pressure for immune system 
maintenance, while others may create constraints (255).

Reconciling the Evolutionary Hypothesis 
of Obesity With the Changing Landscape 
of Gut Microbiota
Host/Microbiota Thrifty Hypothesis
The discovery of the important and changing role of gut 
microbiota in the development of obesity provides a new 

Figure 1. The gut microbiome expands the host’s evolutionary capacity. The study of human evolution is incomplete without considering the human 
microbiota. Bacterial cells in gut microbiota possess 99% of the genetic information in our bodies, providing us with augmented genetic diversity 
compared to our genome and facilitating accelerated evolutionary processes through generations. Previously, only vertically transmitted microbes were 
recognized as inheritable, but hosts can also acquire gut microbiota through horizontal gene transfer. The microbiome can modulate the host’s 
evolutionary potential in 2 common scenarios: First, microbial variation may shift the population’s mean phenotype, facilitating local adaptation, and 
second, microbial diversity can stabilize and enhance phenotypic variability within a host population. The effect of the microbiome on host genetics needs 
to be considered in the hypotheses of the evolutionary origin of obesity.
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mechanism that must be considered in the context of the 
thrifty genotype hypothesis. Mechanisms, whereby gut micro-
biota can promote weight gain/energy storage, can be catego-
rized into 4 key areas. First, gut microbiota disrupt energy 
homeostasis by increasing digestible energy uptake (in-
creased capacity to energy harvest) (219), leading to weight 
gain. Second, gut microbiota may enhance lipid synthesis 
and storage, contributing to obesity (217). Furthermore, 
gut microbiota may affect control of appetite and feeding be-
havior and modulate the gut-brain axis to influence cravings 
and eating habits (256, 257). Last, gut microbiota may in-
duce a state of subclinical chronic inflammation, leading to 
tissue-specific insulin resistance with increased adipose 
mass (141, 258-261). A gut microbiota with these character-
istics is deemed to have a “thrifty genotype,” which refers to 
its ability to efficiently induce fat storage in the host (141, 
217, 219, 256-261), a trait that have been advantageous in 
our ancestors (Fig. 2).

Host/Microbiota Thermogenic Capacity Hypothesis
Previous data have shown that cold exposure can lead to a 
substantial shift in mouse microbiota composition, which re-
searchers dubbed the “cold microbiota” (262). Intriguingly, 
when these microbiota were transplanted into germ-free 
mice, the animals showed improved insulin sensitivity and 
better cold tolerance effects that were partly due to white fat 
browning and increased energy expenditure with loss of white 
fat. Ziętak et al (263) found that lowering the environmental 
temperature reduced diet-induced obesity in mice and was as-
sociated with increased thermogenesis and a plasma bile acid 
profile similar to their germ-free counterparts. The authors 

observed significant changes in microbiome composition at 
both the phylum and family levels within a day of cold expos-
ure and after 4 weeks at lower temperatures. Interestingly, 
under these conditions, the gut microbiota showed higher lev-
els of bacteria associated with leanness, such as Adlercreutzia, 
Mogibacteriaceae, Ruminococcaceae, and Desulfovibrio, 
while bacteria linked to obesity (Bacilli, Erysipelotrichaceae, 
and rc4-4) were reduced.

Taken together, these findings suggest that exposure to cold 
temperatures induce microbiota composition alterations that 
favor genera associated with leanness and suppress those 
linked to obesity (262, 264, 265). Thus, changes in microbiota 
can potentially explain, at least in part, White European and 
East Asian adaptation to cold climates and their resistance 
to obesity. Furthermore, in hot climates, microbiota modula-
tion in the opposite direction, coupled with sedentary and 
Western lifestyles, may contribute to an obesity propensity 
among African and South Asian populations. This “host/ 
microbiota thermogenic capacity genotype” adaptation may 
also contribute to relatively rapid obesity development when 
these populations migrate from cold to hot climates (Fig. 3). 
Such lifestyle changes may represent a promising avenue for 
further research in this field.

