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Fructose, a common sweetener in modern diets, has profound efects on both metabolism and brain function, primarily due to its
distinct metabolic pathways. Unlike glucose, fructose bypasses critical regulatory steps in metabolism, particularly the
phosphofructokinase-1 (PFK-1) feedback inhibition, leading to uncontrolled metabolism and increased fat storage. Tis review delves
into the metabolic consequences of fructose consumption, including its limited role in directly stimulating insulin secretion, which
afects satiety signaling and contributes to increased food intake.Te small intestine initially helpsmetabolize ingested fructose, shielding
the liver and brain from excessive exposure. However, when consumed in excess, particularly in diets high in processed foods, this
protective mechanism becomes overwhelmed, contributing to metabolic disorders such as insulin resistance, obesity, and fatty liver
disease.Te review also explores fructose’s impact on the brain, with a focus on the hippocampus, a key region formemory and learning.
Chronic high fructose intake has been linked to mitochondrial dysfunction, increased production of reactive oxygen species (ROS), and
neuroinfammation, all of which contribute to cognitive decline and impairments in memory and learning. Additionally, fructose-
induced alterations in insulin signaling in the brain are associated with increased risk for neurodegenerative diseases. Tese fndings
underscore the potential long-term neurological consequences of excessive fructose intake and highlight the need for further human
studies to assess the full spectrum of its efects on brain health. Addressing the rising consumption of fructose, particularly in processed
foods, is essential for developing targeted strategies to mitigate its adverse metabolic and cognitive outcomes.
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1. Introduction

Troughout evolution, mammals presumably used excessive
fructose intake and metabolism as a vital survival purpose to
store energy to ensure availability in times of scarcity [1].
Tis suggests that high fructose ingestion turns the body into
a low-energy mode in which there is reduced adenosine
triphosphate (ATP) production and usage while encour-
aging hunger to promote further food-seeking behavior
[2–5]. Additionally, fatty acid oxidation, lipolysis, and gly-
cogenolysis are inhibited to store glycogen and fat in the liver

[6–8]. Interestingly, this survival mode mechanism is unique
for fructose, as glucose has opposite efects. It can be de-
duced that glucose is an essential fuel for immediate energy
demands, and fructose ensures energy storage for future
needs. However, in contemporary times, with the dramat-
ically increased consumption of processed foods, high-
fructose diets, and a sedentary lifestyle, this once benef-
cial process has resulted in detrimental efects on the body
and brain function [1, 9].

In the past centuries, the fructose diet in humans con-
sisted of natural fructose-containing foods like fruit,
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vegetables, and honey, but with the development of in-
dustrial and manufactured products in the early 20th cen-
tury, the sources of fructose changed, and now they mostly
appear as added sugars [10–12]. Tese added sugars, pro-
cessed or refned sugars, have sucrose and high-fructose corn
syrup (HFCS) as their leading exponents [13–16].

Fructose is a strong lipid-promoting sugar as a precursor
of fatty acid synthesis without feedback inhibition through
the phosphofructokinase (PFK) pathway [17, 18]. It pro-
motes fat storage by increasing the production of fatty acids
and decreasing fatty acid oxidation [19]. Additionally,
fructose afects insulin signaling and may lead to insulin
resistance [20]. Research studies also corroborate that
ingesting high fructose can increase the number of active
oxygen species, as fructose is heavily involved in in-
fammatory and oxidative damage [21, 22].

Tis review examines how increased fructose con-
sumption can induce changes in the hippocampus and other
brain regions associated with regulating the appetite-reward
system. It also explains how its unchecked metabolism can
cause ATP depletion, leading to neuroinfammation, mi-
tochondrial dysfunction, and oxidative stress in the brain,
which in turn leads to memory and cognitive impairment
[9, 23, 24].