Host/Microbiota Metaflammation Hypothesis
The host and its commensal bacteria work together to resist 
pathogens, with cooperative efforts potentially favored by 
natural selection (266-269). Pathogen defenses are crucial mi-
crobiome functions in terms of evolution, and many sym-
bionts that have colonized hosts are effective against a range 
of pathogens, making the benefits of pathogen resistance a 

Figure 2. Host/microbiota thrifty genotype hypothesis. The host thrifty genotype proposes that genes that allowed for efficient fat storage during food 
abundance were advantageous for survival during periods of food shortage. Additionally, a microbiota able to induce energy storage and less energy 
expenditure, independent of whether it was installed more recently (favored by environmental factors) or was installed in our ancestors and passed 
through vertical transmission, can undoubtedly integrate the thrifty genotype. A possible microbiota thrifty genotype is a microbiota favoring a) an 
increase in digestible energy uptake while decreasing energy expenditure, leading to weight gain; b) an increase in lipid synthesis and storage, 
contributing to obesity; c) the control of appetite and feeding behavior and modulate the gut-brain axis to influence cravings and eating habits; d) the 
induction of a state of subclinical chronic inflammation, leading to tissue-specific insulin resistance with increased adipose mass. In today’s environment 
of constant food availability, this host/microbiota thrifty genotype promotes excessive fat storage and obesity.
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considerable advantage (255, 270). This is particularly im-
portant compared to other microbiota benefits, such as nutri-
tive benefits or the thrifty microbiota genotype.

In this regard, a careful search using data from different 
sources shows that intestinal microbiota taxa considered pro-
tective against some infectious diseases are more prevalent in 
microbiota from obese individuals (240, 271, 272). There is a 
clear relationship between the gut microbiota and the sepsis 
outcome (273-275). A mendelian randomization investigation 
estimates that Lentisphaerae, LachnospiraceaeUCG004, and 
Coprococcus negatively correlated with sepsis severity. In 
addition, Coprococcus had a significant negative correlation 
with the risk of sepsis-related death, suggesting a protective 
effect of these taxa (271). Interestingly, all these taxa are 
more prevalent in obese individuals, suggesting that, at least 
in part, a more protective microbiota in sepsis is also present 
in obesity (147). A systematic review of malaria and micro-
biome showed a clear correlation between the phylum firmi-
cutes and proteobacteria and the attenuation of malaria 
severity in mice and men (272), and these phyla are certainly 
more prevalent also in obesity (240). Although the micro-
biota of obese individuals might have a significant influence 
from diet and environment, we cannot exclude the possibil-
ity that part of it may have come from vertical transmission, 
which leads us to suggest that certain microbiota strains that 

have evolutionary advantages in fighting infectious diseases 
may also predispose the host to weight gain.

The colonization resistance induced by gut microbiota 
may involve direct mechanisms (interactions between micro-
bial cells) and indirect mechanisms (through regulation of 
host physiology and largely host immune responses) (276). 
These indirect mechanisms, mainly activation of the innate 
immune system and cytokine production, may also mediate 
weight gain. Individuals with low gut bacterial diversity 
have low-grade inflammation due to innate immune system 
activation and are more likely to experience weight gain, dys-
lipidemia, and insulin resistance (277, 278). Also, specific 
bacterial strains associated with host inflammation, such as 
Ruminococcus gnavus and Bacteroides species, are more 
prevalent in obese individuals (178, 279). In contrast, strains 
with anti-inflammatory properties (F prausnitzii) are less 
common (192). Furthermore, a unique intestinal micro-
biome signature was shown to contribute to weight regain 
in obese mice following successful dieting (280). The molecu-
lar connections between microbiota-induced inflammation 
and obesity may be manifested through factors previously 
described, such as tissue-specific insulin resistance and re-
duced energy expenditure (141-146, 281-283), but other 
microbiota-related mechanisms are also likely at play. One 
additional potential mechanism involves fatty acid metabolism 