2. Fructose Metabolism

Fructose and glucose share an identical molecular compo-
sition, C6H12O6, and provide the same caloric density of
4 kcal/g. However, substantial diferences are observed in
their respective physiological infuences and taste percep-
tions. Fructose exhibits a sweetness index value of 1.7,
signifcantly higher than glucose’s index of 0.75. Addi-
tionally, fructose has a lower impact on postprandial gly-
cemia, as evidenced by its glycemic index of 23, compared to
the glycemic index of 100 attributed to glucose [25, 26]. A
worth mentioning feature is that fructose ingestion, unlike
glucose, only weakly impacts the circulating levels of insulin
[27], which acts to increase the feeling of satiety [28].
Fructose also decreases glucagon-like peptide 1 (GLP-1)24,
a satiety hormone, and does not attenuate increasing levels
of the appetite-stimulating hormone ghrelin [29, 30]. All
these features could trigger a less substantial satiety response
and, therefore, an increase in overall food consumption [31].

Fructose metabolism is a process that lacks the regula-
tory steps seen in the metabolic glucose pathway, mainly the
irreversible step of the conversion of fructose-6-phosphate
(F6P) to fructose-1,6-bisphosphate by PFK-1 [32]. In
fructose catabolism, once inside the cell, fructose undergoes
rapid phosphorylation by fructokinase or ketohexokinase
(KHK) to form fructose-1-phosphate (F1P), and it bypasses
the control of the PFK-dependent step. In the absence of
such negative feedback regulation, F1P undergoes further
catabolism into the glycolytic intermediate, di-
hydroxyacetone phosphate (DHAP), and glyceraldehyde
[33, 34]. In the fnal step of the pathway, both DHAP and
glyceraldehyde can phosphorylate to form glyceraldehyde-3-
phosphate (G3P) [32]. DHAP and G3P act similarly to the
glycolytic intermediates and enter gluconeogenesis. Tey

can also be converted to glycerol-3-P and form methyl-
glyoxal (MA) and free fatty acids (FFA) and triglycerides
(TG) via de novo lipogenesis (DNL) or be catabolized in the
glycolytic downstream pathway into diferent compounds
like lactate, acetyl-CoA, alanine, and oxalacetate [32, 33, 35]
(Figure 1). Te overproduction without feedback inhibition
leads to an overproduction of metabolic byproducts typically
involved in glycolysis, fatty acid synthesis, and triglyceride
formation, contributing to metabolic disturbances
[32–34, 36–38].

3. Transport of Fructose From the Small
Intestine to the Liver

GLUT5 and GLUT2 are members of the facilitative glucose
transporter family and serve as the primary transporters for
fructose in the body [39, 40]. Fructose from the diet is
absorbed in the apical membrane of the small intestine
through GLUT5 [41]. At the same time, GLUT2 plays
a crucial role as the primary fructose transporter in the
basolateral membrane, moving fructose from the cytosol
into the bloodstream [40, 42–44], as shown in Figure 2.

Te small intestine is crucial in the metabolic process
of fructose, as it converts it into glucose and other me-
tabolites [32, 33, 35], thus protecting the liver from direct
fructose exposure and consequent damage [45]. In a re-
search study, mice’s fructose and glucose metabolism
pathways were assessed by labeling them with isotope
tracers and analyzing them with mass spectrometry. In the
case of orally administered labeled fructose, a signifcant
accumulation of F1P was observed in the small intestine
rather than the liver [46]. When physiological doses of
fructose are ingested, the small intestine clears almost 90%
of ingested fructose. Still, when higher doses are ad-
ministered, they overwhelm the small intestine meta-
bolism and pass directly to the portal vein, leading to
spillage into the liver and colonic microbiota and in-
ducing subsequent toxicity [45, 47]. In such scenarios,
excess fructose that reaches the liver contributes to fat
formation, while fructose catabolized by gut microbiota
induces alterations in composition and dysbiosis [47, 48].

In normal circumstances, as mentioned, fructose is
transported from the basolateral membrane of enterocytes to
the systemic circulation by GLUT2 and then reaches the liver
[32]. Te remaining fructose can reach the brain in small
amounts, evidenced by studying the fate of fructose in mice
with labeled fructose with mass spectrometry [45]. Tese
fndings go in hand with the fndings of GLUT5 in the
blood–brain barrier, choroid plexus, and microglia, sug-
gesting a feasible fructose metabolism in these organs
[49–51]. Animals lacking GLUT5 exhibit fructose in-
tolerance and even death due to their inability to absorb
fructose. Specifcally, Barone et al. [52] showed that GLUT5
knockout (KO)mice maintained normal healthy phenotypes
without dietary fructose consumption. However, when ex-
posed to increased dietary fructose intake, they developed
severe hypovolemic shock and died after 7–10 days.

It is known that fructose transporter GLUT5 and the
KHK enzymes are involved in the upregulation of the
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Figure 1: Comparative metabolism of fructose and glucose. ALT�alanine transaminase, LDH� lactate dehydrogenase, PC� pyruvate
carboxylase, PDH� pyruvate dehydrogenase, PFK-1� phosphofructokinase-1, TCA� tricarboxylic acid cycle.
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enzymes involved in fructose catabolism, and one of its main
goals is to purposely increase the ability of the small intestine
to respond to an anticipated increase in ingested glucose
[53]. Carbohydrate response element-binding protein, also
known as ChREBP, is another transcription factor linked as
a critical regulator of lipogenesis, glycolysis, gluconeogen-
esis, triglyceride formation, and fructose metabolism. It
induces gene expression as a response to consumption of
carbohydrates [54–60] in an insulin-independent process
[61]. ChrREBP also increases hepatic KHK and upregulates
GLUT5 gene expression after increased fructose intake [62].
Also, it increases the expression of fructolytic enzymes such
as triokinase, LDH, and ALDOB [63]. Accordingly, studies
have shown that ChREBP KO mice showed hypothermia,
quick weight loss, and a moribund state when subjected to
sucrose or fructose diets [55, 63]. Tis fructose intolerance
was proposed to be caused by the liver’s downregulation of
enzymes like KHK and ALDOB. Consequently, high fruc-
tose concentrations in the small intestine cause water to
enter the lumen and rapidly release contents into the colon.
Finally, bacteria in the colon ferment the unabsorbed
fructose and may cause bloating, gas, and diarrhea [56]
(Figure 3).

4. Metabolic Effects of Fructose From Whole
Fruits vs. Processed Sources

Research has shown that the metabolic efects of fructose
vary depending on its source. A cross-sectional study of
41,714 participants found that fructose from sugar-
sweetened beverages (SSBs) was linked to unfavorable
biomarker profles, including increased levels of in-
fammatory markers (CRP, IL-6, tumor necrosis factor
(TNF)-R1, TNF-R2, and leptin), insulinemic/glycemic
markers (C-peptide and HbA1c), and lipid markers (total
cholesterol, LDL-C, triglycerides, and the triglyceride-to-
HDL-C ratio). Fructose from fruit juice also correlated with
higher concentrations of C-peptide, HbA1c, and tri-
glycerides, alongside lower adiponectin levels. In contrast,
fructose from whole fruit was associated with lower levels of
C-peptide, CRP, IL-6, leptin, and total cholesterol, as well as
higher TNF-R2 levels [64]. Another cross-sectional analysis
of 3981 individuals further confrmed that fructose intake
from SSBs and juice was associated with higher intrahepatic
lipid content, while fructose from fruit did not have this
efect [65]. Te physical form of fructose plays a key role in
shaping its metabolic efects. Whole fruits are rich in fber,
which slows digestion and regulates fructose absorption,
helping to prevent rapid spikes in blood sugar and lipid
production. In contrast, fructose from SSBs and fruit juices is
absorbed more quickly, leading to faster hepatic fructose
exposure and higher rates of DNL. While fruit juices retain
some benefcial compounds, their lack of fber makes them
less efective in regulating fructose absorption and miti-
gating metabolic disturbances [66]. Additionally, the vita-
mins, antioxidants, and phytochemicals in fruit contribute
to reduced systemic infammation and overall metabolic
benefts [67]. In contrast, fructose from HFCS, SSBs, and
fruit juices is typically consumed in larger quantities,

overwhelming the small intestine’s metabolic capacity. Tis
results in excessive fructose reaching the liver, contributing
to hepatic fat accumulation, insulin resistance, dyslipidemia,
and nonalcoholic fatty liver disease [68–70]. Furthermore,
the unregulated metabolism of HFCS and liquid fructose
increases uric acid production and infammatory markers,
heightening cardiovascular risk [64, 71].