Figure 3. Host/microbiota thermogenic genotype hypothesis: The thermogenic capacity hypothesis suggests that the lineage of early humans who 
remained in Africa and those who migrated to other tropical environments retained genes for heat adaptation. Conversely, the lineage of those who 
migrated to colder regions acquired genes for cold adaptation. Nowadays, with a sedentary lifestyle and ultraprocessed food abundance, populations 
adapted to cold temperatures with a propensity to efficient energy expenditure have less chance to develop obesity compared with populations that were 
adapted to hot climates. In addition, it is essential to mention that exposure to cold temperatures induces alterations in the microbiota composition that 
favor genera associated with leanness and suppresses those linked to obesity. This leads to the hypothesis that the modulation of microbiota could 
potentially explain the adaptation of White and East Asian individuals to cold climates and their resistance to obesity. Furthermore, the opposite 
modulation of microbiota in hot climates may predispose descendants (coupled with sedentary and Western lifestyles) to obesity. This phenomenon can 
be identified as the “host/microbiota thermogenic capacity genotype” adaptation, which may also elucidate the relatively rapid development of obesity 
when these populations migrate from cold to hot climates, accompanied by lifestyle changes.
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by the gut microbiota and its effect on the obesity- 
inflammation axis. Research has shown that dietary and mi-
crobial factors influence specific fatty acid isomer levels in 
the gut, which modulate specific immune cells called CD4+ in-
traepithelial lymphocytes (284). These findings provide a new 
role for bacterial fatty acid metabolism in maintaining the 
immunological balance in the gut by modulating the relative 
number of CD4+ T cells that are CD4+ CD8αα+. These studies 
support the notion that distinct gut microbial signatures are 
associated with host inflammation and obesity. Taken to-
gether with these data, we can suggest that the microbiota ex-
hibiting these characteristics can be identified as possessing a 
“metaflammation genotype,” which is responsible for its abil-
ity to combat infections and promote fat storage in the host 
effectively (Fig. 4).

COVID-19 Pandemic and the Metaflamation 
Hypothesis
The recent COVID-19 pandemic needs to be analyzed consid-
ering this new metaflammation hypothesis. First, it is import-
ant to mention that the pandemic of the 21st century is very 
different from those of previous centuries, considering the 

availability of vaccines and medical and hospital resources, in-
cluding intensive care, which are much more advanced today. 
However, some data from the COVID-19 pandemic seeming-
ly support the metaflammation hypothesis. To begin with, the 
recent pandemic induced an acute pronounced inflammatory 
response in patients followed in some of them by a milder 
chronic inflammatory process, which has been termed “long 
COVID.” In these patients, weight gain was observed in the 
months following the initial episode (285-289), confirming 
that a nonsevere but chronic inflammatory process can lead 
to weight gain through the mechanisms previously described 
(138-146). As expected, GWAS studies conducted in this 
population have identified multiple SNPs associated mainly 
with the immune system (290-295), again indicating the con-
nection between the immune response and the energy storage 
system (adipose tissue).

Additionally, it is important to highlight that patients 
experiencing long COVID exhibit gut microbiota 
dysbiosis, characterized by a significant reduction in bacterial 
diversity. This includes a lower relative abundance of genera 
known to confer protection against obesity, particularly 
those that produce short-chain fatty acids, such as the 
Eubacterium hallii group, Subdoligranulum, Ruminococcus, 