5. Brain Areas Involved in Food Intake
and Satiety

Te hypothalamus is known to play a key role in the ho-
meostasis of food intake as it receives signals from the
gastrointestinal tract through the brainstem, and it is also
connected to close areas involved in maintaining the energy
balance of the body [72]. Five hypothalamic nuclei have been
described in association with food intake and appetite
regulation: the ventromedial, lateral, dorsomedial, arcuate
nuclei, and paraventricular nucleus [73]. Within the arcuate
nucleus, frst-order neurons function as metabolic sensors,
integrating signals from peripheral sources and possessing
antagonistic efects on food intake. Specifcally, one group of
neurons co-expresses agouti-related peptide (AgRP) and
neuropeptide Y (NPY). It projects their efects to second-
order neurons in the paraventricular nucleus to trigger
orexigenic efects. In contrast, another subset of neurons
expressing pro-opiomelanocortin (POMC) cocaine and
amphetamine–related transcript (CART) project to second-
order neurons localized in the lateral hypothalamic area,
leading to anorexigenic efects or inhibition of food intake
[74–77]. Te sensitivity of these neuron types to fuctuations
in hormone levels plays a vital role in modulating food
intake [78, 79] (Figure 4).

Te regulation of appetite and satiety is a multifaceted
process involving a complex network of brain regions, and it
is also subjected to infuences of the hedonic reward of food,
palatability, environment, and emotional state [80]. In the
hypothalamus, second-order neurons send signals to some
regions of the limbic system like the amygdala (handles
emotions), hippocampus (important for memory), insula
(involved in perception), striatum (related to reward and
motivation), and the orbitofrontal cortex (which plays a role
in decision making) [80].

Nevertheless, this feld of study faces challenges due to
the variability in research fndings. Discrepancies in the
specifc brain areas involved in inducing hunger and
satiety are common, primarily attributed to diferent
study designs, methods used to administer nutrients, and
the stimuli infuencing food intake. To clarify these dif-
ferences, a recent meta-analysis, which examined data
from about 212 participants in diferent studies, ofered
new insights. Tis analysis showed that the amygdala,
hippocampus, insula, and orbitofrontal cortex correlated
with appetite regulators. Te hypothalamus, caudate
nucleus, putamen, thalamus, and anterior cingulate cortex
worked as satiety regulators. Interestingly, the insula and
orbitofrontal cortex contributed to both hunger and sa-
tiety regulation, emphasizing the interconnected nature of
these systems [81].
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6. Effects of Fructose and Glucose on
Hypothalamic Energy Regulators: ATP, ACC,
Malonyl-CoA, and AMPK

Te body’s energy levels dictate diferent signals for hor-
mones and neurons to be activated or inhibited. For ex-
ample, when the reserve of lipids is high, leptin levels in the
circulation increase [82]. Leptin is a hormone that exerts an
anorexigenic efect and reduces food intake by increasing the
POMC/CART neurons and inhibiting the NPY/AgRP
neurons. Likewise, insulin plays a signifcant role in food
intake regulation. After food is ingested, insulin levels rise
and exert anorexigenic stimuli. Tese hormones also are
interconnected with intestinal peptides, which also regulate
appetite. Specifcally, GLP-1, cholecystokinin (CCK), and
PYY provide satiety; on the contrary, ghrelin stimulates food
intake [26, 29, 83–87].

In the same way, acting like a fuel meter for cells, when
the body experiences excess energy, ATP increases and AMP
decreases [88]. AMP is an activator of AMPK. Terefore,
a decrease in AMP leads to the inactivation or de-
phosphorylation of AMPK. Similarly, AMPK catalyzes the
activation or phosphorylation of acetyl-CoA carboxylase
(ACC), a key regulator of fatty acid biosynthesis. Terefore,
a decrease in AMPK causes the dephosphorylation of ACC.
In the case of ACC, dephosphorylation leads to its activation.
Te activation of ACC, particularly in the hypothalamus, is
prominent during a positive energy balance, leading to
increased production of malonyl-CoA, which is the reaction
product of ACC and is known for suppressing food intake
[89, 90] (Figure 4).

In the hypothalamus, various neuropeptides are
expressed according to the level of malonyl-CoA. As pre-
viously mentioned, some orexigenic neuropeptides that
promote hunger are the NPY and AgRP, and some essential
anorexigenic peptides are the α-melanocyte-stimulating
hormone (α-MSH), POMC, and CART, which decrease
appetite [90–94]. Signals of leptin and insulin inhibit AMPK
activity, contributing to appetite regulation [94, 95]. Tus,
from intracerebroventricular glucose administration in ro-
dents, which involves this hormone, suppresses food intake.
Te limited ability of fructose to stimulate satiety hormones
like leptin and insulin results in AMPK activation and
minimally excites POMC neurons while keeping NPY/AgRP
neuron signals active, leading to lower satiety than glucose
and consequently more food intake [89, 95–98]. Tis
mechanism is illustrated in Figure 5, which highlights the
opposing efects of glucose and fructose on hypothalamic
AMPK activity and neuropeptide regulation.

In a study conducted by Wolfgang et al., [90] it was
shown that immediately after the administration of glucose
into the central nervous system of fasted mice, the levels of
malonyl-CoA rose, along with an increased expression of the
anorexigenic neuropeptides CART and α-MSH and the
decreased expression of the orexigenic ones as NPY and
AgRP in the hypothalamus. And within 30min of glucose
administration, food intake was visibly reduced when mice
were given access to food.

It was previously proven [90] that 2-deoxyglucose (2-
DG) inhibited the conversion of glucose to malonyl-CoA in
the hypothalamus, as 2-DG is a potent inhibitor of glucose-
6-phosphate and the glycolytic pathway. Accordingly, to
study the diferent efects of central glucose and fructose on
hypothalamic malonyl-CoA and ensure the impact of
fructose before being converted to glucose in the brain, Cha
et al. [89] conducted research in which 2-DG was injected
into mice before the administration of fructose. Te results
were that fructose, administered centrally, caused a decrease
in ATP in the hypothalamus, an increase in AMP and ac-
tivation of AMPK, and a reduction in the levels of hypo-
thalamic malonyl-CoA, and glucose showed the exact
opposite efects, both measured in the same time frame of
about 10–20min after administration. Teir study [89] also
showed that centrally administered glucose caused an in-
crease in POMC and CART mRNA levels and decreased
levels of hypothalamic AgRP and NPY mRNAs. In contrast,
centrally administered fructose decreased the levels of
POMC mRNA, which translates to fructose inducing an
orexigenic efect and had almost no impact on the levels of
NPY, AgRP, or CART levels.

Terefore, fructose metabolism takes a unique path,
diferent from the tightly regulated steps of glucose meta-
bolism. Specifcally, it skips the PFK feedback inhibition,
a critical regulatory step and rate-limiting factor in glycol-
ysis. In contrast, fructose rapidly enters the glycolytic
pathway at the triose phosphate level. Tis bypass leads to
a more rapid depletion of ATP. Te resultant decrease in
ATP levels causes a corresponding increase in AMP, sig-
naling a reduced energy status within the cell. Te activation
of AMPK detects this change in the ATP/AMP ratio.
Consequently, the level of Malonyl-CoA, a molecule in-
volved in fatty acid synthesis and appetite regulation, also
decreases. All these processes increase food intake, as the
body attempts to compensate for the perceived energy
defcit. In contrast, ingested glucose has the opposite efect as
it exerts an anorexigenic impact after ingestion
[18, 32, 89, 98, 99].