Figure 4. Host/microbiota metaflammation genotype hypothesis: There are disparities in obesity rates among different populations, with African 
Americans, Hispanic Americans, and Pacific Islanders having higher rates compared to European Americans. The differences in obesity prevalence 
between human populations may involve the immune response, which lies in the genetic selection induced by infectious diseases. As populations stayed 
in Africa, they lived and hunted in the tropical rainforest. They were exposed to various insect, bird, and animal parasites and pathogens and developed a 
more inflammatory genotype. As some humans migrated out of Africa to develop agriculture and animal husbandry, they encountered diverse pathogenic 
environments. This led to population-specific selection and adaptation to these new environments, with less pressure on infectious diseases and a less 
inflammatory genotype. Evidence shows that a genotype more prone to inflammation may predispose to obesity in today’s constant food availability 
environment. Moreover, we suggest that certain strains of microbiota that possess evolutionary advantages in fighting infectious diseases may 
contribute to a more inflammatory phenotype, predisposing to weight gain, reinforcing the role of a more inflammatory microbiota in the evolutionary 
origins of obesity (microbiota metaflammation genotype). Taken together, we propose the integration of host and microbiota genotypes and call it the 
host/microbiota metaflammation genotype hypothesis.
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Dorea, Coprococcus, and the Eubacterium ventriosum group 
(296, 297). On the other side, the relative abundance of 
Veillonella, which is a genus abundant in individuals with a 
high inflammatory index (298), was higher compared to con-
trols. A recent study (299) used summary statistics from 
GWAS and mendelian randomization analyses, aiming to ex-
plore the association between gut microbiota and long 
COVID. The meta-analysis findings indicated that the genus 
Parasutterella significantly elevated the risk of developing 
long COVID. In this context, previous research has demon-
strated a positive correlation between Parasutterella and 
both BMI and type 2 diabetes, independent of the reduced mi-
crobiome alpha and beta diversity and the low-grade inflam-
mation typically observed in obesity (300). Taking together 
these data, we can suggest that the immune response to an 
infection is a complex process that involves the genetic archi-
tecture of the immune system and the microbiota, and epidem-
ics may select survivors with a more robust inflammatory 
response that can predispose to obesity even in future 
generations.

In summary, we are suggesting that the evolutionary 
hypotheses of obesity should be enriched with microbiota 
genotype, and even for the drifty hypothesis (a nonadaptive 
scenario), microbiota modulation, mainly by environmental 
and dietetic factors more recently, certainly contributes 
to explaining the increased obesity prevalence in the past 
40 years. Moreover, adding the microbiota genotype in-
creases the scope of the thrifty, the thermogenic, and 
the metaflammation hypotheses in the adaptive scenario. 
However, it remains uncertain whether this microbiota geno-
type, or at least a portion of it, originated in the ancestors of 
obese individuals long ago and provided evolutionary bene-
fits or if it is a more recent adaptation to our food-rich envir-
onment. Nonetheless, this microbial genotype found in obese 
individuals can be inherited by future generations, giving rise 
to a microbiota-associated thrifty, thermogenic, and meta-
flammation genotype.

Conclusions
Human populations in different regions have unique genetic 
histories influenced by founder effects, genetic drift, admix-
ture events, and various ecological challenges. These factors 
have collectively contributed to the genetic architecture of hu-
mans. It is crucial to acknowledge that models of the origin of 
obesity cannot be categorized as adaptive or nonadaptive. The 
origins of obesity are complex and cannot be explained by a 
single theory. Both natural selection and genetic drift likely in-
fluenced the genetic framework of obesity. There is an overlap 
of natural selection hypotheses that are not mutually exclu-
sive. Natural selection may have increased the prevalence of 
beneficial alleles for survival, whereas genetic drift randomly 
affected the frequencies of other alleles. The combined effects 
of these forces and the modulation of microbiota under differ-
ent circumstances may offer insight into the ethnogeographic 
variation in obesity. It is well accepted now that the common 
forms of obesity are polygenic, and incorporating the micro-
biota genotype in this complex genetic architecture certainly 
makes it more polygenic than previously thought. Thus, un-
covering the evolutionary origins of obesity requires a multifa-
ceted approach that considers the complexity of human 
history, the unique genetic makeup of different populations, 
and the influence of gut microbiome on host genetics. 

Exploring these factors together will open up new avenues 
for understanding the genetics of obesity and its evolution.
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