7. High Fructose Consumption and Its
Relationship With Neuroinflammation and
Cognitive Dysfunction

Te brain and its neuronal function are highly dependent on
the mitochondria and its aerobic oxidative phosphorylation
to satisfy its energetic needs, as neurons cannot generate
energy through glycolysis [100]. Reactive oxygen species
(ROS) are byproducts of normal cellular respiration, par-
ticularly during oxidative phosphorylation. While ROS are
normal and even necessary for some cellular functions, they
can be damaging in high concentrations and play a key role
in neurodegenerative diseases by their potential to cause
oxidative stress in various cells. Terefore, any dysfunction
in mitochondrial activity puts the brain at risk of impair-
ment of its functions [100–102]. Additionally, fructose is
signifcantly more reactive than glucose in forming advanced
glycation end-products (AGEs), which further contribute to
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oxidative stress and neuroinfammation. Recent studies have
shown that fructose-derived AGEs (Fruc-AGEs) accumulate
in hippocampal neurons, triggering RAGE/NF-κB signaling
and inducing mitochondrial dysfunction, reactive gliosis,
and neuronal impairment—hallmarks of early neurode-
generative processes [103]. Moreover, Fruc-AGEs have been
detected in endothelial cells, where they promote oxidative
damage and infammatory gene expression, further sup-
porting their pathological role in brain dysfunction [104].
Some fndings even suggest that AGEs can be formed within
the intestine before systemic absorption, exacerbating
metabolic and neurological consequences [103, 104].

Te hippocampus is a crucial brain area in the control of
memory and learning activities, and its dysfunction may
cause altered cognitive status, evidenced by the presence of
hippocampal infammation as an early event in neurode-
generative diseases and its signifcant impact on neurological
alterations [105–107]. Peroxisome proliferator-activated
receptor gamma coactivator-1-alpha (PGC1-α) along with
the cytochrome c oxidase subunit II (COX2) are tran-
scriptional factors involved in mitochondrial energy pro-
duction and biogenesis [108]. In a study conducted by
Jiménez-Maldonado et al. [109], they observed that these
mitochondrial markers were negatively afected after just
1week of high fructose intake in the hippocampus, in-
dependent of peripheral metabolic alterations such as body
weight, obesity, or glucose intolerance. Tese fndings
challenge the common belief that brain alterations result

from peripheral alterations or after the development of
metabolic syndrome, suggesting that fructose-induced mi-
tochondrial dysfunction may be an initial contributor
[110, 111]. Furthermore, they highlight that during child-
hood and adolescence, which are critical periods of neu-
rocognitive development, ingesting a high-fructose diet is
especially harmful [110, 111]. It is reported that even 1week
of a high-fructose diet can start changes in the hippocampus
[109]. As a response, human research studies in children
with neuroimaging have also been conducted and showed
that a high-fructose-intake diet can induce changes in the
structure and connectivity of the hippocampus [112].

Similarly, Cigliano et al. [110] reported that after 2 weeks
of a high-fructose diet, there was an increase of plasma li-
popolysaccharide, glial fbrillar acidic protein (GFAP), and
TNF-α in the hippocampus of rats without a change in body
weight or body adiposity. Tey reported that the high-
fructose diet could trigger neuroinfammation that may
take place even before the onset of weight gain or obesity.
Tey state that the high-fructose-diet efects on the hip-
pocampus may be due to the direct efect of fructose in the
choroid plexus and microglial cells, as they also express
GLUT5 transporter [113, 114]. In their study [110], they also
reported high levels of nitro-tyrosine (N-Tyr) and thio-
barbituric acid-reactive substance (TBARS) in the hippo-
campus, which are markers of oxidative damage and
neuronal cell death, along with the reduction in the ex-
pression of PGC-1α.
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Since GLUT5 is widely present in many tissues such as
the small intestine, liver, adipose tissue, testis, muscle
skeletal tissue, and brain, the absorption and metabolism of
fructose can also take place in these organs [41]. A study with
mice that were given labeled fructose showed that even in
small amounts of fructose administered, it could reach the
brain [45]. In these high-fructose-fed rats, the increased
levels of uric acid were correlated with an increased fructose
metabolism in the hippocampus region. Interestingly, the
increased uric acid levels observed in rats fed with fructose
were suggestive of an enhancement in fructose metabolism
in the hippocampus. Uric acid in the intracellular com-
partment can induce infammation, oxidative stress, and
activation of NF-kB [115–117]. Specifcally, it was shown
that uric acid produces infammation in the hippocampus
via the TLR4/NF-kB pathway, which can cause cognitive
dysfunction [117]. Te relevancy of this study lies in the fact
that the increased levels of fructose and uric acid by the
fructose diet occurred along with the hippocampal in-
fammation, and the switch to a control diet reversed all
the infammatory changes and the fructose and uric acid
levels [117].

To assess the efects of a high-fructose diet in a younger
population and its impact on the developing brain, Mazzoli
et al. [118] demonstrated that a high-fructose diet for
3weeks was associated with increased GLUT5 and fructose
in the hippocampus. Tey also reported high levels of N-Tyr
and TBARS and altered redox homeostasis, evidenced by
reduced activity in antioxidant enzymes: superoxide dis-
mutase activity (SOD) and glutathione reductase (GSR)
[119]. Additionally, all these changes were fully reversed
after returning to the control diet, proving that fructose
induced alterations at a young age and how a change in diet
could reverse those changes.

Interestingly, in a diferent study conducted by Fierros-
Campuzano et al. [120], 60 male Wistar rats were exposed to
drinking a solution of 10% fructose for 12 weeks, beginning
in their adolescence, and then removing the fructose from
the diet. Te fructose diet resulted in increased hippocampal
infammatory markers, such as IL-1β and GFAP, and despite
removing the diet for 4 weeks, there was still noticeable
neuroinfammation, mitochondrial dysfunction, and spatial
memory impairment. Tis indicates that some cortical and
hippocampal changes were irreversible even after switching
to a control diet. Tese reported diferences might be jus-
tifed by the time of exposure to fructose.

GLP-1 has been evidenced to show neuroprotective
properties in the brain and improve insulin resistance.
Glucagon-like peptide-1 receptor (GLP-1R) is expressed in
brain areas like the hippocampus, neocortex, and hypo-
thalamus [121–123]. GLP-1R mice have shown impairment
in memory, learning, and brain plasticity [124–126]. In this
same line, insulin receptor (ISNR) signaling plays a vital role
in brain metabolism, plasticity, and neuroprotection, as
evidenced in neurodegenerative diseases and neuro-
developmental problems with ISNR defcits [125]. In this
context, a study that was conducted in Wistar rats that were
given 20% fructose water for 16weeks [126] showed

a statistically signifcant decrease in ISNR mRNA with
a tendency also to decrease GLP-1R mRNA in the hippo-
campus, independently of the rest metabolic parameter of
body weight, fasting plasma insulin and GLP-1, HDL, LDL,
and cholesterol which were not afected.

In terms of a more prolonged time phase of a high-
fructose diet, a study by Wu et al. [127] showed that high
fructose ingestion during 8months induced impaired
memory and learning in rats, a marked decrease in the
insulin-signaling pathway, and induced insulin resistance in
the hypothalamus. Also, in the experiment, peripheral in-
sulin resistance was correlated with cognitive function. One
theory is that presenting hyperinsulinemia for a prolonged
period could send signals to downregulate blood–brain
barrier ISNRs and decrease the amount of insulin trans-
ported to the brain. Tis correlates with the studies that
showed that administering insulin intranasally improves
memory, and insulin infusion directly in the hippocampus
improves various memory tasks [128, 129]. Additionally,
a high-fructose diet can induce the formation of tri-
glycerides, which can cross the blood–brain barrier and
induce hippocampal-associated memory alterations [130].

8. Conclusion

Te increasing prevalence of high-fructose diets poses signif-
icant health risks due to the rapid and unregulated metabolism
of fructose without feedback inhibition, perpetuating a cycle of
continuous food-seeking behavior and upregulation of its
metabolic pathways. A prolonged high intake of fructose may
cause alterations in the brain related to neurogenesis, insulin
signaling, mitochondrial dysfunction, and neuroinfammation.
Tese alterations may be the initial contributors to the de-
velopment of cognitive impairments and even neurodegen-
erative diseases, highlighting the urgent need for additional
human clinical trials. Such studies are necessary to deepen our
understanding of the efects of high fructose consumption with
difering efects observed in childhood versus adulthood and
according to the duration of exposure to develop targeted
awareness and intervention strategies.
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